1
|
Patlola SR, Holleran L, Dauvermann MR, Rokita K, Laighneach A, Hallahan B, McManus R, Kenyon M, McDonald C, Morris DW, Kelly JP, Donohoe G, McKernan DP. Investigating the relationship between toll-like receptor activity, low-grade inflammation and cognitive deficits in schizophrenia patients - A mediation analysis. Brain Behav Immun 2025; 128:529-539. [PMID: 40268064 DOI: 10.1016/j.bbi.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Schizophrenia is a debilitating psychiatric illness. Many studies report alterations in immune biomarkers (cytokines) in such patients. In addition, such prolonged low-grade inflammatory responses are associated with lowered cognitive performance. In this study, we investigated whether the expression and activity of Toll-like receptors (TLRs), receptors involved in initiating innate immune responses, are associated with the reported immune changes and, if so, whether they are associated with cognitive deficits in such patients. METHODS 300 participants (202 healthy controls (HC) and 98 patients with schizophrenia (SZ)) were recruited. A battery of cognitive tasks using WAIS-III and CANTAB were administered to the participants. Whole blood collected from participants was used to assess TLR2, 3, and 4 activity. mRNA expression of cytokines and TLR1-10 were quantified using RT-QPCR. Using ELISA, plasma was analysed for basal levels of cytokines such as IL-6, IL-8, IL-10, IL-12, TNF-α, IFN-γ and C-reactive proteins (CRP). RESULTS We found significantly elevated plasma levels of IL-6, IL-8, IL-10, TNF-α, and CRP in the SZ group. In the SZ patient-only group, significantly higher levels of TLR2 and -4 activity (as measured by IL-6, IL-8, and IL-10 release following agonist stimulation) were observed. Significant negative associations in patients were observed between plasma IL-6 levels and measures of attention & processing speed and working memory; IL-8 and intelligence quotient; TNF-α and logical memory; and social cognition and IL-10 and CRP. Multiple-linear regression analysis suggests that TLR2 and TLR4 activity was associated with increased and decreased cytokine levels respectively and decreased cognitive performance. Finally, the significant association between TLR activity and decreased cognitive performance was mediated by IL-6 and IL-8. CONCLUSION We have demonstrated that patients with schizophrenia have elevated protein and mRNA expression of a range of cytokines and Toll-like receptors. Some of these changes are associated with deficits in cognition. Finally, our study has demonstrated a modest relationship between TLR activity and cognitive deficits in schizophrenia patients in a manner that may be mediated by IL-6 and IL-8.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | | | | | | | - Aodán Laighneach
- School of Biological and Chemical Sciences, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Brian Hallahan
- School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Ross McManus
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Marcus Kenyon
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Colm McDonald
- School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Derek W Morris
- School of Biological and Chemical Sciences, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland; Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland.
| |
Collapse
|
2
|
Kendlbacher FL, Bloch S, Hager‐Mair FF, Bacher J, Janesch B, Thurnheer T, Andrukhov O, Schäffer C. Multispecies biofilm behavior and host interaction support the association of Tannerella serpentiformis with periodontal health. Mol Oral Microbiol 2023; 38:115-133. [PMID: 35964247 PMCID: PMC10947601 DOI: 10.1111/omi.12385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
The recently identified bacterium Tannerella serpentiformis is the closest phylogenetic relative of Tannerella forsythia, whose presence in oral biofilms is associated with periodontitis. Conversely, T. serpentiformis is considered health-associated. This discrepancy was investigated in a comparative study of the two Tannerella species. The biofilm behavior was analyzed upon their addition and of Porphyromonas gingivalis-each bacterium separately or in combinations-to an in vitro five-species oral model biofilm. Biofilm composition and architecture was analyzed quantitatively using real-time PCR and qualitatively by fluorescence in situ hybridization/confocal laser scanning microscopy, and by scanning electron microscopy. The presence of T. serpentiformis led to a decrease of the total cell number of biofilm bacteria, while P. gingivalis was growth-promoting. This effect was mitigated by T. serpentiformis when added to the biofilm together with P. gingivalis. Notably, T. serpentiformis outcompeted T. forsythia numbers when the two species were simultaneously added to the biofilm compared to biofilms containing T. forsythia alone. Tannerella serpentiformis appeared evenly distributed throughout the multispecies biofilm, while T. forsythia was surface-located. Adhesion and invasion assays revealed that T. serpentiformis was significantly less effective in invading human gingival epithelial cells than T. forsythia. Furthermore, compared to T. forsythia, a higher immunostimulatory potential of human gingival fibroblasts and macrophages was revealed for T. serpentiformis, based on mRNA expression levels of the inflammatory mediators interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein-1 and tumor necrosis factor α, and production of the corresponding proteins. Collectively, these data support the potential of T. serpentiformis to interfere with biological processes relevant to the establishment of periodontitis.
