1
|
Courtemanche O, Huppé CA, Blais-Lecours P, Maranda C, Morissette MC, Blanchet MR, Dion G, Marsolais D. Ex Vivo Overactivation of Lymphocyte Subsets in Fibrotic Hypersensitivity Pneumonitis Is Blunted by a Sphingosine-1-Phosphate Receptor Ligand. Int J Mol Sci 2025; 26:3197. [PMID: 40243992 PMCID: PMC11989070 DOI: 10.3390/ijms26073197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Lymphocytes are central to the pathogenesis of hypersensitivity pneumonitis and a strong body of evidence supports that lymphocytes are modulated by sphingosine-1-phosphate receptor-modifying drugs. This exploratory study aimed to determine if a pharmacological sphingosine-1-phosphate receptor ligand interfered with the activation of lymphocytes obtained from fibrotic hypersensitivity pneumonitis patients. Peripheral blood mononuclear cells of 12 patients and 10 control subjects were submitted to CD3/CD28 stimulation, isolated B cells were incubated with a TLR9 ligand; and we tested how these stimulations were impacted by ozanimod, a sphingosine-1-phosphate receptor ligand. T cell and B cell subsets from patients overexpressed CD69 and cytokines such as TNF and IL-4 in response to CD3/CD28 stimulation, compared to controls. In patients with fibrotic hypersensitivity pneumonitis, ozanimod alleviated CD3/CD28 induction of CD69, IL-4, and TNF in CD8, but not CD4 T cells. In isolated B cells stimulated with a TLR9 ligand, ozanimod reduced cell surface expression of CD69, CD86, and CD40, as well as TNF and IL-6 accumulation in supernatant. We conclude that lymphocyte subsets are functionally impacted in patients with fibrotic hypersensitivity pneumonitis and that ozanimod can interfere ex vivo with the overactivation of B cells and CD8 T cells in response to specific stimuli.
Collapse
Affiliation(s)
- Olivier Courtemanche
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Carole-Ann Huppé
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Pascale Blais-Lecours
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Cloé Maranda
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Mathieu C. Morissette
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Geneviève Dion
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - David Marsolais
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Huang L, Han F, Huang Y, Liu J, Liao X, Cao Z, Li W. Sphk1 deficiency induces apoptosis and developmental defects and premature death in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:737-750. [PMID: 37464180 DOI: 10.1007/s10695-023-01215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
The sphk1 gene plays a crucial role in cell growth and signal transduction. However, the developmental functions of the sphk1 gene during early vertebrate zebrafish embryo remain not completely understood. In this study, we constructed zebrafish sphk1 mutants through CRISPR/Cas9 to investigate its role in zebrafish embryonic development. Knockout of the sphk1 gene was found to cause abnormal development in zebrafish embryos, such as darkening and atrophy of the head, trunk deformities, pericardial edema, retarded yolk sac development, reduced heart rate, and premature death. The acetylcholinesterase activity was significantly increased after the knockout of sphk1, and some of the neurodevelopmental genes and neurotransmission system-related genes were expressed abnormally. The deletion of sphk1 led to abnormal expression of immune genes, as well as a significant decrease in the number of hematopoietic stem cells and neutrophils. The mRNA levels of cardiac development-related genes were significantly decreased. In addition, cell apoptosis increases in the sphk1 mutants, and the proliferation of head cells decreases. Therefore, our study has shown that the sphk1 is a key gene for zebrafish embryonic survival and regulation of organ development. It deepened our understanding of its physiological function. Our study lays the foundation for investigating the mechanism of the sphk1 gene in early zebrafish embryonic development.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ying Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China.
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
3
|
Kleuser B, Bäumer W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:ijms24021456. [PMID: 36674974 PMCID: PMC9863039 DOI: 10.3390/ijms24021456] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are crucial molecules of the mammalian epidermis. The formation of skin-specific ceramides contributes to the formation of lipid lamellae, which are important for the protection of the epidermis from excessive water loss and protect the skin from the invasion of pathogens and the penetration of xenobiotics. In addition to being structural constituents of the epidermal layer, sphingolipids are also key signaling molecules that participate in the regulation of epidermal cells and the immune cells of the skin. While the importance of ceramides with regard to the proliferation and differentiation of skin cells has been known for a long time, it has emerged in recent years that the sphingolipid sphingosine 1-phosphate (S1P) is also involved in processes such as the proliferation and differentiation of keratinocytes. In addition, the immunomodulatory role of this sphingolipid species is becoming increasingly apparent. This is significant as S1P mediates a variety of its actions via G-protein coupled receptors. It is, therefore, not surprising that dysregulation in the signaling pathways of S1P is involved in the pathophysiological conditions of skin diseases. In the present review, the importance of S1P in skin cells, as well as the immune cells of the skin, is elaborated. In particular, the role of the molecule in inflammatory skin diseases will be discussed. This is important because interfering with S1P signaling pathways may represent an innovative option for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| |
Collapse
|
4
|
Prakash H, Upadhyay D, Bandapalli OR, Jain A, Kleuser B. Host sphingolipids: Perspective immune adjuvant for controlling SARS-CoV-2 infection for managing COVID-19 disease. Prostaglandins Other Lipid Mediat 2020; 152:106504. [PMID: 33147503 PMCID: PMC7605809 DOI: 10.1016/j.prostaglandins.2020.106504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 01/12/2023]
Abstract
That Sphingolipid derivatives are promising drug candidates for the management of novel COVID-19 disease. C-1P based tailoring of Th1 effector immunity for the eradication of infection is a translationally viable approach and deserves immediate attention. That C-1P would promote the killing of infected cells and resolve infection in moderate to severely infected cases. Ceramide derivatives can be exploited as drug candidates for controlling SARS-CoV-2 against novel COVID-19 disease.
