1
|
Boonsriroj H, Tangtrongsup S, Arunorat J, Mamom T, Chantawong P. Unveiling HER2 immunoexpression in canine hepatoid gland neoplasms: clinicopathological and morphological associations. Int J Vet Sci Med 2025; 13:1-12. [PMID: 40290666 PMCID: PMC12024500 DOI: 10.1080/23144599.2025.2495522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Canine hepatoid gland neoplasms (HGNs) are significant clinical concerns due to their high prevalence and diverse biological behaviour. Human epidermal growth factor receptor 2 (HER2), a tyrosine kinase receptor implicated in various aspects of tumorigenesis, has been extensively studied in human and animal neoplasms but remains unexplored in HGNs. This study aimed to assess HER2 immunoexpression in canine HGNs and its association with clinicopathological and morphological features. A total of 61 formalin-fixed paraffin-embedded samples, including normal hepatoid glands (n = 10), hepatoid gland adenomas (HGAs, n = 20), hepatoid gland epitheliomas (HGEs, n = 16), and hepatoid gland carcinomas (HGCs, n = 15), were analysed using immunohistochemistry. HER2 expression was scored based on percentage positivity and staining intensity. HER2-positive expression was detected in 50% of HGEs (score 2 + ) and 73.3% of HGCs, with 36.4% of cases scoring 3 + . In contrast, all HGAs and normal hepatoid tissues were HER2-immunonegative. Statistical analysis revealed significant differences in HER2 expression among normal and neoplastic hepatoid glands (p < 0.001). Only in HGCs, HER2 expression was significantly associated with tissue invasion (p = 0.007), mitotic count (p = 0.033), and nuclear pleomorphism (p = 0.007). These findings suggest that HER2 may play a role in the progression of malignant HGNs, particularly HGCs. This preliminary study highlights the potential of HER2 as a diagnostic marker and emphasizes the need for further investigation into its prognostic value and role in HER2-targeted therapy for canine HGCs.
Collapse
Affiliation(s)
- Hassadin Boonsriroj
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
- Animal Diagnostic Laboratory Center, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Sahatchai Tangtrongsup
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapat Arunorat
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanongsak Mamom
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
- Animal Diagnostic Laboratory Center, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Pinkarn Chantawong
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Mizuno T, Kato M, Tsukui T, Igase M. Development of an in vitro assay for screening programmed death receptor-1/programmed cell death ligand 1 monoclonal antibody therapy in dogs. Vet Immunol Immunopathol 2024; 274:110792. [PMID: 38878679 DOI: 10.1016/j.vetimm.2024.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024]
Abstract
Immunomodulatory antibody drugs that modulate the function of immune checkpoint molecules, such as programmed death receptor-1 (PD-1) and programmed cell death ligand 1 (PD-L1), have been established as new cancer treatments in human medicine. In recent years, there have also been reports on antibodies that inhibit immune checkpoint molecules in dogs, and clinical trials using such antibodies for canine cancer have been gradually increasing in number. Because inhibitory antibodies restore T-cell function by inhibiting the binding of PD-1 on T cells and its ligand PD-L1, the quality of antibody function has been evaluated using activated T cells or peripheral blood mononuclear cells isolated from healthy dogs; however, the assays and dogs used significantly vary. Therefore, in the present study, we developed a reporter gene assay using reporter cells (Jurkat/NFATluc/cPD1) and effector cells (CTAC/OKT3/cPDL1). Jurkat/NFATluc/cPD1 were generated by introducing both of the NFAT-responsive luciferase gene as a marker of T-cell signaling and canine PD-1, into a human T lymphoid cell line, Jurkat. CTAC/OKT3/cPDL1 were generated by introducing single-chain FV (scFV) of anti-human CD3 antibody (OKT3) and canine PD-L1 into a canine thyroid carcinoma cell line, CTAC. Ligation of PD-1 on Jurkat/NFATluc/cPD1 via binding of PD-L1 on CTAC/OKT3/cPDL1 suppressed NFAT luciferase activity induced by CD3 ligation by scFV of OKT3. The addition of anti-canine PD-1 and PD-L1 antibodies, both of which were previously developed in our laboratory, restored this suppression with high sensitivity, although the anti-human PD-L1 antibody atezolizumab induced a very weak restoration. This assay is an useful method for functionally evaluating the inhibition of canine PD-1 and PD-L1 binding.