Collapse
Affiliation(s)
- Fabian L. Kendlbacher
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Susanne Bloch
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Fiona F. Hager‐Mair
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Johanna Bacher
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Bettina Janesch
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive DentistryDivision of Clinical Oral Microbiology and ImmunologyCenter of Dental MedicineUniversity of ZürichZürichSwitzerland
| | - Oleh Andrukhov
- Competence Center for Periodontal ResearchUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
| | - Christina Schäffer
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| |
Collapse
|
3
|
Maksoud S, Ortega JT, Hidalgo M, Rangel HR. Leishmania donovani and HIV co-infection in vitro: Identification and characterization of main molecular players. Acta Trop 2022; 228:106248. [PMID: 34822851 DOI: 10.1016/j.actatropica.2021.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
The incidence of Leishmania/HIV co-infection is growing and few studies detail the cellular processes and macromolecules participating in co-infection. Thus, the goal of this study was to partially describe the Leishmania/HIV co-infection events by measuring molecular and functional parameters associated with both pathogens in vitro. MT-4 cells (human T-lymphocytes), primary monocytes, and peripheral blood mononuclear cells were exposed to HIV and/or Leishmania donovani. The cytopathic effects generated by the pathogens were observed through microscopy. Viral replication was assessed by monitoring p24 protein levels and parasitic proliferation/infectivity was determined using Giemsa staining. Changes in molecular markers were evaluated by ELISA and fluorescence assays. Our results showed that our system reassembles the main parameters previously described for Leishmania/HIV co-infection in patients in terms of potentiation of parasitic and viral replication/infectivity, amplification of syncytia induction, and alterations of cell viability. In addition, an amplification in NF-κB activation, changes in CXCR4/CCR5 surface expression, and a Th1→Th2 variation in cytokine/chemokine secretion were demonstrated. Altogether, this study could contribute to gain a deep understanding of the molecular events associated with Leishmania/HIV co-infection.
Collapse
Affiliation(s)
- S Maksoud
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J T Ortega
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - H R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
4
|
El-Obeid A, Yahya WB, Almuzzaini B, Tuwaijri AA, Najdi M, Hassib A, Matou-Nasri S. Herbal melanin induces interleukin-1β secretion and production by human THP-1 monocytes via Toll-like receptor 2 and p38 MAPK activation. Exp Ther Med 2021; 22:1081. [PMID: 34447474 PMCID: PMC8355711 DOI: 10.3892/etm.2021.10515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal melanin (HM), extracted from Nigella sativa, is known for its immunogenic properties through the modulation of cytokine production via Toll-like receptor (TLR)4. TLRs play a crucial role in the host defense through the regulation of innate and adaptive immune responses. However, the potential effect of HM on the production of interleukin-1β (IL-1β), the main immunoregulatory cytokine secreted by activated monocytes, has not been reported. The present study aimed to investigate the effects of HM on IL-1β secretion and production, detected by enzyme-linked immunosorbent assay, western blotting and mRNA expression monitored by reverse transcription-PCR, in human monocytes and a monocytic cell line, THP-1. Signaling pathways involved in the HM-induced IL-1β production was investigated in the THP-1 cells. It was shown that HM upregulated the IL-1β mRNA in the THP-1 cells and induced the secretion of IL-1β in the monocytes and THP-1 cells, in a dose-dependent manner, compared to the untreated cells. HM increased the protein expression of IL-1β, TLR2, the main receptor for IL-1β production, and activated p38 mitogen-activated protein kinase (MAPK), a key mediator for stress-induced IL-1β gene expression. The blockade of the p38 MAPK pathway, with the pharmacological inhibitor SB202190, and TLR2 receptor with a neutralization antibody, resulted in the decrease of HM-induced IL-1β production in THP-1 cells. The TLR4 receptor blockade also decreased HM-induced IL-1β production, but to a lesser extent than TLR2 blockade. In conclusion, the present study demonstrated that HM stimulates IL-1β production in monocytes and THP-1 cells, in a TLR2/p38 MAPK pathway-dependent manner, suggesting promising immunoregulatory potentials of HM against inflammatory-associated diseases.
Collapse
Affiliation(s)
- Adila El-Obeid
- Biobank, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia.,School of Pharmacy, Ahfad University for Women, Omdurman, Khartoum 11111, Sudan.,Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, 752 37 Uppsala, Sweden
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Postgraduate Program, King Saud University, Riyadh 12372, Saudi Arabia
| | - Adil Hassib
- Department of Physics, Faculty of Science, University of Khartoum, Khartoum 11111, Sudan
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| |
Collapse
|
5
|
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is characterized by fever, arthritis, and other signs of systemic inflammation. Historically, sJIA was named Still's disease after George Frederic Still, who first reported patients. Individuals who manifest after the 16th birthday are diagnosed with adult onset Still's disease (AOSD). The pathophysiology of sJIA and AOSD are incompletely understood. Increased activation of inflammasomes and the expression of proinflammatory cytokines play a central role. S100 proteins, which can activate Toll-like receptors, thus, maintaining positive feedback loops, have also been detected at increased levels in sera from sJIA patients. Reduced expression of the immune-modulatory cytokine IL-10 may further contribute to immune cell activation and the production of proinflammatory molecules. Here, we discuss the clinical picture, differential diagnoses, the current pathophysiological understanding, and treatment options in sJIA and AOSD.
Collapse
Affiliation(s)
- C M Hedrich
- Arbeitsbereich Pädiatrische Rheumatologie und Immunologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - C Günther
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
| | - M Aringer
- Bereich Rheumatologie, Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
| |
Collapse
|
6
|
Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death Dis 2019; 10:59. [PMID: 30683851 PMCID: PMC6347644 DOI: 10.1038/s41419-019-1304-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cells (BCCs) can retain cellular quiescence for decades, a phenomenon referred to as dormancy. BCCs show preference for the bone marrow (BM) where they can remain dormant for decades. Targeting BCCs within the BM is a challenge since the dormant BCCs reside within BM stroma, also residence for hematopoietic stem cells (HSCs). Dormant BCCs could behave as cancer stem cells (CSCs). The CSCs and HSCs are similar by function and also, by commonly expressed genes. The method by which dormant BCCs transition into clinically metastatic cells remains unclear. This study tested the hypothesis that macrophages (MΦs) within BM stroma, facilitates dormancy or reverse this state into metastatic cells. MΦs exhibiting an M2 phenotype constitute ~10% of cultured BM stroma. The M2 MΦs form gap junctional intercellular communication (GJIC) with CSCs, resulting in cycling quiescence, reduced proliferation and carboplatin resistance. In contrast, MΦs expressing the M1 phenotype reversed BC dormancy. Activation of M2a MΦs via the toll-like receptor 4 (TLR4) switched to M1 phenotype. The switch can occur by direct activation of M2a MΦs, or indirectly through activation of mesenchymal stem cells. M1 MΦ-derived exosomes activated NFкB to reverse quiescent BCCs to cycling cells. Using an in vivo model of BC dormancy, injected Mi MOs sensitized BCCs to carboplatin and increased host survival. In summary, we have shown how BM stromal MΦs, through exosomes, regulate the behavior of BCCs, by either inducing or reversing dormancy.