Sphingolipids are potent bioactive agents involved in the pathogenesis of various respiratory bacterial infections. To date, several sphingolipid derivatives are known, but S1P (Sphingosine-1-phosphate) and Ceramide are the best-studied sphingolipid derivatives in the context of human diseases. These are membrane-bound lipids that influence host-pathogen interactions. Based on these features, we believe that sphingolipids might control SARS-CoV-2 infection in the host. SARS-CoV-2 utilizes the ACE-II receptor (Angiotensin-converting enzyme II receptor) on epithelial cells for its entry and replication. Activation of the ACE-II receptor is indirectly associated with the activation of S1P Receptor 1 signaling which is associated with IL-6 driven fibrosis. This is expected to promote pathological responses during SARS-CoV-2 infection in COVID-19 cases. Given this, mitigating S1P signaling by application of either S1P Lyase (SPL) or S1P analog (Fingolimod / FTY720) seems to be potential approach for controlling these pathological outcomes. However, due to the immunosuppressive nature of FTY720, it can modulate hyper-inflammatory responses and only provide symptomatic relief, which may not be sufficient for controlling the novel COVID-19 infection. Since Th1 effector immune responses are essential for the clearance of infection, we believe that other sphingolipid derivatives like Cermaide-1 Phosphate with antiviral potential and adjuvant immune potential can potentially control SARS-CoV-2 infection in the host by its ability in enhancing autophagy and antigen presentation by DC to promote T cell response which can be helpful in controlling SARS-CoV-2 infection in novel COVID-19 patients.
Collapse
Affiliation(s)
- Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India.
| | - Dilip Upadhyay
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | | | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Burkhard Kleuser
- Institute of Nutritional Science, Department of Nutritional Toxicology, University of Potsdam Nuthetal, Germany
| |
Collapse
|
5
|
Toor D, Jain A, Kalhan S, Manocha H, Sharma VK, Jain P, Tripathi V, Prakash H. Tempering Macrophage Plasticity for Controlling SARS-CoV-2 Infection for Managing COVID-19 Disease. Front Pharmacol 2020; 11:570698. [PMID: 33178021 PMCID: PMC7596271 DOI: 10.3389/fphar.2020.570698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Shivani Kalhan
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida, India
| | - Harmesh Manocha
- Department of Microbiology, Government Institute of Medical Sciences, Greater Noida, India
| | - Vivek Kumar Sharma
- Department of Physiology, Government Institute of Medical Sciences, Greater Noida, India
| | - Payal Jain
- Department of Medicine, Government Institute of Medical Sciences, Greater Noida, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
6
|
Syed SN, Weigert A, Brüne B. Sphingosine Kinases are Involved in Macrophage NLRP3 Inflammasome Transcriptional Induction. Int J Mol Sci 2020; 21:ijms21134733. [PMID: 32630814 PMCID: PMC7370080 DOI: 10.3390/ijms21134733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggested an important contribution of sphingosine-1-phospate (S1P) signaling via its specific receptors (S1PRs) in the production of pro-inflammatory mediators such as Interleukin (IL)-1β in cancer and inflammation. In an inflammation-driven cancer setting, we previously reported that myeloid S1PR1 signaling induces IL-1β production by enhancing NLRP3 (NOD-, LRR- and Pyrin Domain-Containing Protein 3) inflammasome activity. However, the autocrine role of S1P and enzymes acting on the S1P rheostat in myeloid cells are unknown. Using human and mouse macrophages with pharmacological or genetic intervention we explored the relative contribution of sphingosine kinases (SPHKs) in NLRP3 inflammasome activity regulation. We noticed redundancy in SPHK1 and SPHK2 activities towards macrophage NLRP3 inflammasome transcriptional induction and IL-1β secretion. However, pharmacological blockade of both kinases in unison completely abrogated NLRP3 inflammasome induction and IL-1β secretion. Interestingly, human and mouse macrophages demonstrate varied responses towards SPHKs inhibition and IL-1β secretion. Clinical datasets of renal cell carcinoma and psoriasis patients showed a positive correlation between enzymes affecting the S1P rheostat with NLRP3 inflammasome components expression, which corroborates our finding. Our data provide a better understanding on the role of SPHKs and de novo synthesized S1P in macrophage NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-7424
| |
Collapse
|
7
|
Zhu X, Shi D, Cao K, Ru D, Ren J, Rao Z, Chen Y, You Q, Dai C, Liu L, Zhou H. Sphingosine kinase 2 cooperating with Fyn promotes kidney fibroblast activation and fibrosis via STAT3 and AKT. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3824-3836. [DOI: 10.1016/j.bbadis.2018.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/25/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
|
8
|
Vutukuri R, Brunkhorst R, Kestner RI, Hansen L, Bouzas NF, Pfeilschifter J, Devraj K, Pfeilschifter W. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. J Neurochem 2017; 144:172-185. [PMID: 29023711 DOI: 10.1111/jnc.14236] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Septic encephalopathy with confusion and agitation occurs early during sepsis and contributes to the severity of the disease. A decrease in the sphingosine-1-phosphate (S1P) blood levels has been shown in patients and in animal models of sepsis. The lipid mediator S1P is known to be involved in endothelial barrier function in a context-dependent manner. We utilized lipopolysaccharide (LPS)-injected mice as a model for septic encephalopathy and first performed tracer permeability assays to assess the blood-brain barrier (BBB) breakdown in vivo. At time points corresponding to the BBB breakdown post LPS injection, we aimed to characterize the regulation of the sphingolipid signaling pathway at the BBB during sepsis. We measured sphingolipid concentrations in blood, in mouse brain microvessels (MBMVs), and brain tissue. We also analyzed the expression of S1P receptors, transporters, and metabolizing enzymes in MBMVs and brain tissue. Primary mouse brain microvascular endothelial cells (MBMECs) were isolated to evaluate the effects of LPS on transendothelial electrical resistance (TEER) as a measure of permeability in vitro. We observed a relevant decrease in S1P levels after LPS injection in all three compartments (blood, MBMVs, brain tissue) that was accompanied by an increased expression of the S1P receptor type 1 and of sphingosine kinase 1 on one hand and of the S1P degrading enzymes lipid phosphate phosphatase 1 (LPP1) and S1P phosphatase 1 on the other hand, as well as a down-regulation of sphingosine kinase 2. Application of LPS to a monolayer of primary MBMECs did not alter TEER, but serum from LPS-treated mice lead to a breakdown of the barrier compared to serum from vehicle-treated mice. We observed profound alterations of the sphingolipid metabolism at the BBB after LPS injection that point toward a therapeutic potential of drugs interfering with this pathway as novel approach for the detrimental overwhelming immune response in sepsis. Read the Editorial Highlight for this article on page 115. Cover Image for this Issue: doi. 10.1111/jnc.14161.