Collapse
Affiliation(s)
- Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate school of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Masahiro Kato
- Nippon Zenyaku Kogyo Co., Ltd., Koriyama, Fukushima, Japan
| | | | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate school of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
3
|
Razavirad A, Rismanchi S, Mortazavi P, Muhammadnejad A. Canine Mammary Tumors as a Potential Model for Human Breast Cancer in Comparative Oncology. Vet Med Int 2024; 2024:9319651. [PMID: 38766503 PMCID: PMC11101259 DOI: 10.1155/2024/9319651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Clinical and molecular similarities between canine mammary tumors (CMTs) and human breast cancer (HBC) propel scientists to further study their application in comparative oncology as a model for human breast cancer. In total, 64 canine mammary tumors were selected to study the most common markers, which are applicable for human breast cancer treatment, including estrogen and progesterone receptors (ER and PR), human epidermal growth factor (HER2/neu), Ki67, and cyclooxygenase 2 (Cox2). Immunohistochemistry (IHC) was used to assess the protein expression. The Veterinary Nottingham Prognostic Index (Vet-NPI) was also computed. Moreover, univariate and multivariable Cox proportional hazard analyses were applied to estimate hazard ratios (HRs). The results demonstrated that Ki67 was strongly expressed in the triple-negative tumors, and Ki67 protein expression continuously increased over the increase of Cox2 protein expression (p < 0.001). Further analysis revealed a significant difference among canine mammary subtypes and Vet-NPI, in which triple-negative tumors displayed the highest mean score compared to other subtypes (p < 0.001). In addition, the multivariable analysis revealed that the regional mastectomy procedure (adjusted HR = 2.78 (1.14-6.8)), the triple-negative tumors (adjusted HR = 48.08 (7.74-298.8)), strong Ki67 protein expression group (adjusted HR = 7.88 (2.02-30.68)), and strong Cox2 protein expression group (adjusted HR = 29.35 (5.18-166.4)) demonstrated significantly lower disease-free survival rates compared to other corresponding groups. Overall, canine mammary tumors showed strong similarities to human breast cancer in terms of clinical and molecular aspects; therefore, they could be suggested as a model for human breast cancer in comparative oncology.
Collapse
Affiliation(s)
- Amirhossein Razavirad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Rismanchi
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Pejman Mortazavi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
5
|
Gherman LM, Chiroi P, Nuţu A, Bica C, Berindan-Neagoe I. Profiling canine mammary tumors: A potential model for studying human breast cancer. Vet J 2024; 303:106055. [PMID: 38097103 DOI: 10.1016/j.tvjl.2023.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Despite all clinical progress recorded in the last decades, human breast cancer (HBC) remains a major challenge worldwide both in terms of its incidence and its management. Canine mammary tumors (CMTs) share similarities with HBC and represent an alternative model for HBC. The utility of the canine model in studying HBC relies on their common features, include spontaneous development, subtype classification, mutational profile, alterations in gene expression profile, and incidence/prevalence. This review describes the similarities between CMTs and HBC regarding genomic landscape, microRNA expression alteration, methylation, and metabolomic changes occurring during mammary gland carcinogenesis. The primary purpose of this review is to highlight the advantages of using the canine model as a translational animal model for HBC research and to investigate the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Luciana-Madalina Gherman
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Experimental Center of Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nuţu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Ke CH, Lin CN, Lin CS. Hormone, Targeted, and Combinational Therapies for Breast Cancers: From Humans to Dogs. Int J Mol Sci 2024; 25:732. [PMID: 38255807 PMCID: PMC10815110 DOI: 10.3390/ijms25020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) is the most frequent cancer in women. In female dogs, canine mammary gland tumor (CMT) is also the leading neoplasm. Comparative oncology indicates similar tumor behaviors between human BCs (HBCs) and CMTs. Therefore, this review summarizes the current research in hormone and targeted therapies and describes the future prospects for HBCs and CMTs. For hormone receptor-expressing BCs, the first medical intervention is hormone therapy. Monoclonal antibodies against Her2 are proposed for the treatment of Her2+ BCs. However, the