Collapse
|
7
|
Epidermal Growth Factor Relieves Inflammatory Signals in Staphylococcus aureus-Treated Human Epidermal Keratinocytes and Atopic Dermatitis-Like Skin Lesions in Nc/Nga Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9439182. [PMID: 29862299 PMCID: PMC5976919 DOI: 10.1155/2018/9439182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/04/2017] [Accepted: 12/24/2017] [Indexed: 01/13/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a defective immunologic barrier, which is aggravated by Staphylococcus aureus (S. aureus). Epidermal growth factor (EGF) suppresses inflammation and EGF receptor inhibitors increased S. aureus colonization. Thus, we investigated the potential roles of EGF in AD, which is often aggravated by S. aureus. We determined how EGF affects the expression of inflammatory cytokines and antimicrobial peptides (AMPs) in human epidermal keratinocytes (HEKs) treated with heat-inactivated S. aureus (HKSA) in vitro and 2,4-dinitrochlorobenzene-induced AD-like skin lesions in Nc/Nga mice. HKSA increased IL-6 and NFκB expression; EGF treatment had the opposite effect. EGF increased human β defensin-2 expression in HEKs and murine β defensin-3 in mice. In mice, both EGF and pimecrolimus groups showed less erythema with significantly reduced inflammation and decreased expression of thymic stromal lymphopoietin. EGF relieved S. aureus-induced inflammation and AD-like skin lesions in Nc/Nga mice. Therefore, EGF could be a potential topical treatment for AD.
Collapse
|
8
|
Fatty acid transport protein 1 enhances the macrophage inflammatory response by coupling with ceramide and c-Jun N-terminal kinase signaling. Int Immunopharmacol 2017; 55:205-215. [PMID: 29272817 DOI: 10.1016/j.intimp.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Macrophages are important cells that need to be controlled at the site of inflammation. Several factors are involved in chronic inflammation and its timely resolution. Free fatty acids drive the inflammatory response in macrophages and contribute to the vicious cycle of the inflammatory response. However, the identity of the uptake pathways of fatty acids is not fully clear in macrophages and how the inflammatory responses are regulated by the uptake of fatty acids remain poorly understood. We investigated the relationship between fatty acid transport protein (FATP) and the inflammatory response signaling pathway in macrophages as the first report. The FATP family has composed six isoforms, FATP1-6. We found that FATP1 is the most highly expressed isoform in macrophages. Forced expression of FATP1 enhanced production of inflammatory cytokines, such as TNFα and IL-6 concomitant with the increased uptake of fatty acids, increased level of ceramide, and increased phosphorylation of c-Jun N-terminal kinase (JNK). The enhancement by FATP1 was abolished by treatment with a JNK inhibitor, NF-κB inhibitor, or ceramide synthesis inhibitor. siRNA-mediated knockdown of FATP1 strongly inhibited the production of TNFα and IL-6. Similarly, an inhibitor of FATP1 inhibited the production of TNFα and IL-6. Finally, an inhibitor of FATP1 attenuated the production of inflammatory cytokines in bronchoalveolar lavage fluid in an LPS-induced acute lung injury in vivo mouse model. In summary, we propose that FATP1 is an important regulator of inflammatory response signaling in macrophages. Our findings suggest that ceramide-JNK signaling is important to terminate or sustain inflammation.
Collapse
|
9
|
Roldán V, Arroyo AB, Salloum-Asfar S, Manzano-Fernández S, García-Barberá N, Marín F, Vicente V, González-Conejero R, Martínez C. Prognostic role of MIR146A polymorphisms for cardiovascular events in atrial fibrillation. Thromb Haemost 2017; 112:781-8. [DOI: 10.1160/th14-01-0092] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/21/2014] [Indexed: 11/05/2022]
Abstract
SummaryThere are few biomarkers able to forecast new thrombotic events in patients with AF. In this framework, microRNAs have emerged as critical players in cardiovascular biology. In particular, miR-146a-5p is recognised as an important negative regulator of inflammation. This study aims to evaluate the prognostic role and biological effect of functional MIR146A polymorphisms, rs2431697 and rs2910164, in non-valvular atrial fibrillation (AF) patients under oral anticoagulation. We studied 901 patients with permanent/paroxysmal AF stabilized for at least six months. Patients were followed-up for two years and adverse cardiovascular events (ACE) were recorded. In vitro studies were performed in monocytes from healthy homozygous for the two genotypes of rs2431697. Rs2910164 had no association with ACE. However, multivariate analysis (adjusted by CHA2DS2–VASc score) revealed that rs2431697TT was associated with adverse cardiovascular events [HR: 1.64 (1.09–2.47); p=0.017]. The predictive value of usefulness of the CHA2DS2–VASc+IL6+rs2431697 for predicting ACE, was statistically better than that predicted by CHA2DS2–VASc+IL6. Functional studies showed that after 24 hours incubation, monocytes from CC individuals showed a 65 % increase in miR-146a-5p levels, while TT individuals only showed a 28 % increase. Indeed, after 24 hours of LPS activation, TT monocytes showed a higher increase in IL6 mRNA expression than CC (52 % vs 26 %). Our study established MIR146A rs2431697 as a prognostic biomarker for ACE in anticoagulated AF patients. These data suggest that TT individuals, when submitted to an inflammatory stress, may be prone to a highest pro-inflammatory state due, in part, to lower levels of miR-146a-5p.
