1
|
Shinkai H, Suzuki K, Itoh T, Yoshioka G, Takenouchi T, Kitazawa H, Uenishi H. Identification of Nonsynonymous SNPs in Immune-Related Genes Associated with Pneumonia Severity in Pigs. Genes (Basel) 2024; 15:1103. [PMID: 39202462 PMCID: PMC11353625 DOI: 10.3390/genes15081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
We previously showed that several polymorphisms in genes encoding pattern recognition receptors that cause amino acid substitutions alter pathogen recognition ability and disease susceptibility in pigs. In this study, we expanded our analysis to a wide range of immune-related genes and investigated polymorphism distribution and its influence on pneumonia in multiple commercial pig populations. Among the polymorphisms in 42 genes causing 634 amino acid substitutions extracted from the swine genome database, 80 in 24 genes were found to have a minor allele frequency of at least 10% in Japanese breeding stock pigs via targeted resequencing. Of these, 62 single nucleotide polymorphisms (SNPs) in 23 genes were successfully genotyped in 862 pigs belonging to four populations with data on pneumonia severity. Association analysis using a generalized linear mixed model revealed that 12 SNPs in nine genes were associated with pneumonia severity. In particular, SNPs in the cellular receptor for immunoglobulin G FCGR2B and the intracellular nucleic acid sensors IFI16 and LRRFIP1 were found to be associated with mycoplasmal pneumonia of swine or porcine pleuropneumonia in multiple populations and may therefore have wide applications in the improvement of disease resistance in pigs. Functional analyses at the cellular and animal levels are required to clarify the mechanisms underlying the effects of these SNPs on disease susceptibility.
Collapse
Affiliation(s)
- Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan;
| | - Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Tomohito Itoh
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Maebashi 371-0121, Japan;
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.)
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| |
Collapse
|
2
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Takenouchi T, Tanaka J, Shimizu M, Kitazawa H, Uenishi H. Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals (Basel) 2022; 12:ani12223163. [PMID: 36428390 PMCID: PMC9686681 DOI: 10.3390/ani12223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene influences porcine circovirus 2-induced mortality. Here, we investigated how these polymorphisms affect respiratory disease-induced lesions, using samples from a slaughterhouse dealing with pigs from two farms. Lung lesions were evaluated using two scoring systems, Goodwin (GW) and slaughterhouse pleuritis evaluation system (SPES), to determine the influence of Mycoplasma hyopneumoniae (Mhp) and Actinobacillus pleuropneumoniae (App), respectively. SPES scores were significantly higher when the 1205T allele of Toll-like receptor 5 (TLR5-1205T), rather than TLR5-1205C, was present. On the farm with more severe Mhp invasion, lower GW lesion scores were significantly associated with the presence of the NOD-like receptor family pyrin domain containing 3 (NLRP3)-2906G allele; where App invasion was worse, lower SPES scores were significantly associated with the presence of the NOD2-2197C allele. Combinations of polymorphisms in pattern recognition receptor genes can therefore be utilized for breeding for resistance against respiratory diseases in pigs. DNA markers of these polymorphisms can thus be used to improve productivity by reducing respiratory diseases due to bacterial pathogens in pig livestock.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Masanori Shimizu
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
3
|
Höltig D, Reiner G. [Opportunities and risks of the use of genetic resistances to infectious diseases in pigs - an overview]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:46-58. [PMID: 35235982 DOI: 10.1055/a-1751-3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.
Collapse
Affiliation(s)
- Doris Höltig
- Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Gerald Reiner
- Klinikum Veterinärmedizin, Justus-Liebig-Universität
| |
Collapse
|
4
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Tanaka J, Hayashi N, Kitazawa H, Uenishi H. NOD2 Genotypes Affect the Symptoms and Mortality in the Porcine Circovirus 2-Spreading Pig Population. Genes (Basel) 2021; 12:genes12091424. [PMID: 34573406 PMCID: PMC8469532 DOI: 10.3390/genes12091424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
The nucleotide oligomerization domain (NOD)-like receptor 2 (NOD2) is an intracellular pattern recognition receptor that detects components of peptidoglycans from bacterial cell walls. NOD2 regulates bowel microorganisms, provides resistance against infections such as diarrhea, and reduces the risk of inflammatory bowel diseases in humans and mice. We previously demonstrated that a specific porcine NOD2 polymorphism (NOD2-2197A > C) augments the recognition of peptidoglycan components. In this study, the relationships between porcine NOD2-2197A/C genotypes affecting molecular functions and symptoms in a porcine circovirus 2b (PCV2b)-spreading Duroc pig population were investigated. The NOD2 allele (NOD2-2197A) with reduced recognition of the peptidoglycan components augmented the mortality of pigs at the growing stage in the PCV2b-spreading population. Comparison of NOD2 allele frequencies in the piglets before and after invasion of PCV2b indicated that the ratio of NOD2-2197A decreased in the population after the PCV2b epidemic. This data indicated that functional differences caused by NOD2-2197 polymorphisms have a marked impact on pig health and livestock productivity. We suggest that NOD2-2197CC is a PCV2 disease resistant polymorphism, which is useful for selective breeding by reducing mortality and increasing productivity.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan;
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Noboru Hayashi
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
5
|
Pieper R, van Best N, van Vorst K, Ebner F, Reissmann M, Hornef MW, Fulde M. Toward a porcine in vivo model to analyze the pathogenesis of TLR5-dependent enteropathies. Gut Microbes 2020; 12:1782163. [PMID: 32715918 PMCID: PMC7524303 DOI: 10.1080/19490976.2020.1782163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
Non-communicable diseases, such as the metabolic syndrome and inflammatory bowel disease, constitute serious public health threats in developed countries. Besides environmental factors, genetic predispositions contribute to the onset and progression of the disease. State-of-the-art mouse models recently highlight the involvement of Toll-like receptor 5 (TLR5)-driven microbiota composition in the development of metabolic disorders. Here, we discuss the causes and consequences of an altered enteric microbiota and provide information on a similar mechanism in another species, the pig. We show for the first time that a single nucleotide polymorphism in the porcine TLR5 gene conferring impaired functionality is associated with changes in the intestinal microbiota in adult sows and neonatal piglets. Changes in the developing adaptive cellular immune response support the concept of TLR5-driven changes of the microbe-host interplay also in the pig. Together, these findings suggest that pigs with impaired TLR-functionality might represent a model for TLR5-driven diseases in humans.