major obstacle in hormone therapy or monoclonal antibodies is drug resistance. Therefore, increasing alternatives have been developed to overcome these difficulties. We systemically reviewed publications that reported inhibitors targeting certain molecules in BC cells. The various treatment choices for humans decrease mortality in females with BC. However, the development of hormone or targeted therapies in veterinary medicine is still limited. Even though some clinical trials have been proposed, severe side effects and insufficient case numbers might restrict further explorations. This difficulty highlights the urgent need to develop updated hormone/targeted therapy or novel immunotherapies. Therefore, exploring new therapies to provide more precise use in dogs with CMTs will be the focus of future research. Furthermore, due to the similarities shared by humans and dogs, well-planned prospective clinical trials on the use of combinational or novel immunotherapies in dogs with CMTs to obtain solid results for both humans and dogs can be reasonably anticipated in the future.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Files R, Santos C, Queiroga FL, Silva F, Delgado L, Pires I, Prada J. Investigating Cox-2 and EGFR as Biomarkers in Canine Oral Squamous Cell Carcinoma: Implications for Diagnosis and Therapy. Curr Issues Mol Biol 2024; 46:485-497. [PMID: 38248333 PMCID: PMC10814971 DOI: 10.3390/cimb46010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common and highly aggressive dog tumor known for its local invasiveness and metastatic potential. Understanding the molecular mechanisms driving the development and progression of OSCC is crucial for improving diagnostic and therapeutic strategies. Additionally, spontaneous oral squamous cell carcinomas in dogs are an excellent model for studying human counterparts. In this study, we aimed to investigate the significance of two key molecular components, Cox-2 and EGFR, in canine OSCC. We examined 34 tumor sections from various dog breeds to assess the immunoexpression of Cox-2 and EGFR. Our findings revealed that Cox-2 was highly expressed in 70.6% of cases, while EGFR overexpression was observed in 44.1%. Cox-2 overexpression showed association with histological grade of malignancy (HGM) (p = 0.006) and EGFR with vascular invasion (p = 0.006). COX-2 and EGFR concurrent expression was associated with HGM (p = 0.002), as well as with the presence of vascular invasion (p = 0.002). These data suggest that Cox-2 and EGFR could be promising biomarkers and potential therapeutic targets, opening avenues for developing novel treatment strategies for dogs affected by OSCC. Further studies are warranted to delve deeper into these findings and translate them into clinical practice.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Catarina Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Felisbina L. Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, 4200-427 Porto, Portugal
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Pathology Department, INNO Serviços Especializados em Veterinária, 4710-503 Braga, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Vazquez E, Lipovka Y, Cervantes-Arias A, Garibay-Escobar A, Haby MM, Queiroga FL, Velazquez C. Canine Mammary Cancer: State of the Art and Future Perspectives. Animals (Basel) 2023; 13:3147. [PMID: 37835752 PMCID: PMC10571550 DOI: 10.3390/ani13193147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Mammary cancer is the most frequently diagnosed neoplasia in women and non-spayed female dogs and is one of the leading causes of death in both species. Canines develop spontaneous mammary tumors that share a significant number of biological, clinical, pathological and molecular characteristics with human breast cancers. This review provides a detailed description of the histological, molecular and clinical aspects of mammary cancer in canines; it discusses risk factors and currently available diagnostic and treatment options, as well as remaining challenges and unanswered questions. The incidence of mammary tumors is highly variable and is impacted by biological, pathological, cultural and socioeconomic factors, including hormonal status, breed, advanced age, obesity and diet. Diagnosis is mainly based on histopathology, although several efforts have been made to establish a molecular classification of canine mammary tumors to widen the spectrum of treatment options, which today rely heavily on surgical removal of tumors. Lastly, standardization of clinical study protocols, development of canine-specific biological tools, establishment of adequate dog-specific disease biomarkers and identification of targets for the development of new therapies that could improve survival and have less adverse effects than chemotherapy are among the remaining challenges.
