1
|
Noorsaeed S, AlBurtamani N, Rokan A, Fassati A. Heat shock protein 90 is a chaperone regulator of HIV-1 latency. PLoS Pathog 2025; 21:e1012524. [PMID: 40168429 PMCID: PMC11981193 DOI: 10.1371/journal.ppat.1012524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 04/09/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
An estimated 32 million people live with HIV-1 globally. Combined antiretroviral therapy suppresses viral replication but therapy interruption results in viral rebound from a latent reservoir mainly found in memory CD4+ T cells. Treatment is therefore lifelong and not curative. Eradication of this viral reservoir requires hematopoietic stem cell transplantation from hemizygous or homozygous ΔCCR5 donors, which is not broadly applicable. Alternative cure strategies include the pharmacological reactivation of latently infected cells to promote their immune-mediated clearance, or the induction of deep latency. HIV-1 latency is multifactorial and linked to the activation status of the infected CD4+ T cell. Hence to perturb latency, multiple pathways need to be simultaneously targeted without affecting CD4+ T cell function. Hsp90 has been shown to regulate HIV-1 latency, although knowledge on the pathways is limited. Because Hsp90 promotes the proper folding of numerous cellular proteins required for HIV-1 gene expression, we hypothesized that Hsp90 might be a master regulator of latency. We tested this hypothesis using a polyclonal Jurkat cell model of latency and ex-vivo latently infected primary CD4+ T cells. We found that, in the Jurkat model, Hsp90 is required for HIV-1 reactivation mediated by the T-cell receptor, phorbol esters, TNF-α, inhibition of FOXO-1, and agonists of TLR-7 and TLR-8. In primary cells, Hsp90 regulates HIV-1 gene expression induced by stimulation of the T-cell receptor or in the presence of IL-7/IL-15 or a FOXO-1 inhibitor. Chemical inhibition of Hsp90 abrogated activation of the NF-kB, NFAT and AP-1 signal transduction pathways. Within the CD4+ T cell population, CDRA45+ CCR7+ "naïve" and CD45RA- CCR7- "effector memory" cells were most sensitive to Hsp90 inhibition, which did not perturb their phenotype or activation state. Our results indicate that Hsp90 is a master regulator of HIV-1 latency that can potentially be targeted in cure strategies.
Collapse
Affiliation(s)
- Somaya Noorsaeed
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Infection & Immunity and Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Nawal AlBurtamani
- Division of Infection & Immunity and Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Ahmed Rokan
- Division of Infection & Immunity and Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudia Arabia
| | - Ariberto Fassati
- Division of Infection & Immunity and Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
2
|
Wang Y, Bao X, Wang W, Xu X, Liu X, Li Z, Yang J, Yuan T. Exploration of anti-stress mechanisms in high temperature exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Physiol 2023; 14:1189375. [PMID: 37234426 PMCID: PMC10206265 DOI: 10.3389/fphys.2023.1189375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Sepia esculenta is a cephalopod widely distributed in the Western Pacific Ocean, and there has been growing research interest due to its high economic and nutritional value. The limited anti-stress capacity of larvae renders challenges for their adaptation to high ambient temperatures. Exposure to high temperatures produces intense stress responses, thereby affecting survival, metabolism, immunity, and other life activities. Notably, the molecular mechanisms by which larval cuttlefish cope with high temperatures are not well understood. As such, in the present study, transcriptome sequencing of S. esculenta larvae was performed and 1,927 differentially expressed genes (DEGs) were identified. DEGs were subjected to functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The top 20 terms of biological processes in GO and 20 high-temperature stress-related pathways in KEGG functional enrichment analysis were identified. A protein-protein interaction network was constructed to investigate the interaction between temperature stress-related genes. A total of 30 key genes with a high degree of participation in KEGG signaling pathways or protein-protein interactions were identified and subsequently validated using quantitative RT-PCR. Through a comprehensive analysis of the protein-protein interaction network and KEGG signaling pathway, the functions of three hub genes (HSP90AA1, PSMD6, and PSMA5), which belong to the heat shock protein family and proteasome, were explored. The present results can facilitate further understanding of the mechanism of high temperature resistance in invertebrates and provide a reference for the S. esculenta industry in the context of global warming.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Tingzhu Yuan
- School of Agriculture, Ludong University, Yantai, China
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, China
| |
Collapse
|
3
|
Vahlensieck C, Thiel CS, Mosimann M, Bradley T, Caldana F, Polzer J, Lauber BA, Ullrich O. Transcriptional Response in Human Jurkat T Lymphocytes to a near Physiological Hypergravity Environment and to One Common in Routine Cell Culture Protocols. Int J Mol Sci 2023; 24:ijms24021351. [PMID: 36674869 PMCID: PMC9863927 DOI: 10.3390/ijms24021351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Cellular effects of hypergravity have been described in many studies. We investigated the transcriptional dynamics in Jurkat T cells between 20 s and 60 min of 9 g hypergravity and characterized a highly dynamic biphasic time course of gene expression response with a transition point between rapid adaptation and long-term response at approximately 7 min. Upregulated genes were shifted towards the center of the nuclei, whereby downregulated genes were shifted towards the periphery. Upregulated gene expression was mostly located on chromosomes 16-22. Protein-coding transcripts formed the majority with more than 90% of all differentially expressed genes and followed a continuous trend of downregulation, whereas retained introns demonstrated a biphasic time-course. The gene expression pattern of hypergravity response was not comparable with other stress factors such as oxidative stress, heat shock or inflammation. Furthermore, we tested a routine centrifugation protocol that is widely used to harvest cells for subsequent RNA analysis and detected a huge impact on the transcriptome compared to non-centrifuged samples, which did not return to baseline within 15 min. Thus, we recommend carefully studying the response of any cell types used for any experiments regarding the hypergravity time and levels applied during cell culture procedures and analysis.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dübendorf, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| | - Meret Mosimann