Collapse
Affiliation(s)
- Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | | | - Mathias W. Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Schut CH, Farzan A, Fraser RS, Ainslie-Garcia MH, Friendship RM, Lillie BN. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Vet Res 2020; 16:138. [PMID: 32414370 PMCID: PMC7227190 DOI: 10.1186/s12917-020-02344-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica serovars are a major cause of foodborne illness and have a substantial impact on global human health. In Canada, Salmonella is commonly found on swine farms and the increasing concern about drug use and antimicrobial resistance associated with Salmonella has promoted research into alternative control methods, including selecting for pig genotypes associated with resistance to Salmonella. The objective of this study was to identify single-nucleotide variants in the pig genome associated with Salmonella susceptibility using a genome-wide association approach. Repeated blood and fecal samples were collected from 809 pigs in 14 groups on farms and tonsils and lymph nodes were collected at slaughter. Sera were analyzed for Salmonella IgG antibodies by ELISA and feces and tissues were cultured for Salmonella. Pig DNA was genotyped using a custom 54 K single-nucleotide variant oligo array and logistic mixed-models used to identify SNVs associated with IgG seropositivity, shedding, and tissue colonization. RESULTS Variants in/near PTPRJ (p = 0.0000066), ST6GALNAC3 (p = 0.0000099), and DCDC2C (n = 3, p < 0.0000086) were associated with susceptibility to Salmonella, while variants near AKAP12 (n = 3, p < 0.0000358) and in RALGAPA2 (p = 0.0000760) may be associated with susceptibility. CONCLUSIONS Further study of the variants and genes identified may improve our understanding of neutrophil recruitment, intracellular killing of bacteria, and/or susceptibility to Salmonella and may help future efforts to reduce Salmonella on-farm through genetic approaches.
Collapse
Affiliation(s)
- Corinne H Schut
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Russell S Fraser
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Present address: Department of Pathology and Microbiology, Atlantic Veterinary College, University of PEI, Charlottetown, Prince Edward Island, Canada
| | | | - Robert M Friendship
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
Dai C, Yang L, Jin J, Wang H, Wu S, Bao W. Regulation and Molecular Mechanism of TLR5 on Resistance to Escherichia coli F18 in Weaned Piglets. Animals (Basel) 2019; 9:ani9100735. [PMID: 31569693 PMCID: PMC6827021 DOI: 10.3390/ani9100735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptor 5 (TLR5) plays an important role in immune system. In this study, we performed transcriptome analysis of the duodenum in E. coli F18-resistant and -sensitive Sutai weaned piglets and analyzed the differential expression of TLR5. The cellular localization of TLR5 was investigated, and the effect of TLR5 expression on E. coli invasion was evaluated after pig small intestinal epithelial cell lines (IPEC-J2) were stimulated by E. coli. The results showed that TLR5 expression level in duodenum and jejunum were significantly higher in E. coli F18-sensitive than in E. coli F18-resistant piglets. TLR5 protein was mainly expressed in the cytoplasm and cell membrane. The expression of genes associated with the TLR5 signaling pathway were significantly higher in TLR5-overexpressed cells than in control cells. Bacterial adhesion was higher in TLR5-overexpressed cells than in blank cells and lower in TLR5 interference than in blank cells. The core promoter region of TLR5 included two CpG islands and 16 acting elements. The methylation of the mC-6 site in the second CpG island of the promoter region had a regulatory effect on TLR5 expression. Therefore, TLR5 plays an important regulatory role on E. coli invasion. Low expression of TLR5 inhibited the immune response and decreased cell damage, which was conducive to the resistance to E. coli stimulation. In conclusion, this study preliminarily revealed the molecular mechanism of TLR5 gene regulating the resistance of piglets to Escherichia coli, and provided a new candidate gene for screening Escherichia coli resistance markers in pigs.