Collapse
Affiliation(s)
- Rajkumar Vutukuri
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Robert Brunkhorst
- Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt, Germany
| | - Roxane-Isabelle Kestner
- Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt, Germany
| | - Lena Hansen
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Nerea Ferreiros Bouzas
- Pharmazentrum Frankfurt, Institute for Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Kavi Devraj
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany.,Edinger Institute of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Nuclear Translocation of SGPP-1 and Decrease of SGPL-1 Activity Contribute to Sphingolipid Rheostat Regulation of Inflammatory Dendritic Cells. Mediators Inflamm 2017; 2017:5187368. [PMID: 29375197 PMCID: PMC5742514 DOI: 10.1155/2017/5187368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/22/2017] [Accepted: 10/03/2017] [Indexed: 02/01/2023] Open
Abstract
A balanced sphingolipid rheostat is indispensable for dendritic cell function and survival and thus initiation of an immune response. Sphingolipid levels are dynamically maintained by the action of sphingolipid enzymes of which sphingosine kinases, S1P phosphatases (SGPP-1/2) and S1P lyase (SGPL-1), are pivotal in the balance of S1P and sphingosine levels. In this study, we present that SGPP-1 and SGPL-1 are regulated in inflammatory dendritic cells and contribute to S1P fate. TLR-dependent activation caused SGPL-1 protein downregulation with subsequent decrease of enzymatic activity by two-thirds. In parallel, confocal fluorescence microscopy revealed that endogenous SGPP-1 was expressed in nuclei of naive dendritic cells and was translocated into the cytoplasmatic compartment upon inflammatory stimulation resulting in dephosphorylation of S1P. Mass spectrometric determination showed that a part of the resulting sphingosine was released from the cell, increasing extracellular levels. Another route of diminishing intracellular S1P was possibly taken by its export via ATP-binding cassette transporter C1 which was upregulated in array analysis, while the S1P transporter, spinster homolog 2, was not relevant in dendritic cells. These investigations newly describe the sequential expression and localization of the endogenous S1P regulators SGPP-1 and SGPL-1 and highlight their contribution to the sphingolipid rheostat in inflammation.
Collapse
|
10
|
Dany M. Sphingosine metabolism as a therapeutic target in cutaneous melanoma. Transl Res 2017; 185:1-12. [PMID: 28528915 DOI: 10.1016/j.trsl.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/26/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
Abstract
Melanoma is by far the most aggressive type of skin cancer with a poor prognosis in its advanced stages. Understanding the mechanisms involved in melanoma pathogenesis, response, and resistance to treatment has gained a lot of attention worldwide. Recently, the role of sphingolipid metabolism has been studied in cutaneous melanoma. Sphingolipids are bioactive lipid effector molecules involved in the regulation of various cellular signaling pathways such as inflammation, cancer cell proliferation, death, senescence, and metastasis. Recent studies suggest that sphingolipid metabolism impacts melanoma pathogenesis and is a potential therapeutic target. This review focuses on defining the role of sphingolipid metabolism in melanoma carcinogenesis, discussing sphingolipid-based therapeutic approaches, and highlighting the areas that require more extensive research.