Collapse
|
10
|
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is characterized by fever, arthritis, and other signs of systemic inflammation. Historically, sJIA was named Still's disease after George Frederic Still, who first reported patients. Individuals who manifest after the 16th birthday are diagnosed with adult onset Still's disease (AOSD). The pathophysiology of sJIA and AOSD are incompletely understood. Increased activation of inflammasomes and the expression of proinflammatory cytokines play a central role. S100 proteins, which can activate Toll-like receptors, thus, maintaining positive feedback loops, have also been detected at increased levels in sera from sJIA patients. Reduced expression of the immune-modulatory cytokine IL-10 may further contribute to immune cell activation and the production of proinflammatory molecules. Here, we discuss the clinical picture, differential diagnoses, the current pathophysiological understanding, and treatment options in sJIA and AOSD.
Collapse
Affiliation(s)
- C M Hedrich
- Arbeitsbereich Pädiatrische Rheumatologie und Immunologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - C Günther
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
| | - M Aringer
- Bereich Rheumatologie, Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
| |
Collapse
|
11
|
Nishiyama K, Fujimoto Y, Takeuchi T, Azuma YT. Aggressive Crosstalk Between Fatty Acids and Inflammation in Macrophages and Their Influence on Metabolic Homeostasis. Neurochem Res 2017; 43:19-26. [PMID: 28424949 DOI: 10.1007/s11064-017-2269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
From the immunological point of view, macrophages are required to maintain metabolic homeostasis. Recently, there has been an increased focus on the influence of macrophage phenotypes in adipose tissue on the maintenance of metabolic homeostasis in healthy conditions because dysregulated metabolic homeostasis causes metabolic syndrome. This review notes several types of inflammatory and anti-inflammatory mediators in metabolic homeostasis. M1 macrophage polarization mediates inflammation, whereas M2 macrophage polarization mediates anti-inflammation. Fatty acids and their related factors mediate both inflammatory and anti-inflammatory responses. Saturated fatty acids and polyunsaturated fatty acids mediate inflammation, whereas marine-derived n-3 fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid, mediate anti-inflammation. In this review, we discuss the current understanding of the crosstalk between fatty acids and inflammation in macrophages and their influence on metabolic homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan.
| |
Collapse
|
12
|
McGarry T, Biniecka M, Gao W, Cluxton D, Canavan M, Wade S, Wade S, Gallagher L, Orr C, Veale DJ, Fearon U. Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis. Sci Rep 2017; 7:43165. [PMID: 28225071 PMCID: PMC5320554 DOI: 10.1038/srep43165] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.
Collapse
Affiliation(s)
- Trudy McGarry
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Monika Biniecka
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Wei Gao
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Deborah Cluxton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Siobhan Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sarah Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Lorna Gallagher
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Carl Orr
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Douglas J. Veale
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Gualtero DF, Viafara-Garcia SM, Morantes SJ, Buitrago DM, Gonzalez OA, Lafaurie GI. Rosuvastatin Inhibits Interleukin (IL)-8 and IL-6 Production in Human Coronary Artery Endothelial Cells Stimulated With Aggregatibacter actinomycetemcomitans Serotype b. J Periodontol 2017; 88:225-235. [DOI: 10.1902/jop.2016.160288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Latorre E, Layunta E, Grasa L, Castro M, Pardo J, Gomollón F, Alcalde AI, Mesonero JE. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation. PLoS One 2016; 11:e0169303. [PMID: 28033388 PMCID: PMC5199115 DOI: 10.1371/journal.pone.0169303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023] Open
Abstract
TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.
Collapse
Affiliation(s)
- Eva Latorre
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- RNA—Mediated Mechanisms of Disease, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School. Exeter. United Kingdom
- * E-mail:
| | - Elena Layunta
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Laura Grasa
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Marta Castro
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Julián Pardo
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Gomollón
- Servicio de Sistema Digestivo. Hospital Clínico Universitario "Lozano Blesa", Instituto de Investigación Sanitaria de Aragón (IIS); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Zaragoza, Spain
| | - Ana I. Alcalde
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - José E. Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza. Spain
- Instituto Agroalimentario de Aragón–IA2- (Universidad de Zaragoza–CITA), Zaragoza, Spain
| |
Collapse
|
15
|
Li WY, Li FM, Zhou YF, Wen ZM, Ma J, Ya K, Qian ZM. Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide. Int J Mol Sci 2016; 17:ijms17121921. [PMID: 27999284 PMCID: PMC5187761 DOI: 10.3390/ijms17121921] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022] Open
Abstract
Aspirin down regulates transferrin receptor 1 (TfR1) and up regulates ferroportin 1 (Fpn1) and ferritin expression in BV-2 microglial cells treated without lipopolysaccharides (LPS), as well as down regulates hepcidin and interleukin 6 (IL-6) in cells treated with LPS. However, the relevant mechanisms are unknown. Here, we investigate the effects of aspirin on expression of hepcidin and iron regulatory protein 1 (IRP1), phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3) and P65 (nuclear factor-κB), and the production of nitric oxide (NO) in BV-2 microglial cells treated with and without LPS. We demonstrated that aspirin inhibited hepcidin mRNA as well as NO production in cells treated with LPS, but not in cells without LPS, suppresses IL-6, JAK2, STAT3, and P65 (nuclear factor-κB) phosphorylation and has no effect on IRP1 in cells treated with or without LPS. These findings provide evidence that aspirin down regulates hepcidin by inhibiting IL6/JAK2/STAT3 and P65 (nuclear factor-κB) pathways in the cells under inflammatory conditions, and imply that an aspirin-induced reduction in TfR1 and an increase in ferritin are not associated with IRP1 and NO.