Collapse
Affiliation(s)
- Chaohui Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Li Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Jian Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Muneta Y, Arai N, Yakabe Y, Eguchi M, Shibahara T, Sakuma A, Shinkai H, Uenishi H, Hirose K, Akiba M. In vivo effect of a TLR5 SNP (C1205T) on Salmonella enterica serovar Typhimurium infection in weaned, specific pathogen-free Landrace piglets. Microbiol Immunol 2018; 62:380-387. [PMID: 29660148 DOI: 10.1111/1348-0421.12591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 5 is a pattern-recognition receptor for bacterial flagellin. We previously reported that a single nucleotide polymorphism (SNP) of swine TLR5, C1205T, impairs recognition of Salmonella typhimurium (ST) flagellin and ethanol-killed Salmonella Choleraesuis (SC). In the present study, weaned, specific pathogen-free (SPF) Landrace piglets with CC, CT or TT genotypes were orally infected with ST (L-3569 strain) to determine the effect of this specific SNP on ST infection in vivo. Eighteen ST-infected piglets (six each with CC, CT, or TT) exhibited fever and diarrhea for 1 week after infection. TT piglets had the longest duration of fever. TT piglets had the greatest mean diarrhea score during the experimental period, followed by CT and CC piglets. Fecal ST shedding was greater in CT and TT pigs than CC pigs from 2 days after infection. Serum haptoglobin concentration increased in ST-infected piglets and to greater extents in CT and TT pigs than CC pigs. Daily weight gain was lower in infected pigs, particularly TT piglets, than control pigs. To the best of our knowledge, this study is the first to demonstrate that impairment of TLR recognition affects pig susceptibility to disease in vivo. Thus, piglets with the T allele of swine TLR5 (C1205T) exhibit impaired resistance to ST infection. Furthermore, elimination of the T allele of this SNP from Landrace pigs would lead to enhancement of their resistance to ST infection.
Collapse
Affiliation(s)
- Yoshihiro Muneta
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Nobuo Arai
- Bacteriology and Parasitology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Osaka Prefecture University, Graduate School of Life and Environmental Sciences, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yoko Yakabe
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masahiro Eguchi
- Bacteriology and Parasitology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tomoyuki Shibahara
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Osaka Prefecture University, Graduate School of Life and Environmental Sciences, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiko Sakuma
- Miyagi Livestock Experimental Station, 1 Hiwatari, Minamisawa, Iwadeyama, Osaki, Miyagi 989-6445, Japan
| | - Hiroki Shinkai
- Division of Animal Sciences, Institute of Agrobiological Science, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
| | - Hirohide Uenishi
- Division of Animal Sciences, Institute of Agrobiological Science, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
| | - Kensuke Hirose
- Zen-Noh Livestock East Japan Breeding Farm, 121-3 Kamiwano, Uwano, Sizukuishi, Iwate, Iwate 020-0583, Japan
| | - Masato Akiba
- Bacteriology and Parasitology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Osaka Prefecture University, Graduate School of Life and Environmental Sciences, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Faber E, Tedin K, Speidel Y, Brinkmann MM, Josenhans C. Functional expression of TLR5 of different vertebrate species and diversification in intestinal pathogen recognition. Sci Rep 2018; 8:11287. [PMID: 30050158 PMCID: PMC6062626 DOI: 10.1038/s41598-018-29371-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor 5 (TLR5) is activated by bacterial flagellins and plays a crucial role in the first-line defence against pathogenic bacteria and in immune homeostasis, and is highly conserved in vertebrate species. However, little comparative information is available on TLR5 functionality. In this study, we compared TLR5 activation using full-length and chimeric TLR5 of various vertebrate species (human, chicken, mouse, pig, cattle). Chimeric TLR5 receptors, consisting of human transmembrane and intracellular domains, linked to extracellular domains of animal origin, were generated and expressed. The comparison of chimeric TLR5s and their full-length counterparts revealed significant functional disparities. While porcine and chicken full-length TLR5s showed a strongly reduced functionality in human cells, all chimeric receptors were functional when challenged with TLR5 ligand Salmonella FliC. Using chimeric receptors as a tool allowed for the identification of ectodomain-dependent activation potential and partially host species-specific differences in response to various enteric bacterial strains and their purified flagellins. We conclude that both the extra- and intracellular determinants of TLR5 receptors are crucial for compatibility with the species expression background and hence for proper receptor functionality. TLR5 receptors with a common intracellular domain provide a useful system to investigate bacteria- and host-specific differences in receptor activation.
Collapse
Affiliation(s)
- Eugenia Faber
- Medizinische Hochschule Hannover, Institute for Medical Microbiology, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,DZIF-German Center for Infection Research, Partner site Hannover-Braunschweig, Hannover, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Free University Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Yvonne Speidel
- Medizinische Hochschule Hannover, Institute for Medical Microbiology, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,DZIF-German Center for Infection Research, Partner site Hannover-Braunschweig, Hannover, Germany
| | - Melanie M Brinkmann
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Christine Josenhans
- Medizinische Hochschule Hannover, Institute for Medical Microbiology, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,DZIF-German Center for Infection Research, Partner site Hannover-Braunschweig, Hannover, Germany. .,Max von Pettenkofer Institute, Ludwig Maximilians University Munich, Pettenkoferstrasse 9a, 80336, Munich, Germany.