Collapse
Affiliation(s)
- Mohammed Dany
- College of Medicine, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
11
|
Thomas K, Sehr T, Proschmann U, Rodriguez-Leal FA, Haase R, Ziemssen T. Fingolimod additionally acts as immunomodulator focused on the innate immune system beyond its prominent effects on lymphocyte recirculation. J Neuroinflammation 2017; 14:41. [PMID: 28231856 PMCID: PMC5322645 DOI: 10.1186/s12974-017-0817-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Growing evidence emphasizes the relevance of sphingolipids for metabolism and immunity of antigen-presenting cells (APC). APCs are key players in balancing tolerogenic and encephalitogenic responses in immunology. In contrast to the well-known prominent effects of sphingosine-1-phosphate (S1P) on lymphocyte trafficking, modulatory effects on APCs have not been fully characterized. METHODS Frequencies and activation profiles of dendritic cell (DC) subtypes, monocytes, and T cell subsets in 35 multiple sclerosis (MS) patients were evaluated prior and after undergoing fingolimod treatment for up to 24 months. Impact of fingolimod and S1P on maturation and activation profile, pro-inflammatory cytokine release, and phagocytotic capacity was assessed in vitro and ex vivo. Modulation of DC-dependent programming of naïve CD4+ T cells, as well as CD4+ and CD8+ T cell proliferation, was also investigated in vitro and ex vivo. RESULTS Fingolimod increased peripheral slanDC count-CD1+ DC, and monocyte frequencies remained stable. While CD4+ T cell count decreased, ratio of Treg/Th17 significantly increased in fingolimod-treated patients over time. CD83, CD150, and HLADR were all inhibited, but CD86 was upregulated in DCs after incubation in the presence of fingolimod. Fingolimod but not S1P was associated with reduced release of pro-inflammatory cytokines from DCs and monocytes in vitro and ex vivo. Fingolimod also inhibited phagocytic capacity of slanDCs and monocytes. After fingolimod, slanDCs demonstrated reduced potential to induce interferon-gamma-expressing Th1 or IL-17-expressing Th17 cells and DC-dependent T cell proliferation in vitro and in fingolimod-treated patients. CONCLUSIONS We present the first evidence that S1P-directed therapies can act additionally as immunomodulators that decrease the pro-inflammatory capabilities of APCs, which is a crucial element in DC-dependent T cell activation and programming.
Collapse
Affiliation(s)
- Katja Thomas
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tony Sehr
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Francisco Alejandro Rodriguez-Leal
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Ottenlinger FM, Mayer CA, Ferreirós N, Schreiber Y, Schwiebs A, Schmidt KG, Ackermann H, Pfeilschifter JM, Radeke HH. Interferon-Beta Increases Plasma Ceramides of Specific Chain Length in Multiple Sclerosis Patients, Unlike Fingolimod or Natalizumab. Front Pharmacol 2016; 7:412. [PMID: 27857690 PMCID: PMC5093125 DOI: 10.3389/fphar.2016.00412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
Fingolimod is used for the treatment of multiple sclerosis (MS) and targets receptors for the bioactive sphingolipid sphingosine-1-phosphate (S1P). Whether fingolimod or other MS therapies conversely affect plasma concentrations of sphingolipids has, however, not yet been analyzed. Herein, we quantified 15 representative sphingolipid species by mass spectrometry in plasma from relapsing-remitting MS patients currently under fingolimod (n = 24), natalizumab (n = 16), or IFN-β (n = 18) treatment. Healthy controls (n = 21) and untreated MS patients (n = 11) served as control groups. IFN-ß treatment strongly increased plasma level of C16:0, C18:0, C20:0, and C24:1 ceramides compared to healthy controls, untreated patients, or patients receiving fingolimod or natalizumab medication. Natalizumab treatment increased plasma concentrations of both S1P and sphinganine-1-phosphate, whereas fingolimod treatment did not affect any of these lipids. Correlations of sphingolipids with the Expanded Disability Status Scale and other disease specific parameters revealed no systemic change of sphingolipids in MS, independent of the respective treatment regime. These results indicate type I interferon treatment to cause a strong and specific increase in ceramide level. If confirmed in larger cohorts, these data have implications for the efficacy and adverse effects of IFN-β. Moreover, quantification of ceramides soon after therapy initiation may help to identify therapy-responsive patients.
Collapse
Affiliation(s)
- Florian M Ottenlinger
- Pharmazentrum Frankfurt, Institute of Pharmacology and Toxicology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Christoph A Mayer
- Center for Neurology and Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute for Clinical Pharmacology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group TMP, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Anja Schwiebs
- Pharmazentrum Frankfurt, Institute of Pharmacology and Toxicology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Katrin G Schmidt
- Pharmazentrum Frankfurt, Institute of Pharmacology and Toxicology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Hanns Ackermann
- Institute for Biostatistics and Mathematical Modelling, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt, Institute of Pharmacology and Toxicology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Heinfried H Radeke
- Pharmazentrum Frankfurt, Institute of Pharmacology and Toxicology, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
13
|
Rosenberg AJ, Liu H, Jin H, Yue X, Riley S, Brown SJ, Tu Z. Design, Synthesis, and In Vitro and In Vivo Evaluation of an (18)F-Labeled Sphingosine 1-Phosphate Receptor 1 (S1P1) PET Tracer. J Med Chem 2016; 59:6201-20. [PMID: 27280499 PMCID: PMC5091660 DOI: 10.1021/acs.jmedchem.6b00390] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingosine 1-phosphate receptor 1 (S1P1) plays a pivotal signaling role in inflammatory response; because S1P1 modulation has been identified as a therapeutic target for various diseases, a PET tracer for S1P1 would be a useful tool. Fourteen fluorine-containing analogues of S1P ligands were synthesized and their in vitro binding potency measured; four had high potency and selectivity for S1P1 (S1P1 IC50 < 10 nM, >100-fold selectivity for S1P1 over S1P2 and S1P3). The most potent ligand, 28c (IC50 = 2.63 nM for S1P1) was (18)F-labeled and evaluated in a mouse model of LPS-induced acute liver injury to determine its S1P1-binding specificity. The results from biodistribution, autoradiography, and microPET imaging showed higher [(18)F]28c accumulation in the liver of LPS-treated mice than controls. Increased expression of S1P1 in the LPS model was confirmed by immunohistochemical analysis (IHC). These data suggest that [(18)F]28c is a S1P1 PET tracer with high potential for imaging S1P1 in vivo.