Collapse
Affiliation(s)
- Wan-Ying Li
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Fei-Mi Li
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
| | - Yu-Fu Zhou
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
| | - Zhong-Min Wen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Juan Ma
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Ke Ya
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
| |
Collapse
|
16
|
Batu ED. Biologic therapies in systemic juvenile idiopathic arthritis. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ezgi Deniz Batu
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Estruch M, Sanchez-Quesada JL, Ordoñez-Llanos J, Benitez S. Inflammatory intracellular pathways activated by electronegative LDL in monocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:963-969. [PMID: 27235719 DOI: 10.1016/j.bbalip.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022]
Abstract
AIMS Electronegative LDL (LDL(-)) is a plasma LDL subfraction that induces cytokine release in monocytes through toll-like receptor 4 (TLR4) activation. However, the intracellular pathways induced by LDL(-) downstream TLR4 activation are unknown. We aimed to identify the pathways activated by LDL(-) leading to cytokine release in monocytes. METHODS AND RESULTS We determined LDL(-)-induced activation of several intracellular kinases in protein extracts from monocytes using a multikinase ELISA array. LDL(-) induced higher p38 mitogen-activated protein kinase (MAPK) phosphorylation than native LDL. This was corroborated by a specific cell-based assay and it was dependent on TLR4 and phosphoinositide 3-kinase (PI3k)/Akt pathway. P38 MAPK activation was involved in cytokine release promoted by LDL(-). A specific ELISA showed that LDL(-) activated cAMP response-element binding (CREB) in a p38 MAPK dependent manner. P38 MAPK was also involved in the nuclear factor kappa-B (NF-kB) and activating protein-1 (AP-1) activation by LDL(-). We found that NF-kB, AP-1 and CREB inhibitors decreased LDL(-)-induced cytokine release, mainly on MCP1, IL6 and IL10 release, respectively. CONCLUSIONS LDL(-) promotes p38 MAPK phosphorylation through TLR4 and PI3k/Akt pathways. Phosphorylation of p38 MAPK is involved in NF-kB, AP-1 and CREB activation, leading to LDL(-)-induced cytokine release in monocytes.
Collapse
Affiliation(s)
- Montserrat Estruch
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain.
| | - Jose Luis Sanchez-Quesada
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| | - Jordi Ordoñez-Llanos
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain; Biochemistry Department, Hospital de la Santa Creu i Sant Pau Barcelona, C/Sant Quintí 89, 08026 Barcelona, Spain.
| | - Sonia Benitez
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| |
Collapse
|
18
|
Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, Hatakeyama S. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci 2016; 73:1085-101. [PMID: 26363554 PMCID: PMC11108475 DOI: 10.1007/s00018-015-2040-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
NFκB is one of the central regulators of cell survival, immunity, inflammation, carcinogenesis and organogenesis. The activation of NFκB is strictly regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. Several types of ubiquitination play important roles in multi-step regulations of the NFκB pathway. Some of the tripartite motif-containing (TRIM) proteins functioning as E3 ubiquitin ligases are known to regulate various biological processes such as inflammatory signaling pathways. One of the TRIM family proteins, TRIM39, for which the gene has single nucleotide polymorphisms, has been identified as one of the genetic factors in Behcet's disease. However, the role of TRIM39 in inflammatory signaling had not been fully elucidated. In this study, to elucidate the function of TRIM39 in inflammatory signaling, we performed yeast two-hybrid screening using TRIM39 as a bait and identified Cactin, which has been reported to inhibit NFκB- and TLR-mediated transcriptions. We show that TRIM39 stabilizes Cactin protein and that Cactin is upregulated after TNFα stimulation. TRIM39 knockdown also causes activation of the NFκB signal. These findings suggest that TRIM39 negatively regulates the NFκB signal in collaboration with Cactin induced by inflammatory stimulants such as TNFα.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Dai Takagi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Fukuda
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
19
|
Current understanding of the pathophysiology of systemic juvenile idiopathic arthritis (sJIA) and target-directed therapeutic approaches. Clin Immunol 2015; 159:72-83. [DOI: 10.1016/j.clim.2015.04.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/21/2023]
|
20
|
Chen WC, Yen CS, Huang WJ, Hsu YF, Ou G, Hsu MJ. WMJ-S-001, a novel aliphatic hydroxamate derivative, exhibits anti-inflammatory properties via MKP-1 in LPS-stimulated RAW264.7 macrophages. Br J Pharmacol 2015; 172:1894-908. [PMID: 25521622 DOI: 10.1111/bph.13040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydroxamate derivatives have attracted considerable attention because of their broad pharmacological properties. Recent studies reported their potential use in the treatment of cardiovascular diseases, arthritis and infectious diseases. However, the mechanisms of the anti-inflammatory effects of hydroxamate derivatives remain to be elucidated. In an effort to develop a novel pharmacological agent that could suppress abnormally activated macrophages, we investigated a novel aliphatic hydroxamate derivative, WMJ-S-001, and explored its anti-inflammatory mechanisms. EXPERIMENTAL APPROACH