| |
Collapse
|
10
|
Ainslie-Garcia MH, Farzan A, Jafarikia M, Lillie BN. Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms. Vet Microbiol 2018; 219:171-177. [PMID: 29778193 DOI: 10.1016/j.vetmic.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023]
Abstract
Foodborne human salmonellosis is an important food safety concern worldwide. Food-producing animals are one of the major sources of human salmonellosis, and thus control of Salmonella at the farm level could reduce Salmonella spread in the food supply system. Genetic selection of pigs with resistance to Salmonella infection may be one way to control Salmonella on swine farms. The objective of this study was to investigate the association between genetic variants in the porcine innate immune system with on-farm Salmonella shedding and Salmonella colonization tested at slaughter. Fourteen groups of pigs (total 809) were followed from birth to slaughter. Fecal samples collected five times at different stages of production and tissue samples obtained from tonsil and lymph nodes at slaughter were cultured for Salmonella. Genomic DNA was extracted and analyzed for 40 single nucleotide variants and two indels within porcine innate immune genes that were previously associated with Salmonella infection or other infectious diseases. A survey was used to collect information on farm management practices. A multilevel mixed-effects logistic regression modelling method was used to identify SNVs that are associated with Salmonella shedding and/or Salmonella colonization. One single nucleotide variant in the C-type lectin MBL1 and one single nucleotide variant in the cytosolic pattern recognition receptor NOD1 was associated with increased risk of on-farm shedding (p = 0.010) and internal colonization tested at slaughter (p = 0.018), respectively. These findings indicate the potential of these variants for genetic selection programs aimed at controlling Salmonella shedding and colonization in pigs.
Collapse
Affiliation(s)
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Mohsen Jafarikia
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Canadian Center for Swine Improvement, Inc. 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
11
|
Clop A, Huisman A, van As P, Sharaf A, Derdak S, Sanchez A. Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping array. Genet Sel Evol 2016; 48:28. [PMID: 27036198 PMCID: PMC4818456 DOI: 10.1186/s12711-016-0206-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLR) are crucial in innate immunity for the recognition of a broad range of microbial pathogens and are expressed in multiple cell types. There are 10 TLR genes described in the pig genome. RESULTS With a twofold objective i.e. to catalogue genetic variants in porcine TLR genes and develop a genotyping array for genetic association studies on immune-related traits, we combined targeted sub-genome enrichment and high-throughput sequencing to sequence the 10 porcine TLR genes in 266 pigs from 10 breeds and wild boars using a DNA-pooling strategy. We identified 306 single nucleotide variants across the 10 TLR and 11 populations, 87 of which were novel. One hundred and forty-seven positions i.e. six stop-gains and 141 non-synonymous substitutions were predicted to alter the protein sequence. Three positions were unique to a single breed with alternative allele frequencies equal to or higher than 0.5. We designed a genotyping array for future applications in genetic association studies, with a selection of 126 variants based on their predicted impact on protein sequence. Since TLR4, TLR7 and TLR9 were underrepresented in this selection, we also included three variants that were located in the 3'UTR of these genes. We tested the array by genotyping 214 of the 266 sequenced pigs. We found that 93 variants that involved the 10 TLR genes were polymorphic in these animals. Twelve of these variants were novel. Furthermore, seven known variants that are associated with immune-related phenotypes are present on the array and can thus be used to test such associations in additional populations. CONCLUSIONS We identified genetic variations that potentially have an impact on the protein sequence of porcine TLR. A genotyping array with 80 non-synonymous, 10 synonymous and three 3'UTR polymorphisms in the 10 TLR genes is now available for association studies in swine populations with measures on immune-related traits.
Collapse
Affiliation(s)
- Alex Clop
- Center for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Catalonia, Spain.
| | - Abe Huisman
- Hypor BV, Villa 'de Körver', Spoorstraat 69, 5831 CK, Boxmeer, The Netherlands
| | - Pieter van As
- Hendrix-Genetics, Villa 'de Körver', Spoorstraat 69, 5831 CK, Boxmeer, The Netherlands
| | | | - Sophia Derdak
- Centre Nacional d'Anàlisi Genòmica CNAG, Baldiri Reixac 4, 08028, Barcelona, Catalonia, Spain
| | - Armand Sanchez
- Center for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Catalonia, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| |
Collapse
|
12
|
Cho HS, Kim W, Choi MK, Le MT, Choi H, Kim JH, Kim K, Soundrarajan N, Park JK, Lee YM, Kim JJ, Park C. Effects of natural resistance-associated macrophage protein 1 and toll-like receptor 2 gene polymorphisms on post-weaning piglet survivability. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0355-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Shinkai H, Toki D, Okumura N, Takenouchi T, Kitani H, Uenishi H. Polymorphisms of the immune-modulating receptor dectin-1 in pigs: their functional influence and distribution in pig populations. Immunogenetics 2016; 68:275-84. [PMID: 26762386 DOI: 10.1007/s00251-016-0900-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Dectin-1, a C-type lectin receptor that recognizes fungal β-glucans, is involved in antifungal immunity and the regulation of intestinal immune homeostasis. Dectin-1 is involved in both synthesis and maturation of interleukin-1β, a key pro-inflammatory cytokine in immunity. Here, we assessed the genetic diversity in the gene encoding dectin-1 (CLEC7A) within various pig populations and examined the influence of these polymorphisms on the two different signaling pathways after ligand recognition. An amino-acid polymorphism located in the carbohydrate-recognition domain, leucine to serine at position 138 (L138S), which occurred exclusively in Japanese wild boars at low frequency, significantly increased NF-κB induction but not caspase-8 activity after stimulation with zymosan. In contrast, other amino-acid polymorphisms present at comparatively high frequency in commercial pig populations had little influence on ligand recognition. These results suggest that functionally neutral polymorphisms in dectin-1 are widespread in pig populations.