Collapse
Affiliation(s)
- Adam J. Rosenberg
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Sean Riley
- The Scripps Research Institute Molecular Screening Center, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven J. Brown
- The Scripps Research Institute Molecular Screening Center, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Schwiebs A, Friesen O, Katzy E, Ferreirós N, Pfeilschifter JM, Radeke HH. Activation-Induced Cell Death of Dendritic Cells Is Dependent on Sphingosine Kinase 1. Front Pharmacol 2016; 7:94. [PMID: 27148053 PMCID: PMC4832589 DOI: 10.3389/fphar.2016.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/22/2016] [Indexed: 01/20/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is an immune modulatory lipid mediator and has been implicated in numerous pathophysiological processes. S1P is produced by sphingosine kinase 1 (Sphk1) and Sphk2. Dendritic cells (DCs) are central for the direction of immune responses and crucially involved in autoimmunity and cancerogenesis. In this study we examined the function and survival of bone marrow-derived DCs under long-term inflammatory stimulation. We observed that differentiated cells undergo activation-induced cell death (AICD) upon LPS stimulation with an increased metabolic activity shortly after stimulation, followed by a rapid activation of caspase 3 and subsequent augmented apoptosis. Importantly, we highlight a profound role of Sphk1 in secretion of inflammatory cytokines and survival of dendritic cells that might be mediated by a change in sphingolipid levels as well as by a change in STAT3 expression. Cell growth during differentiation of Sphk1-deficient cells treated with the functional S1P receptor antagonist FTYP was reduced. Importantly, in dendritic cells we did not observe a compensatory regulation of Sphk2 mRNA in Sphk1-deficient cells. Instead, we discovered a massive increase in Sphk1 mRNA concentration upon long-term stimulation with LPS in wild type cells that might function as an attempt to rescue from inflammation-caused cell death. Taken together, in this investigation we describe details of a crucial involvement of sphingolipids and Sphk1 in AICD during long-term immunogenic activity of DCs that might play an important role in autoimmunity and might explain the differences in immune response observed in in vivo studies of Sphk1 modulation.
Collapse
Affiliation(s)
- Anja Schwiebs
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Olga Friesen
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Elisabeth Katzy
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Nerea Ferreirós
- Department of Clinical Pharmacology, Pharmazentrum Frankfurt, Clinic of the Goethe University Frankfurt, Germany
| | - Josef M Pfeilschifter
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Heinfried H Radeke
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| |
Collapse
|
15
|
Rietscher R, Schröder M, Janke J, Czaplewska J, Gottschaldt M, Scherließ R, Hanefeld A, Schubert US, Schneider M, Knolle PA, Lehr CM. Antigen delivery via hydrophilic PEG-b-PAGE-b-PLGA nanoparticles boosts vaccination induced T cell immunity. Eur J Pharm Biopharm 2016; 102:20-31. [PMID: 26940132 DOI: 10.1016/j.ejpb.2016.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
Here, we evaluate the use of hydrophilic PEG-b-PAGE-b-PLGA (PPP) for the preparation of antigen loaded nanoparticles (NPs) as a platform for prophylactic vaccination. To investigate the suitability of PPP-NPs for antigen delivery, we used the double emulsion evaporation technique to prepare NPs of different sizes, antigen-loading efficiencies and -release kinetics for the model antigen Ovalbumin (OVA). Prior to applying the PPP-NPs in biological in vitro or in vivo models, all materials were tested for absence of cytotoxicity and endotoxins. While the uptake of NPs in antigen presenting cells was size but not polymer dependent, the efficiency of cross presentation of NP-associated antigen on MHC I molecules for CD8 T cell activation depended on the polymer type. T cell activation by antigen-presenting cells was significantly increased in vitro if antigen was delivered via PPP NPs compared to PLGA NPs or soluble OVA, although antigen content was the same in all tested formulations. Subcutaneous application of PPP-OVA-NPs even without adjuvants led to generation of potent CD8 T cell-mediated OVA-specific cytotoxicity in vivo that was more pronounced than after application of OVA alone or PLGA-OVA-NPs. Our data suggest that PPP-NPs can serve as platform for antigen-delivery in future vaccination formulations. Although PPP-NPs already bear intrinsic adjuvant-function, the complementation with TLR ligands loaded inside NPs may further strengthen the immune response to a point, where it might be possible to use it as a therapeutic vaccine to break immune tolerance in chronic disease states.