RAW264.7 macrophages were exposed to LPS in the absence or presence of WMJ-S-001. COX-2 expression and signalling molecules activated by LPS were assessed. KEY RESULTS LPS-induced COX-2 expression was suppressed by WMJ-S-001. WMJ-S-001 inhibited p38MAPK, NF-κB subunit p65 and CCAAT/enhancer-binding protein (C/EBP)β phosphorylation in cells exposed to LPS. Treatment of cells with a p38MAPK inhibitor (p38MAPK inhibitor III) markedly inhibited LPS-induced p65 and C/EBPβ phosphorylation and COX-2 expression. LPS-increased p65 and C/EBPβ binding to the COX-2 promoter region was suppressed in the presence of WMJ-S-001. In addition, WMJ-S-001 suppression of p38MAPK, p65 and C/EBPβ phosphorylation, and subsequent COX-2 expression were restored in cells transfected with a dominant-negative (DN) mutant of MAPK phosphatase-1 (MKP-1). WMJ-S-001 also caused an increase in MKP-1 activity in RAW264.7 macrophages. CONCLUSIONS AND IMPLICATIONS WMJ-S-001 may activate MKP-1, which then dephosphorylates p38MAPK, resulting in a decrease in p65 and C/EBPβ binding to the COX-2 promoter region and COX-2 down-regulation in LPS-stimulated RAW264.7 macrophages. The present study suggests that WMJ-S-001 may be a potential drug candidate for alleviating LPS-associated inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Mobraten K, Haugbro T, Karlstrom E, Kleiveland CR, Lea T. Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line. J Recept Signal Transduct Res 2014; 35:402-9. [PMID: 25418122 DOI: 10.3109/10799893.2014.986744] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Bile acids are recognized as signaling molecules, mediating their effects both through the cell surface receptor TGR5 and the nuclear receptor FXR. After a meal, approximately 95% of the bile acids are transported from terminal ileum and back to the liver via the portal vein, resulting in postprandial elevations of bile acids in blood. During the digestion of fat, components from the microbiota, including LPS, are thought to reach the circulation where it may lead to inflammatory responses after binding TLR4 immune cells. Both LPS and bile acids are present in blood after a high-fat meal; we therefore wanted to study consequences of a possible interplay between TGR5 and TLR4 in human monocytes. METHODS The monocytic cell line U937 stably transfected with the NF-κB reporter plasmid 3x-κB-luc was used as a model system to study the effects of TGR5 and TLR4. Activation of MAP kinases was studied to reveal functional consequences of triggering TGR5 in U937 cells. Effects of TGR5 and TLR4 activation were monitored using NF-κB luciferase assay and by quantification of the pro-inflammatory cytokines IL-6 and IL-8 using ELISA. RESULTS In this study, results show that triggering TGR5 with the specific agonist betulinic acid (BA), and the bile acids CDCA or DCA, activated both the main MAP kinases ERK1/2, p38 and JNK, and the NF-κB signaling pathway. We further demonstrated that co-triggering of TLR4 and TGR5 enhanced the activation of NF-κB and the release of inflammatory cytokines in a synergistic manner compared to triggering of TLR4 alone. CONCLUSIONS Thus, two different and simultaneous events associated with the digestive process coordinately affect the function of human monocytes and contribute to enhanced inflammation. Because elevated levels of circulatory LPS may contribute to the development of insulin resistance, the results from this study suggest that bile acids through the activation of TGR5 may have a role in the development of insulin resistance as well.
Collapse
Affiliation(s)
- Kaia Mobraten
- a Department of Chemistry , Biotechnology and Food Science, Norwegian University of Life Sciences , Ås , Norway and
| | - Tarjei Haugbro
- a Department of Chemistry , Biotechnology and Food Science, Norwegian University of Life Sciences , Ås , Norway and
| | - Ellen Karlstrom
- a Department of Chemistry , Biotechnology and Food Science, Norwegian University of Life Sciences , Ås , Norway and
| | - Charlotte R Kleiveland
- a Department of Chemistry , Biotechnology and Food Science, Norwegian University of Life Sciences , Ås , Norway and.,b Quality and Research Department , Ostfold Hospital Trust , Fredrikstad , Norway
| | - Tor Lea
- a Department of Chemistry , Biotechnology and Food Science, Norwegian University of Life Sciences , Ås , Norway and
| |
Collapse
|
22
|
Sadovskaya I, Souissi A, Souissi S, Grard T, Lencel P, Greene CM, Duin S, Dmitrenok PS, Chizhov AO, Shashkov AS, Usov AI. Chemical structure and biological activity of a highly branched (1→3,1→6)-β-d-glucan from Isochrysis galbana. Carbohydr Polym 2014; 111:139-48. [DOI: 10.1016/j.carbpol.2014.04.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
23
|
Valproic acid suppresses lipopolysaccharide-induced cyclooxygenase-2 expression via MKP-1 in murine brain microvascular endothelial cells. Biochem Pharmacol 2014; 88:372-83. [DOI: 10.1016/j.bcp.2014.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
|
24
|