Collapse
Affiliation(s)
- Hiroki Shinkai
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Daisuke Toki
- Animal Research Division, Institute of Japan Association for Techno-Innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Naohiko Okumura
- Animal Research Division, Institute of Japan Association for Techno-Innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hirohide Uenishi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan. .,Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
14
|
Abstract
Naturally endemic infectious diseases provide selective pressures for pig populations. Toll-like receptors (TLRs) represent the first line of immune defense against pathogens and are likely to play a crucial adaptive role for pig populations. This study was done to determine whether wild and domestic pig populations representing diverse global environments demonstrate local TLR adaptation. The genomic sequence encoding the ectodomain, responsible for interacting with pathogen ligands of bacterial (TLR1, TLR2 and TLR6) and viral (TLR3, TLR7 and TLR8) receptors, was obtained. Mitochondrial D-loop region sequences were obtained and a phylogenetic analysis using these sequences revealed a clear separation of animals into Asian (n = 27) and European (n = 40) clades. The TLR sequences were then analyzed for population-specific positive selection signatures within wild boars and domesticated pig populations derived from Asian and European clades. Using within-population and between-population tests for positive selection, a TLR2-derived variant 376A (126Thr), estimated to have arisen in 163,000 years ago with a frequency of 83.33 % within European wild boars, 98.00 % within domestic pig breeds of European origin, 40.00 % within Asian wild boars, and 11.36 % within Asian domestic pigs, was identified to be under positive selection in pigs of European origin. The variant is located within the N terminal domain of the TLR2 protein 3D crystal structure and could affect ligand binding. This study suggests the TLR2 gene contributing to responses to bacterial pathogens has been crucial in adaptation of pigs to pathogens.
Collapse
|
15
|
Porcine NOD1 polymorphisms with impaired ligand recognition and their distribution in pig populations. Mol Immunol 2015; 63:305-11. [DOI: 10.1016/j.molimm.2014.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/27/2014] [Indexed: 12/23/2022]
|
16
|
Bainová H, Králová T, Bryjová A, Albrecht T, Bryja J, Vinkler M. First evidence of independent pseudogenization of toll-like receptor 5 in passerine birds. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:151-155. [PMID: 24613703 DOI: 10.1016/j.dci.2014.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Toll-like receptor 5 (TLR5) is a Pattern-recognition receptor responsible for microbial flagellin detection in vertebrates and, hence, recognition of potentially pathogenic bacteria. Herein, we report emergence of TLR5 pseudogene in several phylogenetic lineages of passerine birds (Aves: Passeriformes). Out of 47 species examined in this study 18 possessed a TLR5 pseudogene. Phylogenetic analysis together with the type of mutation responsible for pseudogenization indicate that TLR5 pseudogene emerged at least seven times independently in passerines. Lack of any functional copy of the gene has been verified based on TLR5 mRNA blood expression in four species representing the four main passerine lineages possessing the TLR5 pseudogene. Our results suggest that the non-functional TLR5 variant is fixed in those lineages or, at least, that individuals homozygote in the TLR5 pseudogene are frequent in the investigated species. Further research is needed to assess the impact of the TLR5 loss on immunological performance in birds.
Collapse
Affiliation(s)
- Hana Bainová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague, Czech Republic.
| | - Tereza Králová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic.
| | - Anna Bryjová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague, Czech Republic; Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic.
| | - Josef Bryja
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic.
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague, Czech Republic.