Collapse
Affiliation(s)
- Eliza Vazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Alejandro Cervantes-Arias
- Department of Small Animal Medicine and Surgery, Small Animal Teaching Hospital, The National University of Mexico (UNAM), Ciudad Universitaria, Investigación Científica 3000, Coyoacán, Mexico City 04360, Mexico;
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Michelle M. Haby
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Felisbina Luisa Queiroga
- CECAV—Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| |
Collapse
|
9
|
Canine mammary carcinoma: current therapeutic targets and future perspectives – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Canine mammary carcinoma (CMC) is the most common neoplasm in bitches, and it shares many biological similarities with breast cancer in humans. Drug resistance, high epigenetic mutations, and relapse rates are among the challenges which eventually urge the need for a veterinary oncologist to discover new therapeutic approaches that are more effective and safer. Therefore, in this review, we also cover the current therapeutic strategies from human medicine for the future perspectives of tumor immunotherapy in veterinary medicine. These strategies have great potential to be employed as therapeutic or prophylactic options due to their ability to modulate a specific and potent immune response against CMC. As we acquire a better understanding of canine tumor immunology, we can move towards a brighter prognosis. Additionally, we report on the recent successful studies in breast cancer that may benefit canines as well.
Collapse
|
10
|
Nanamiya R, Ohishi T, Suzuki H, Mizuno T, Yoshikawa T, Asano T, Tanaka T, Kaneko MK, Kato Y. Defucosylated Mouse-Dog Chimeric Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody (H77Bf) Exerts Antitumor Activities in Mouse Xenograft Models of Canine Osteosarcoma. Monoclon Antib Immunodiagn Immunother 2023; 42:27-33. [PMID: 36399552 DOI: 10.1089/mab.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) has been studied in many human cancer types, and its overexpression and/or gene mutation contribute to the poor prognosis. Therefore, HER2 is an important therapeutic target in various cancer types, including breast and gastric cancers. We previously developed an anti-HER2 monoclonal antibody (mAb), H2Mab-77 (mouse IgG1, kappa), which detects HER2 and dog HER2 (dHER2) with high sensitivity and specificity. In this study, we produced a defucosylated mouse-dog chimeric anti-HER2 mAb (H77Bf), and investigated the reactivity against canine osteosarcoma D-17 cells by flow cytometry. Furthermore, we showed that H77Bf exerted antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against D-17 cells in vitro and exhibited the potent antitumor activity in vivo. These results suggest that H77Bf exerts antitumor effects against dHER2-expressing canine tumors and could be valuable as part of an antibody treatment regimen for them.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
11
|
Altamura G, Borzacchiello G. Anti-EGFR monoclonal antibody Cetuximab displays potential anti-cancer activities in feline oral squamous cell carcinoma cell lines. Front Vet Sci 2022; 9:1040552. [PMID: 36467642 PMCID: PMC9712204 DOI: 10.3389/fvets.2022.1040552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/15/2023] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a malignant tumor characterized by an aggressive behavior and poor prognosis, for which no fully effective therapies are available. Studies of comparative oncology suggest that epidermal growth factor receptor (EGFR) may be a therapeutic target in FOSCC, similarly to human head and neck SCC (HNSCC), where the use of anti-EGFR monoclonal antibody Cetuximab has entered the clinical practice. The aim of this study was to assess the efficacy of Cetuximab in three validated preclinical models of FOSCC (SCCF1, SCCF2, SCCF3). Sequencing of tyrosine kinase domain of EGFR in the cell lines revealed a wild-type genotype, excluding the presence of activating mutations. Western blotting experiments demonstrated that Cetuximab inhibited activation of EGFR and its downstream kinase Akt in SCCF1, SCCF2 and SCCF3 along with HNSCC cell line CAL 27 included as control. Importantly, CCK-8 and trypan blue exclusion assays revealed that treatment with Cetuximab caused a decrease in cell proliferation and cell viability in all cell lines, with a general dose- and time-dependent trend. Cell death induced by Cetuximab was associated with cleavage of PARP, indicating occurrence of apoptosis. Taken together, our data suggest that Cetuximab exerts potential anti-cancer activities in FOSCC, paving the way for future translational studies aimed at assessing its employment in the therapy of this lethal cancer of cats.