Moreno-Eutimio MA, Tenorio-Calvo A, Pastelin-Palacios R, Perez-Shibayama C, Gil-Cruz C, López-Santiago R, Baeza I, Fernández-Mora M, Bonifaz L, Isibasi A, Calva E, López-Macías C. Salmonella Typhi OmpS1 and OmpS2 porins are potent protective immunogens with adjuvant properties. Immunology 2013; 139:459-71. [PMID: 23432484 PMCID: PMC3719063 DOI: 10.1111/imm.12093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the causal agent of typhoid fever, a disease that primarily affects developing countries. Various antigens from this bacterium have been reported to be targets of the immune response. Recently, the S. Typhi genome has been shown to encode two porins--OmpS1 and OmpS2--which are expressed at low levels under in vitro culture conditions. In this study, we demonstrate that immunizing mice with either OmpS1 or OmpS2 induced production of specific, long-term antibody titres and conferred protection against S. Typhi challenge; in particular, OmpS1 was more immunogenic and conferred greater protective effects than OmpS2. We also found that OmpS1 is a Toll-like receptor 4 (TLR4) agonist, whereas OmpS2 is a TLR2 and TLR4 agonist. Both porins induced the production of tumour necrosis factor and interleukin-6, and OmpS2 was also able to induce interleukin-10 production. Furthermore, OmpS1 induced the over-expression of MHC II molecules in dendritic cells and OmpS2 induced the over-expression of CD40 molecules in macrophages and dendritic cells. Co-immunization of OmpS1 or OmpS2 with ovalbumin (OVA) increased anti-OVA antibody titres, the duration and isotype diversity of the OVA-specific antibody response, and the proliferation of T lymphocytes. These porins also had adjuvant effects on the antibody response when co-immunized with either the Vi capsular antigen from S. Typhi or inactivated 2009 pandemic influenza A(H1N1) virus [A(H1N1)pdm09]. Taken together, the data indicate that OmpS1 and OmpS2, despite being expressed at low levels under in vitro culture conditions, are potent protective immunogens with intrinsic adjuvant properties.
Collapse
Affiliation(s)
- Mario A Moreno-Eutimio
- Medical Research Unit on Immunochemistry, National Medical Centre Siglo XXI, Mexican Social Security Institute (IMSS), Specialties Hospital, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lisboa RA, Andrade MV, Cunha-Melo JR. Toll-like receptor activation and mechanical force stimulation promote the secretion of matrix metalloproteinases 1, 3 and 10 of human periodontal fibroblasts via p38, JNK and NF-kB. Arch Oral Biol 2013; 58:731-9. [PMID: 23332208 DOI: 10.1016/j.archoralbio.2012.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/25/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are known to play a key role during orthodontic treatment leading to periodontal remodelling and tooth movement. MMPs may be induced by mechanical forces. However, the role played by toll-like receptors (TLRs) in modulating the effects of the mechanical force on periodontal fibroblasts is not known. To investigate the interaction between mechanical force and TLR stimulation, primary cultures of human periodontal fibroblasts were submitted to centrifugation in the presence of LPS and Pam3Cys, which are known TLR-4 and TLR-2 ligands, respectively. The expression of MMP-1, -2, -3, -8, -9, -10 and -13; TIMP (Tissue Inhibitor of Metalloproteinases) -1, -2 and -4; TNF-α (Tumour Necrosis Factor alpha); IL-1β (Interleukin 1 beta); ERK 1/2 (Extracellular Signal-Regulated Kinase 1/2); p38; JNK (c-jun N-terminal Kinase); IRAK1 (Interleukin-1 Receptor-Associated Kinase); and NF-κB (Nuclear Factor kappa B) were measured by antibody array, ELISA and immunoblotting methods. The activation of TLRs associated with centrifugation induced an increase in the secretion of MMPs 1, 3 and 10, with no increase in TNF-α or IL-1β. An increase in the phosphorylation of the MAP kinases p38 and JNK and the transcription factor NF-κB, without an increase in TIMPs was also observed. These findings suggest that the secretion of MMPs by cultured periodontal fibroblasts that is induced by combined TLR activation and mechanical force stimulation is regulated via the p38, JNK and NF-κB pathways. The increased secretion of MMPs by TLR activation may be an important factor that should be considered during orthodontic treatment.
Collapse
Affiliation(s)
- Rodolfo Assis Lisboa
- Department of Pathology, School of Medicine, Universidade Federal de Minas Gerais (UFMG), 30130-100 Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
26
|
High-mobility group box-1 induces proinflammatory cytokines production of Kupffer cells through TLRs-dependent signaling pathway after burn injury. PLoS One 2012. [PMID: 23209806 DOI: 10.1371/journal.] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kupffer cells (KCs) were a significant source of cytokine release during the early stage of severe burns. High mobility group box protein 1 (HMGB1) was recently identified as a new type of proinflammatory cytokine. The ability of HMGB1 to generate inflammatory responses after burn trauma has not been well characterized. KCs were isolated from sham animals and rats with a 30% full-thickness burn, and then were stimulated with increasing concentrations of HMGB1. The levels of Tumor necrosis factor (TNF)-α and interleukin (IL)-1β in culture supernatant were measured by enzyme-linked immunosorbent assay. Northern blot analysis was performed to detect the expressions of TNF-α and IL-1β mRNAs. The activities of p38 MAPK and JNK (by Western blot analysis) as well as NF-κB (by EMSA) in KCs were also examined. As a result, HMGB1 in vitro upregulated expressions of TNF-α and IL-1β of KCs in a dose-dependent manner, and HMGB1 promoted KCs from burn rats to produce significantly more TNF-α and IL-1β proteins than those from sham animals. After harvested from burn rats, KCs were pre-incubated with anti-TLR2 or anti-TLR4 antibody prior to HMGB1 administration. HMGB1 exposure not only significantly increased expressions of TNF-α and IL-1β mRNAs in KCs from burn rats, but also enhanced activities of p38 MAPK, JNK and NF-κB. However, these upregulation events were all reduced by pre-incubation with anti-TLR2 or anti-TLR4 antibody. These results indicate that HMGB1 induces proinflammatory cytokines production of KCs after sever burn injury, and this process might be largely dependent on TLRs-dependent MAPKs/NF-κB signal pathway.