| |
Collapse
|
17
|
Kich JD, Uthe JJ, Benavides MV, Cantão ME, Zanella R, Tuggle CK, Bearson SMD. TLR4 single nucleotide polymorphisms (SNPs) associated with Salmonella shedding in pigs. J Appl Genet 2014; 55:267-71. [PMID: 24566961 PMCID: PMC3990860 DOI: 10.1007/s13353-014-0199-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/29/2014] [Accepted: 02/04/2014] [Indexed: 12/04/2022]
Abstract
Toll-like receptor 4 (TLR4) is a key factor in the innate immune recognition of lipopolysaccharide (LPS) from Gram-negative bacteria. Previous studies from our group identified differences in the expression profile of TLR4 and genes affected by the TLR4 signaling pathway among pigs that shed varying levels of Salmonella, a Gram-negative bacterium. Therefore, genetic variation in this gene may be involved with the host’s immune response to bacterial infections. The current study screened for single nucleotide polymorphisms (SNPs) in the TLR4 gene and tested their association with Salmonella fecal shedding. Pigs (n = 117) were intranasally challenged at 7 weeks of age with 1 × 109 CFU of S. Typhimurium χ4232 and were classified as low or persistent Salmonella shedders based on the levels of Salmonella being excreted in fecal material. Salmonella fecal shedding was determined by quantitative bacteriology on days 2, 7, 14, and 20/21 post exposure, and the cumulative levels of Salmonella were calculated to identify the low (n = 20) and persistent (n = 20) Salmonella shedder pigs. From those 40 animals, the TLR4 region was sequenced, and 18 single nucleotide polymorphisms (SNPs) in TLR4 were identified. Twelve SNPs have been previously described and six are novel SNPs of which five are in the 5′ untranslated region and one is in intron 2. Single marker association test identified 13 SNPs associated with the qualitative trait of Salmonella fecal shedding, and seven of those SNPs were also associated with a quantitative measurement of fecal shedding (P < 0.05). Using a stepwise regression process, a haplotype composed of SNPs rs80787918 and rs80907449 (P ≤ 4.0 × 10−3) spanning a region of 4.9 Kb was identified, thereby providing additional information of the influence of those SNPs on Salmonella fecal shedding in pigs.
Collapse
Affiliation(s)
- Jalusa Deon Kich
- USDA/ARS/National Animal Disease Center, 1920 Dayton Ave, Ames, IA, USA,
| | | | | | | | | | | | | |
Collapse
|
18
|
Sarafidou T, Stamatis C, Kalozoumi G, Spyrou V, Fthenakis GC, Billinis C, Mamuris Z. Toll like receptor 9 (TLR9) polymorphism G520R in sheep is associated with seropositivity for Small Ruminant Lentivirus. PLoS One 2013; 8:e63901. [PMID: 23691111 PMCID: PMC3655008 DOI: 10.1371/journal.pone.0063901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/08/2013] [Indexed: 01/22/2023] Open
Abstract
Infectious diseases of sheep are of major economic importance causing direct and indirect losses. Among the major sheep infectious agents are Small Ruminant Lentivirus, Chlamydophila abortus and Mycobacterium avium subsp. paratuberculosis infections, mainly due to their worldwide distribution and economic impact that they cause. Based on the differential susceptibility to infectious diseases between and within breeds and on the recent findings regarding the putative involvement of TLR9 in disease susceptibility, the aim of this study was to evaluate the levels of nucleotide variation of TLR9 and its mediator MyD88 in three sheep flocks originated from different breeds and assess their possible association with seropositivity/seronegativity for different infectious agents. The analysis indicated that the change of G to R at codon 520 of TLR9 polypeptide shows a significant association with Small Ruminant Lentivirus seropositivity. This amino-acid substitution, which can result in polarity change, might influence structure and function of LRR17, interfering with ligand binding and thus could be used in studies investigating susceptibility/resistance to Small Ruminant Lentivirus infections in sheep.
Collapse
Affiliation(s)
- Theologia Sarafidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Costas Stamatis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgia Kalozoumi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Vassiliki Spyrou
- Department of Animal Production, Technological Educational Institute, Larissa, Greece
| | | | | | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
- * E-mail:
| |
Collapse
|
19
|
Uenishi H, Morozumi T, Toki D, Eguchi-Ogawa T, Rund LA, Schook LB. Large-scale sequencing based on full-length-enriched cDNA libraries in pigs: contribution to annotation of the pig genome draft sequence. BMC Genomics 2012; 13:581. [PMID: 23150988 PMCID: PMC3499286 DOI: 10.1186/1471-2164-13-581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 08/09/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Along with the draft sequencing of the pig genome, which has been completed by an international consortium, collection of the nucleotide sequences of genes expressed in various tissues and determination of entire cDNA sequences are necessary for investigations of gene function. The sequences of expressed genes are also useful for genome annotation, which is important for isolating the genes responsible for particular traits. RESULTS We performed a large-scale expressed sequence tag (EST) analysis in pigs by using 32 full-length-enriched cDNA libraries derived from 28 kinds of tissues and cells, including seven tissues (brain, cerebellum, colon, hypothalamus, inguinal lymph node, ovary, and spleen) derived from pigs that were cloned from a sow subjected to genome sequencing. We obtained more than 330,000 EST reads from the 5'-ends of the cDNA clones. Comparison with human and bovine gene catalogs revealed that the ESTs corresponded to at least 15,000 genes. cDNA clones representing contigs and singlets generated by assembly of the EST reads were subjected to full-length determination of inserts. We have finished sequencing 31,079 cDNA clones corresponding to more than 12,000 genes. Mapping of the sequences of these cDNA clones on the draft sequence of the pig genome has indicated that the clones are derived from about 15,000 independent loci on the pig genome. CONCLUSIONS ESTs and cDNA sequences derived from full-length-enriched libraries are valuable for annotation of the draft sequence of the pig genome. This information will also contribute to the exploration of promoter sequences on the genome and to molecular biology-based analyses in pigs.