Collapse
Affiliation(s)
| | - Giuseppe Borzacchiello
- General Pathology and Anatomic Pathology Section, Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Molecular Characterization of CF33 Canine Cell Line and Evaluation of Its Ability to Respond against Infective Stressors in Sight of Anticancer Approaches. Vet Sci 2022; 9:vetsci9100543. [PMID: 36288156 PMCID: PMC9610178 DOI: 10.3390/vetsci9100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Canine mammary cancer is very common and has many similarities with human breast cancer. Risk factors, physiological and pathological behaviors, and the clinical course in dogs are very similar to humans. Several molecular similarities have also been reported, such as overexpression of EGF, proliferation markers, metalloproteinase and cyclooxygenase, TP53 mutations, and CXCR4/SDF1 axis activation. These common characteristics make these breast tumors resistant to conventional therapies. It is therefore necessary to study therapeutic alternatives. Cell lines could be helpful to test in vitro immunomodulant anti-cancer therapies, allowing a reduction of laboratory animals’ involvement in the preliminary tests and achieving results in a shorter time. Although the canine mammary carcinoma cell line CF33 has been widely used in many studies on dog mammary cancer, characterization of its gene expression profile and of the influence of infective stressors of this cell line is poor. Our study shows the interaction of CF33 and Salmonella Typhimurium (ST) as an infective stressor, indicating that these cells may represent an in vitro model for assessing novel therapeutic approaches using bacteria. Abstract Spontaneous mammary tumors are the most frequent neoplasms in bitches and show similarities with human breast cancer in risk factors, clinical course, and histopathology. The poor prognosis of some cancer subtypes, both in human and dog, demands more effective therapeutic approaches. A possible strategy is the new anticancer therapy based on immune response modulation through bacteria or their derivatives on canine mammary carcinoma cell lines. The aim of the present study was to analyze the CF33 cell line in terms of basal expression of immune innate genes, CXCR4 expression, and interaction with infectious stressors. Our results highlight that CF33 maintains gene expression parameters typical of mammary cancer, and provides the basal gene expression of CF33, which is characterized by overexpression of CXCR4, CD44, RAD51, LY96, and a non-continuous expression of TP53 and PTEN. No mutations appeared in the CXCR4 gene until the 58th passage; this may represent important information for studying the CXCR4 pathway as a therapeutic target. Moreover, the CF33 cell line was shown to be able to interact with Salmonella Typhimurium (ST) (an infective stressor), indicating that these cells could be used as an in vitro model for developing innovative therapeutic approaches involving bacteria.
Collapse
|
13
|
Kaszak I, Witkowska-Piłaszewicz O, Domrazek K, Jurka P. The Novel Diagnostic Techniques and Biomarkers of Canine Mammary Tumors. Vet Sci 2022; 9:526. [PMID: 36288138 PMCID: PMC9610006 DOI: 10.3390/vetsci9100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
Canine mammary tumors (CMTs) are considered a serious clinical problem in older bitches. Due to the high malignancy rate and poor prognosis, an early diagnosis is essential. This article is a summary of novel diagnostic techniques as well as the main biomarkers of CMTs. So far, CMTs are detected only when changes in mammary glands are clinically visible and surgical removal of the mass is the only recommended treatment. Proper diagnostics of CMT is especially important as they represent a very diverse group of tumors and therefore different treatment approaches may be required. Recently, new diagnostic options appeared, like a new cytological grading system of CMTs or B-mode ultrasound, the Doppler technique, contrast-enhanced ultrasound, and real-time elastography, which may be useful in pre-surgical evaluation. However, in order to detect malignancies before macroscopic changes are visible, evaluation of serum and tissue biomarkers should be considered. Among them, we distinguish markers of the cell cycle, proliferation, apoptosis, metastatic potential and prognosis, hormone receptors, inflammatory and more recent: metabolomic, gene expression, miRNA, and transcriptome sequencing markers. The use of a couple of the above-mentioned markers together seems to be the most useful for the early diagnosis of neoplastic diseases as well as to evaluate response to treatment, presence of tumor progression, or further prognosis. Molecular aspects of tumors seem to be crucial for proper understanding of tumorigenesis and the application of individual treatment options.