Collapse
Affiliation(s)
- René Rietscher
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
| | - Matthias Schröder
- BioMed X Innovation Center, Heidelberg, Germany; Institute of Molecular Immunology, Technische Universität München, Munich, Germany
| | - Julia Janke
- Department of Pharmaceutics and Biopharmaceutics, Christian Albrecht University Kiel, Kiel, Germany
| | - Justyna Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Jena, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Christian Albrecht University Kiel, Kiel, Germany
| | | | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Jena, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology, Technische Universität München, Munich, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
16
|
Ottenlinger F, Schwiebs A, Pfarr K, Wagner A, Grüner S, Mayer CA, Pfeilschifter JM, Radeke HH. Fingolimod targeting protein phosphatase 2A differently affects IL-33 induced IL-2 and IFN-γ production in CD8(+) lymphocytes. Eur J Immunol 2016; 46:941-51. [PMID: 26683421 DOI: 10.1002/eji.201545805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/02/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis patients are treated with fingolimod (FTY720), a prodrug that acts as an immune modulator. FTY720 is first phosphorylated to FTY720-P and then internalizes sphingosine-1-phosphate receptors, preventing lymphocyte sequestration. IL-33 is released from necrotic endothelial cells and contributes to MS severity by coactivating T cells. Herein we analyzed the influence of FTY720, FTY720-P, and S1P on IL-33 induced formation of IL-2 and IFN-γ, by using IL-33 receptor overexpressing EL4 cells, primary CD8(+) T cells, and splenocytes. EL4-ST2 cells released IL-2 after IL-33 stimulation that was inhibited dose-dependently by FTY720-P but not FTY720. In this system, S1P increased IL-2, and accordingly, inhibition of S1P producing sphingosine kinases diminished IL-2 release. In primary CD8(+) T cells and splenocytes IL-33/IL-12 stimulation induced IFN-γ, which was prevented by FTY720 but not FTY720-P, independently from intracellular phosphorylation. The inhibition of IFN-γ by nonphosphorylated FTY720 was mediated via the SET/protein phosphatase 2A (PP2A) pathway, since a SET peptide antagonist also prevented IFN-γ formation and the inhibition of IFN-γ by FTY720 was reversible by a PP2A inhibitor. While our findings directly improve the understanding of FTY720 therapy in MS, they could also contribute to side effects of FTY720 treatment, like progressive multifocal leukoencephalopathy, caused by an insufficient immune response to a viral infection.
Collapse
Affiliation(s)
- Florian Ottenlinger
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Anja Schwiebs
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Kathrin Pfarr
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Annika Wagner
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Sophia Grüner
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Christoph A Mayer
- Center for Neurology and Neurosurgery, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Heinfried H Radeke
- pharmazentrum frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Stone ML, Sharma AK, Zhao Y, Charles EJ, Huerter ME, Johnston WF, Kron IL, Lynch KR, Laubach VE. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1245-52. [PMID: 25910934 DOI: 10.1152/ajplung.00302.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/22/2015] [Indexed: 11/22/2022] Open
Abstract
Outcomes for lung transplantation are the worst of any solid organ, and ischemia-reperfusion injury (IRI) limits both short- and long-term outcomes. Presently no therapeutic agents are available to prevent IRI. Sphingosine 1-phosphate (S1P) modulates immune function through binding to a set of G protein-coupled receptors (S1PR1-5). Although S1P has been shown to attenuate lung IRI, the S1P receptors responsible for protection have not been defined. The present study tests the hypothesis that protection from lung IRI is primarily mediated through S1PR1 activation. Mice were treated with either vehicle, FTY720 (a nonselective S1P receptor agonist), or VPC01091 (a selective S1PR1 agonist and S1PR3 antagonist) before left lung IR. Function, vascular permeability, cytokine expression, neutrophil infiltration, and myeloperoxidase levels were measured in lungs. After IR, both FTY720 and VPC01091 significantly improved lung function (reduced pulmonary artery pressure and increased pulmonary compliance) vs. vehicle control. In addition, FTY720 and VPC01091 significantly reduced vascular permeability, expression of proinflammatory cytokines (IL-6, IL-17, IL-12/IL-23 p40, CC chemokine ligand-2, and TNF-α), myeloperoxidase levels, and neutrophil infiltration compared with control. No significant differences were observed between VPC01091 and FTY720 treatment groups. VPC01091 did not significantly affect elevated invariant natural killer T cell infiltration after IR, and administration of an S1PR1 antagonist reversed VPC01091-mediated protection after IR. In conclusion, VPC01091 and FTY720 provide comparable protection from lung injury and dysfunction after IR. These findings suggest that S1P-mediated protection from IRI is mediated by S1PR1 activation, independent of S1PR3, and that selective S1PR1 agonists may provide a novel therapeutic strategy to prevent lung IRI.
Collapse
Affiliation(s)
- Matthew L Stone
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Mary E Huerter
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - William F Johnston
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, Virginia; and
| |
Collapse
|
18
|
Pfarr K, Danciu C, Arlt O, Neske C, Dehelean C, Pfeilschifter JM, Radeke HH. Simultaneous and dose dependent melanoma cytotoxic and immune stimulatory activity of betulin. PLoS One 2015; 10:e0118802. [PMID: 25756279 PMCID: PMC4355578 DOI: 10.1371/journal.pone.0118802] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022] Open
Abstract
Conventional cytostatic cancer treatments rarely result in the complete eradication of tumor cells. Therefore, new therapeutic strategies focus on antagonizing the immunosuppressive activity of established tumors. In particular, recent studies of antigen-loaded dendritic cells (DCs) eliciting a specific antitumor immune response has raised the hopes of achieving the complete elimination of tumor tissue. Genistein, fingolimod and betulin have already been described as active compounds in different types of cancer. Herein, we applied an integrated screening approach to characterize both their cytostatic and their immune-modulating properties side-by-side. As will be described in detail, our data confirmed that all three compounds exerted proapoptotic and antiproliferative activity in different B16 melanoma cell lines to a given extent, as revealed by an MTT assay, CFSE and DAPI staining. However, while genistein and fingolimod also affected the survival of primary bone marrow (BM) derived DCs of C57BL/6 mice, betulin exhibited a lower cytotoxicity for BMDCs in comparison to the melanoma cells. Moreover, we could show for the first time, that only betulin caused a simultaneous, highly specific immune-stimulating activity, as measured by the IL-12p70 release of Toll-like receptor 4-stimulated BMDCs by ELISA, which was due to increased IL-12p35 mRNA expression. Interestingly, the activation of DCs resulted in enhanced T lymphocyte stimulation, indicated by increased IL-2 and IFN-γ production of cytotoxic T cells in spleen cell co-culture assays which led to a decreased viability of B16 cells in an antigen specific model system. This may overcome the immunosuppressive environment of a tumor and destroy tumor cells more effectively in vivo if the immune response is specific targeted against the tumor tissue by antigen-loaded dendritic cells. In summary, cytostatic agents, such as betulin, that simultaneously exhibit immune stimulatory activity may serve as lead compounds and hold great promise as a novel approach for an integrated cancer therapy.