Collapse
Affiliation(s)
- Hirohide Uenishi
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan
- Division of Animal Sciences, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan
- Animal Genome Research Program, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takeya Morozumi
- Animal Genome Research Program, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan
- Animal Research Division, Japan Institute of Association for Techno-innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Daisuke Toki
- Animal Genome Research Program, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan
- Animal Research Division, Japan Institute of Association for Techno-innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Tomoko Eguchi-Ogawa
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan
- Animal Genome Research Program, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Lauretta A Rund
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Lawrence B Schook
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| |
Collapse
|
20
|
Yang X, Murani E, Ponsuksili S, Wimmers K. Association of TLR5 sequence variants and mRNA level with cytokine transcription in pigs. Immunogenetics 2012; 65:125-32. [PMID: 23132291 DOI: 10.1007/s00251-012-0662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
The Toll-like receptor 5 (TLR5) plays a crucial role in host defense against flagellated bacteria by recognizing flagellin. Accumulating evidence suggests that single nucleotide polymorphisms (SNPs) in TLR5 have an effect on flagellin recognition and are associated with susceptibility/resistance to disease. In this study, we analyzed association of SNPs, including c.834T>G, c.1065T>C, c.1205C>T, c.1246A>T, c.1269G>A, and c.1398C>T, as well as mRNA level of TLR5 with the abundance of transcripts of cytokines in pigs. SNPs c.1246A>T and c.1269G>A were significantly associated with the transcript abundance of interleukin (IL)-2, and SNPs c.834T>G and c.1398C>T with IL-10 (P < 0.05); the haplotypes showed a tendency to affect the transcript abundance of IL-10 (P = 0.0660) and significantly associated with the transcription of TLR5 (P < 0.01); the abundance of transcripts of TLR5 and IL-10 were strongly correlated (P < 0.01). The results indicated that the SNPs, associated with the transcript abundance of cytokines, were related to immune responsiveness mediated by cytokine, which, in turn, would have a role in pig breeding for disease resistance. Furthermore, the positive correlation between the abundance of TLR5 and IL10 suggest a link between TLR5 activation and IL-10 expression in porcine.
Collapse
Affiliation(s)
- X Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Muneta Y, Minagawa Y, Kusumoto M, Shinkai H, Uenishi H, Splichal I. Allele-specific primer polymerase chain reaction for a single nucleotide polymorphism (C1205T) of swine toll-like receptor 5 and comparison of the allelic frequency among several pig breeds in Japan and the Czech Republic. Microbiol Immunol 2012; 56:385-91. [PMID: 22420886 DOI: 10.1111/j.1348-0421.2012.00450.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, an allele-specific primer-polymerase chain reaction (ASP-PCR) for genotyping a single nucleotide polymorphism (SNP) of swine Toll-like receptor 5 (TLR5) (C1205T; P402L) that is related to the impaired recognition of Salmonella enterica serovar Choleraesuis (SC) was developed. The allele frequencies in several pig breeds in Japan and the Czech Republic were also compared. The swine TLR5 C1205T mutation was successfully determined by ASP-PCR using genomic DNA samples in Japan that had previously been genotyped by a sequencing method. Using the PCR condition determined, genomic DNA samples from blood obtained from 110 pigs from seven different breeds in the Czech Republic were genotyped by the ASP-PCR. The genotyping results from the ASP-PCR completely matched the results from the sequencing method. The allele frequency of the swine TLR5 C1205T mutation was 27.5% in the Landrace breed of the Czech Republic compared with 50.0% in Japanese Landrace. In Japan, the C1205T mutation was found only in the Landrace breed, whereas in the Czech Republic it was found in both the Landrace and Piétrain breeds. These results indicate the usefulness of ASP-PCR for detecting a specific SNP for swine TLR5 affecting ligand recognition. They also suggest the possibility of genetically improving pigs to enhance their resistance against SC infection by eliminating or selecting this specific SNP of swine TLR5.
Collapse
Affiliation(s)
- Yoshihiro Muneta
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki.
| | | | | | | | | | | |
Collapse
|
22
|
Uenishi H, Shinkai H, Morozumi T, Muneta Y. Genomic survey of polymorphisms in pattern recognition receptors and their possible relationship to infections in pigs. Vet Immunol Immunopathol 2012; 148:69-73. [DOI: 10.1016/j.vetimm.2011.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 06/07/2011] [Accepted: 07/24/2011] [Indexed: 12/16/2022]
|
23
|
Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs. Comp Immunol Microbiol Infect Dis 2012; 35:523-32. [PMID: 22658914 DOI: 10.1016/j.cimid.2012.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/16/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
The genes encoding swine leukocyte antigen (SLA) and Toll-like receptor (TLR) are highly polymorphic in pig populations, and likely have influences on infection and the effects of vaccination. We explored the associations of different genotypes of SLA class II and of the genes TLR1, TLR4, TLR5, and TLR6 with antibody responses after vaccination against Erysipelothrix rhusiopathiae (ER) and Actinobacillus pleuropneumoniae (APP) serotypes 1, 2, and 5 in 191 Duroc pigs maintained under specific pathogen-free conditions. We demonstrated close relationships between SLA class II and ER antibody response and between TLR genes other than TLR4 and APP antibody responses. Pigs with specific haplotypes in SLA class II or TLR5 showed decreased antibody response to ER vaccination or increased responses to APP2 and APP5 vaccination, respectively. It might be possible to breed for responsiveness to vaccination and to implement new vaccine development strategies unaffected by genetic backgrounds of pigs.