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabienne Caldana
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Beatrice Astrid Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dübendorf, Switzerland
- Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| |
Collapse
|
4
|
Gao Y, Zhou J, Meng X, Ouyang Q, Gan Y, Ruan H. Ilyomycins A−K, radicicol-type resorcylic acid lactones as potential immunosuppressants from a soil-derived Ilyonectria sp. Bioorg Chem 2022; 123:105796. [DOI: 10.1016/j.bioorg.2022.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
|
5
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021; 12:660085. [PMID: 33815422 PMCID: PMC8012763 DOI: 10.3389/fimmu.2021.660085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy harnessing the host immune system for tumor destruction revolutionized oncology research and advanced treatment strategies for lymphoma patients. Lymphoma is a heterogeneous group of cancer, where the central roles in pathogenesis play immune evasion and dysregulation of multiple signaling pathways. Immunotherapy-based approaches such as engineered T cells (CAR T), immune checkpoint modulators and NK cell-based therapies are now in the frontline of lymphoma research. Even though emerging immunotherapies showed promising results in treating lymphoma patients, low efficacy and on-target/off-tumor toxicity are of a major concern. To address that issue it is suggested to look into the emerging role of heat shock proteins. Heat shock proteins (HSPs) showed to be highly expressed in lymphoma cells. HSPs are known for their abilities to modulate immune responses and inhibit apoptosis, which made their successful entry into cancer clinical trials. Here, we explore the role of HSPs in Hodgkin and Non-Hodgkin lymphoma and their involvement in CAR T therapy, checkpoint blockade and NK cell- based therapies. Understanding the role of HSPs in lymphoma pathogenesis and the ways how HSPs may enhance anti-tumor responses, may help in the development of more effective, specific and safe immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
6
|
Kim N, Chung W, Eum HH, Lee HO, Park WY. Alternative polyadenylation of single cells delineates cell types and serves as a prognostic marker in early stage breast cancer. PLoS One 2019; 14:e0217196. [PMID: 31100099 PMCID: PMC6524824 DOI: 10.1371/journal.pone.0217196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Alternative polyadenylation (APA) in 3’ untranslated regions (3’ UTR) plays an important role in regulating transcript abundance, localization, and interaction with microRNAs. Length-variation of 3’UTRs by APA contributes to efficient proliferation of cancer cells. In this study, we investigated APA in single cancer cells and tumor microenvironment cells to understand the physiological implication of APA in different cell types. We analyzed APA patterns and the expression level of genes from the 515 single-cell RNA sequencing (scRNA-seq) dataset from 11 breast cancer patients. Although the overall 3’UTR length of individual genes was distributed equally in tumor and non-tumor cells, we found a differential pattern of polyadenylation in gene sets between tumor and non-tumor cells. In addition, we found a differential pattern of APA across tumor types using scRNA-seq data from 3 glioblastoma patients and 1 renal cell carcinoma patients. In detail, 1,176 gene sets and 53 genes showed the distinct pattern of 3’UTR shortening and over-expression as signatures for five cell types including B lymphocytes, T lymphocytes, myeloid cells, stromal cells, and breast cancer cells. Functional categories of gene sets for cellular proliferation demonstrated concordant regulation of APA and gene expression specific to cell types. The expression of APA genes in breast cancer was significantly correlated with the clinical outcome of earlier stage breast cancer patients. We identified cell type-specific APA in single cells, which allows the identification of cell types based on 3’UTR length variation in combination with gene expression. Specifically, an immune-specific APA signature in breast cancer could be utilized as a prognostic marker of early stage breast cancer.
Collapse
Affiliation(s)
- Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Woosung Chung
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, South Korea
- * E-mail: (HOL); (WYP)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, South Korea
- GENINUS Inc., Seoul, South Korea
- * E-mail: (HOL); (WYP)
| |
Collapse
|
7
|
Phorbol ester-mediated re-expression of endogenous LAT adapter in J.CaM2 cells: a model for dissecting drivers and blockers of LAT transcription. Genes Immun 2016; 17:313-20. [PMID: 27278128 PMCID: PMC4972999 DOI: 10.1038/gene.2016.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/05/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
Abstract
Linker for activation of T cells (LAT) is a raft-associated, transmembrane adapter protein critical for T-cell development and function. LAT expression is transiently upregulated upon T-cell receptor (TCR) engagement, but molecular mechanisms conveying TCR signaling to enhanced LAT transcription are not fully understood. Here we found that a Jurkat subline J.CaM2, initially characterized as LAT deficient, conditionally re-expressed LAT upon the treatment with a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA). We took advantage of the above observation for studying cis-elements and trans-acting factors contributing to the activation-induced expression of LAT. We identified a LAT gene region spanning nucleotide position −14 to +357 relative to the ATG start codon as containing novel cis-regulatory elements that were able to promote PMA-induced reporter transcription in the absence of the core LAT promoter. Interestingly, a point mutation in LAT intron 1, identified in J.CaM2 cells, downmodulated LAT promoter activity by 50%. Mithramycin A, a selective Sp1 DNA-binding inhibitor, abolished LAT expression upon PMA treatment as did calcium ionophore ionomycin (Iono) and valproic acid (VPA), widely used as an anti-epileptic drug. Our data introduce J.CaM2 cells as a model for dissecting drivers and blockers of activation induced expression of LAT.
Collapse
|