Collapse
Affiliation(s)
- Kathrin Pfarr
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Corina Danciu
- Departments of Pharmacognosy and Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | - Olga Arlt
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Christina Neske
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Cristina Dehelean
- Departments of Pharmacognosy and Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | - Josef M. Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Heinfried H. Radeke
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
19
|
Rüger K, Ottenlinger F, Schröder M, Živković A, Stark H, Pfeilschifter JM, Radeke HH. Modulation of IL-33/ST2-TIR and TLR Signalling Pathway by Fingolimod and Analogues in Immune Cells. Scand J Immunol 2014; 80:398-407. [DOI: 10.1111/sji.12238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/27/2014] [Indexed: 01/20/2023]
Affiliation(s)
- K. Rüger
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| | - F. Ottenlinger
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| | - M. Schröder
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
- BioMed X Innovation Center; Heildelberg Germany
| | - A. Živković
- Institute of Pharmaceutical Chemistry; Goethe University Frankfurt; Biozentrum; Frankfurt am Main Germany
| | - H. Stark
- Institute of Pharmaceutical Chemistry; Goethe University Frankfurt; Biozentrum; Frankfurt am Main Germany
- Institute of Pharmaceutical and Medical Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - J. M. Pfeilschifter
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| | - H. H. Radeke
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| |
Collapse
|
20
|
Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Mol Immunol 2014; 59:10-8. [DOI: 10.1016/j.molimm.2013.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 11/23/2013] [Indexed: 01/05/2023]
|
21
|
Sphingosine-1-phosphate as signaling molecule in the skin: Relevance in atopic dermatitis. ACTA ACUST UNITED AC 2014; 23:54-59. [PMID: 26120515 PMCID: PMC4479432 DOI: 10.1007/s40629-014-0008-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
Abstract
Sphingolipids are essential molecules of the mammalian epidermis. Keratinocytes generate and secrete huge amounts of ceramide-precursors to the extracellular domain of the stratum corneum, where they are further metabolized to specific ceramide species. The arrangement of ceramides to well-organized lipid lamellae is essential to form the epidermal barrier. Besides their role as structural components sphingolipids are also critical molecules involved in the modulation of epidermal cells. Sphingosine-1-phosphate (S1P) has been identified as a prominent signaling molecule which regulates fundamental functions of keratinocytes and skin dendritic cells. Thus, S1P inhibits proliferation of keratinocytes and induces their differentiation. Moreover, antigen uptake, migration and cytokine production of dendritic cells are under the control of this sphingolipid. A dysregulation of the sphingolipid metabolism has been discussed in inflammatory skin disorders like atopic dermatitis. Animal models of contact dermatitis provide evidence that topical treatment with S1P is connected with an anti-inflammatory action suggesting a novel approach for the treatment of atopic dermatitis.
Collapse
|
22
|
Sphingosin-1-Phosphat als Signalmolekül der Haut. ALLERGO JOURNAL 2014. [DOI: 10.1007/s15007-014-0516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Potì F, Gualtieri F, Sacchi S, Weißen-Plenz G, Varga G, Brodde M, Weber C, Simoni M, Nofer JR. KRP-203, Sphingosine 1-Phosphate Receptor Type 1 Agonist, Ameliorates Atherosclerosis in LDL-R
−/−
Mice. Arterioscler Thromb Vasc Biol 2013; 33:1505-12. [DOI: 10.1161/atvbaha.113.301347] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective—
Sphingosine 1-phosphate (S1P) partly accounts for antiatherogenic properties of high-density lipoproteins. We previously demonstrated that FTY720, a synthetic S1P analog targeting all S1P receptors but S1P receptor type 2, inhibits murine atherosclerosis. Here, we addressed the identity of S1P receptor mediating atheroprotective effects of S1P.
Approach and Results—
Low-density lipoprotein receptor–deficient mice on cholesterol-rich diet were given selective S1P receptor type 1 agonist KRP-203 (3.0 mg/kg per day; 6 and 16 weeks). KRP-203 substantially reduced atherosclerotic lesion formation without affecting plasma lipid concentrations. However, KRP-203 induced lymphopenia, reduced total (CD4
+
, CD8
+
) and activated (CD69
+
/CD8
+
, CD69
+
/CD4
+
) T cells in peripheral lymphoid organs, and interfered with lymphocyte function, as evidenced by decreased T-cell proliferation and interleukin-2 and interferon-γ production in activated splenocytes. Cyto- and chemokine (tumor necrosis factor-α, regulated and normal T cell expressed and secreted) levels in plasma and aortas were reduced by KRP-203 administration. Moreover, macrophages from KRP-203–treated mice showed reduced expression of activation marker MCH-II and poly(I:C)-elicited production of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6. In vitro studies demonstrated that KRP-203 reduced tumor necrosis factor-α, interleukin-6, and interferon-γ–induced protein-10 production; IκB and signal transducer and activator of transcription-1 phosphorylation; and nuclear factor κB and signal transducer and activator of transcription-1 activation in poly(I:C)-, lipopolysaccharide-, or interferon-γ–stimulated bone marrow macrophages, respectively.