Collapse
|
24
|
Lewis D, Chan D, Pinheiro D, Armitage‐Chan E, Garden O. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med 2012; 26:457-82. [PMID: 22428780 PMCID: PMC7166777 DOI: 10.1111/j.1939-1676.2012.00905.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory response to infection, represents the major cause of death in critically ill veterinary patients. Whereas important advances in our understanding of the pathophysiology of this syndrome have been made, much remains to be elucidated. There is general agreement on the key interaction between pathogen-associated molecular patterns and cells of the innate immune system, and the amplification of the host response generated by pro-inflammatory cytokines. More recently, the concept of immunoparalysis in sepsis has also been advanced, together with an increasing recognition of the interplay between regulatory T cells and the innate immune response. However, the heterogeneous nature of this syndrome and the difficulty of modeling it in vitro or in vivo has both frustrated the advancement of new therapies and emphasized the continuing importance of patient-based clinical research in this area of human and veterinary medicine.
Collapse
Affiliation(s)
- D.H. Lewis
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Present address:
Langford Veterinary ServicesSmall Animal HospitalLangford HouseLangfordBristol, BS40 5DUUK
| | - D.L. Chan
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
| | - D. Pinheiro
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| | - E. Armitage‐Chan
- Davies Veterinary SpecialistsManor Farm Business ParkHertfordshireSG5 3HR, UK (Armitage‐Chan)
| | - O.A. Garden
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| |
Collapse
|
25
|
Schleker S, Garcia-Garcia J, Klein-Seetharaman J, Oliva B. Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes. Chem Biodivers 2012; 9:991-1018. [PMID: 22589098 PMCID: PMC3407687 DOI: 10.1002/cbdv.201100392] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Salmonellosis caused by Salmonella bacteria is a food-borne disease and a worldwide health threat causing millions of infections and thousands of deaths every year. This pathogen infects an unusually broad range of host organisms including human and plants. A better understanding of the mechanisms of communication between Salmonella and its hosts requires identifying the interactions between Salmonella and host proteins. Protein-protein interactions (PPIs) are the fundamental building blocks of communication. Here, we utilize the prediction platform BIANA to obtain the putative Salmonella-human and Salmonella-Arabidopsis interactomes based on sequence and domain similarity to known PPIs. A gold standard list of Salmonella-host PPIs served to validate the quality of the human model. 24,726 and 10,926 PPIs comprising interactions between 38 and 33 Salmonella effectors and virulence factors with 9,740 human and 4,676 Arabidopsis proteins, respectively, were predicted. Putative hub proteins could be identified, and parallels between the two interactomes were discovered. This approach can provide insight into possible biological functions of so far uncharacterized proteins. The predicted interactions are available via a web interface which allows filtering of the database according to parameters provided by the user to narrow down the list of suspected interactions. The interactions are available via a web interface at http://sbi.imim.es/web/SHIPREC.php.
Collapse
Affiliation(s)
- Sylvia Schleker
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-5), 52425 Jülich, Germany
| | - Javier Garcia-Garcia
- Structural Bioinformatics Group (GRIB-IMIM). Universitat Pompeu Fabra. Barcelona Research Park of Biomedicine (PRBB), Barcelona 08003, Catalonia, Spain (phone: +34 933 160 509; fax: +34 933 160 550
| | - Judith Klein-Seetharaman
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-5), 52425 Jülich, Germany
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA (phone: +1 412 383 7325; fax: +1 412 648 8998
| | - Baldo Oliva
- Structural Bioinformatics Group (GRIB-IMIM). Universitat Pompeu Fabra. Barcelona Research Park of Biomedicine (PRBB), Barcelona 08003, Catalonia, Spain (phone: +34 933 160 509; fax: +34 933 160 550
| |
Collapse
|
26
|
Shinkai H, Okumura N, Suzuki R, Muneta Y, Uenishi H. Toll-Like Receptor 4 Polymorphism Impairing Lipopolysaccharide Signaling inSus scrofa, and Its Restricted Distribution Among Japanese Wild Boar Populations. DNA Cell Biol 2012; 31:575-81. [DOI: 10.1089/dna.2011.1319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroki Shinkai
- Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
- Animal Genome Research Program, NIAS/STAFF, Ibaraki, Japan
| | - Naohiko Okumura
- Animal Genome Research Program, NIAS/STAFF, Ibaraki, Japan
- Animal Research Division, Institute of Society for Techno-Innovation of Agriculture, Forestry and Fisheries (STAFF-Institute), Ibaraki, Japan
| | - Rintaro Suzuki
- Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| | - Yoshihiro Muneta
- Pathology and Pathophysiology, National Institute of Animal Health, Ibaraki, Japan
| | - Hirohide Uenishi
- Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
- Animal Genome Research Program, NIAS/STAFF, Ibaraki, Japan
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| |
Collapse
|
27
|
Wang L, Su J, Peng L, Heng J, Chen L. Genomic structure of grass carp Mx2 and the association of its polymorphisms with susceptibility/resistance to grass carp reovirus. Mol Immunol 2011; 49:359-66. [DOI: 10.1016/j.molimm.2011.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 12/26/2022]
|