Collapse
|
27
|
Chen XL, Sun L, Guo F, Wang F, Liu S, Liang X, Wang RS, Wang YJ, Sun YX. High-mobility group box-1 induces proinflammatory cytokines production of Kupffer cells through TLRs-dependent signaling pathway after burn injury. PLoS One 2012; 7:e50668. [PMID: 23209806 PMCID: PMC3507775 DOI: 10.1371/journal.pone.0050668] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022] Open
Abstract
Kupffer cells (KCs) were a significant source of cytokine release during the early stage of severe burns. High mobility group box protein 1 (HMGB1) was recently identified as a new type of proinflammatory cytokine. The ability of HMGB1 to generate inflammatory responses after burn trauma has not been well characterized. KCs were isolated from sham animals and rats with a 30% full-thickness burn, and then were stimulated with increasing concentrations of HMGB1. The levels of Tumor necrosis factor (TNF)-α and interleukin (IL)-1β in culture supernatant were measured by enzyme-linked immunosorbent assay. Northern blot analysis was performed to detect the expressions of TNF-α and IL-1β mRNAs. The activities of p38 MAPK and JNK (by Western blot analysis) as well as NF-κB (by EMSA) in KCs were also examined. As a result, HMGB1 in vitro upregulated expressions of TNF-α and IL-1β of KCs in a dose-dependent manner, and HMGB1 promoted KCs from burn rats to produce significantly more TNF-α and IL-1β proteins than those from sham animals. After harvested from burn rats, KCs were pre-incubated with anti-TLR2 or anti-TLR4 antibody prior to HMGB1 administration. HMGB1 exposure not only significantly increased expressions of TNF-α and IL-1β mRNAs in KCs from burn rats, but also enhanced activities of p38 MAPK, JNK and NF-κB. However, these upregulation events were all reduced by pre-incubation with anti-TLR2 or anti-TLR4 antibody. These results indicate that HMGB1 induces proinflammatory cytokines production of KCs after sever burn injury, and this process might be largely dependent on TLRs-dependent MAPKs/NF-κB signal pathway.
Collapse
Affiliation(s)
- Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shimizu J, Izumi T, Suzuki N. Aberrant Activation of Heat Shock Protein 60/65 Reactive T Cells in Patients with Behcet's Disease. Autoimmune Dis 2012; 2012:105205. [PMID: 23082245 PMCID: PMC3467778 DOI: 10.1155/2012/105205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
Behcet's disease (BD) is a multisystemic inflammatory disease and is characterized by recurrent attacks on eyes, brain, skin, and gut. There is evidence that skewed T-cell responses contributed to its pathophysiology in patients with BD. We found that heat shock proteins (HSPs) reactive T cells were prevalent in patients with BD. Here, we summarize current findings on HSP reactive T cells and their contribution to the pathogenesis in patients with BD.
Collapse
Affiliation(s)
- Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Tomoko Izumi
- Department of Immunology and Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
- Department of Medicine, Self-Defense Forces Central Hospital, Tokyo 154-8532, Japan
| | - Noboru Suzuki
- Department of Immunology and Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| |
Collapse
|
29
|
Hassan M, Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O. Hepatitis C virus-host interactions: Etiopathogenesis and therapeutic strategies. World J Exp Med 2012; 2:7-25. [PMID: 24520529 PMCID: PMC3905577 DOI: 10.5493/wjem.v2.i2.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a significant health problem facing the world. This virus infects more than 170 million people worldwide and is considered the major cause of both acute and chronic hepatitis. Persons become infected mainly through parenteral exposure to infected material by blood transfusions or injections with nonsterile needles. Although the sexual behavior is considered as a high risk factor for HCV infection, the transmission of HCV infection through sexual means, is less frequently. Currently, the available treatment for patients with chronic HCV infection is interferon based therapies alone or in combination with ribavirin and protease inhibitors. Although a sustained virological response of patients to the applied therapy, a great portion of patients did not show any response. HCV infection is mostly associated with progressive liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma. Although the focus of many patients and clinicians is sometimes limited to that problem, the natural history of HCV infection (HCV) is also associated with the development of several extrahepatic manifestations including dermatologic, rheumatologic, neurologic, and nephrologic complications, diabetes, arterial hypertension, autoantibodies and cryglobulins. Despite the notion that HCV-mediated extrahepatic manifestations are credible, the mechanism of their modulation is not fully described in detail. Therefore, the understanding of the molecular mechanisms of HCV-induced alteration of intracellular signal transduction pathways, during the course of HCV infection, may offer novel therapeutic targets for HCV-associated both hepatic and extrahepatic manifestations. This review will elaborate the etiopathogenesis of HCV-host interactions and summarize the current knowledge of HCV-associated diseases and their possible therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Hassan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Denis Selimovic
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Abdelouahid El-Khattouti
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Hanan Ghozlan
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Youssef Haikel
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| | - Ola Abdelkader
- Mohamed Hassan, Denis Selimovic, Youssef Haikel, National Institute of Health and Medical Research, U 977, Faculty of Medicine, and Dental Faculty, 11 Rue Humann, 67085 Strasbourg Cedex, France
| |
Collapse
|