Conclusions—
Present results demonstrate that activation of S1P signaling pathways inhibit atherosclerosis by modulating lymphocyte and macrophage function and suggest that S1P receptor type 1 at least partially mediates antiatherogenic effects of S1P.
Collapse
Affiliation(s)
- Francesco Potì
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Fabio Gualtieri
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Sandro Sacchi
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Gabriele Weißen-Plenz
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Georg Varga
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Martin Brodde
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Christian Weber
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Manuela Simoni
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| | - Jerzy-Roch Nofer
- From the Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (F.P., F.G., S.S., M.S., J.-R.N.); Leibniz-Institute for Arteriosclerosis Research, University of Münster, Münster, Germany (G.W.-P.); Institute of Immunology (G.V.), Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis (M.B.), and Center for Laboratory Medicine (J.-R.N.), University Hospital Münster, Münster, Germany; and Institute for
| |
Collapse
|
24
|
Role of sphingosine 1-phosphate in trafficking and mobilization of hematopoietic stem cells. Curr Opin Hematol 2013; 20:281-8. [DOI: 10.1097/moh.0b013e3283606090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Abstract
Mammalian skin protects our body against external assaults due to a well-organized skin barrier. The formation of the skin barrier is a complex process, in which basal keratinocytes lose their mitotic activity and differentiate to corneocytes. These corneocytes are embedded in intercellular lipid lamellae composed of ceramides, cholesterol, fatty acids, and cholesterol esters. Ceramides are the dominant lipid molecules and their reduction is connected with a transepidermal water loss and an epidermal barrier dysfunction resulting in inflammatory skin diseases. Moreover, bioactive sphingolipid metabolites like ceramide-1-phosphate, sphingosylphosphorylcholine, and sphingosine-1-phosphate are also involved in the biological modulation of keratinocytes and immune cells of the skin. Therefore, it is not astonishing that a dysregulation of sphingolipid metabolism has been identified in inflammatory skin diseases such as atopic dermatitis and psoriasis vulgaris. This chapter will describe not only the specific sphingolipid species and their skin functions but also the dysregulation of sphingolipid metabolism in inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Potsdam, Germany.
| | | |
Collapse
|
26
|
Japtok L, Schaper K, Bäumer W, Radeke HH, Jeong SK, Kleuser B. Sphingosine 1-phosphate modulates antigen capture by murine Langerhans cells via the S1P2 receptor subtype. PLoS One 2012; 7:e49427. [PMID: 23145172 PMCID: PMC3493526 DOI: 10.1371/journal.pone.0049427] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P2 receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P2 not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions.
Collapse
Affiliation(s)
- Lukasz Japtok
- Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany
| | - Katrin Schaper
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Bäumer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Heinfried H. Radeke
- Pharmazentrum Frankfurt, Clinic of the Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | | - Burkhard Kleuser
- Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
27
|
Poti F, Bot M, Costa S, Bergonzini V, Maines L, Varga G, Freise H, Robenek H, Simoni M, Nofer JR. Sphingosine kinase inhibition exerts both pro- and anti-atherogenic effects in low-density lipoprotein receptor-deficient (LDL-R(-/-)) mice. Thromb Haemost 2012; 107:552-61. [PMID: 22234485 DOI: 10.1160/th11-08-0583] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/29/2011] [Indexed: 12/28/2022]
Abstract
Sphingosine 1-phosphate (S1P), a lysosphingolipid associated with high-density lipoprotein (HDL), contributes to the anti-atherogenic potential attributed to this lipoprotein. This study examined whether a reduction of S1P plasma levels affects atherosclerosis in a murine model of disease. LDL-R(-/-)mice on Western diet were given ABC294640, an inhibitor of sphingosine kinase (SphK) for 16 weeks. ABC294640 decreased plasma S1P by approximately 30%. However, ABC294640 failed to affect atherosclerotic lesion formation. Plasma triglycerides were reduced whereas total and HDL-cholesterol remained unchanged in course of ABC294640 treatment. ABC294640 increased plasma interleukin (IL)-12p70 and RANTES concentration as well as IL-12p70, RANTES and interferon (IFN)-γ production by peritoneal cells and this was paralleled by enhanced activity of peritoneal and spleen dendritic cells as evidenced by up-regulation of CD86 and MHC-II on CD11c(+) cells. As a consequence, increased T-cell activation was noted in ABC294640-treated mice as indicated by enhanced CD4(+) splenocyte proliferation, IFN-γ and IL-2 production, and CD69 expression. Concomitantly, however, ABC294640 treatment redistributed CD4(+) and CD8(+) cells from blood to lymphatic organs and reduced T-cell number within atherosclerotic lesions. In addition, plasma sVCAM-1, sICAM-1, and MCP-1 levels as well as in vivo leukocyte adhesion and CCL19-induced T-cell penetration into peritoneum were lower in ABC294640-treated animals. In vitro experiments demonstrated reduced VCAM-1 and ICAM-1 expression and lymphocyte adhesion to endothelial cells exposed to ABC294640. In conclusion, treatment with SphK inhibitor leads to both pro- and anti-atherogenic effects in LDL-R(-/-) mice. As a consequence, SphK inhibition fails to affect atherosclerosis despite significant S1P reduction in plasma.
Collapse
Affiliation(s)
- Francesco Poti
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|