Collapse
Affiliation(s)
- Ilona Kaszak
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Kinga Domrazek
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Jurka
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
14
|
Aayush A, Darji S, Dhawan D, Enstrom A, Broman MM, Idrees MT, Kaimakliotis H, Ratliff T, Knapp D, Thompson D. Targeted elastin-like polypeptide fusion protein for near-infrared imaging of human and canine urothelial carcinoma. Oncotarget 2022; 13:1004-1016. [PMID: 36082359 PMCID: PMC9447490 DOI: 10.18632/oncotarget.28271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Cystoscopic visualization of bladder cancer is an essential method for initial bladder cancer detection and diagnosis, transurethral resection, and monitoring for recurrence. We sought to develop a new intravesical imaging agent that is more specific and sensitive using a polypeptide based NIR (near-infrared) probe designed to detect cells bearing epidermal growth factor receptors (EGFR) that are overexpressed in 80% of urothelial carcinoma (UC) cases. The NIR imaging agent consisted of an elastin like polypeptide (ELP) fused with epidermal growth factor (EGF) and conjugated to Cy5.5 to give Cy5.5-N24-EGF as a NIR contrast agent. In addition to evaluation in human cells and tissues, the agent was tested in canine cell lines and tissue samples with naturally occurring invasive UC. Flow cytometry and confocal microscopy were used to test cell-associated fluorescence of the probe in T24 human UC cells, and in K9TCC-SH (high EGFR expression) and K9TCC-Original (low EGF expression) canine cell lines. The probe specifically engages these cells through EGFR within 15 min of incubation and reached saturation within a clinically relevant 1 h timeframe. Furthermore, ex vivo studies with resected canine and human bladder tissues showed minimal signal from normal adjacent tissue and significant NIR fluorescence labeling of tumor tissue, in good agreement with our in vitro findings. Differential expression of EGFR ex vivo was revealed by our probe and confirmed by anti-EGFR immunohistochemical staining. Taken together, our data suggests Cy5.5-ELP-EGF is a NIR probe with improved sensitivity and selectivity towards BC that shows excellent potential for clinical translation.
Collapse
Affiliation(s)
- Aayush Aayush
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Saloni Darji
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander Enstrom
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Meaghan M. Broman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Muhammad T. Idrees
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Hristos Kaimakliotis
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy Ratliff
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Deborah Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - David Thompson
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Suzuki H, Ohishi T, Asano T, Tanaka T, Saito M, Mizuno T, Yoshikawa T, Kawada M, Kaneko M, Kato Y. Defucosylated mouse‑dog chimeric anti‑HER2 monoclonal antibody exerts antitumor activities in mouse xenograft models of canine tumors. Oncol Rep 2022; 48:154. [PMID: 35856438 PMCID: PMC9350980 DOI: 10.3892/or.2022.8366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been reported in various types of cancer, including breast, gastric, lung, colorectal and pancreatic cancer. A humanized anti-HER2 monoclonal antibody (mAb), trastuzumab, has been shown to improve survival of patients in HER2-positive breast and gastric cancer. An anti-HER2 mAb, H2Mab-77 (mouse IgG1, kappa) was previously developed. In the present study, a defucosylated version of mouse-dog chimeric anti-HER2 mAb (H77Bf) was generated. H77Bf possesses a high binding-affinity [a dissociation constant (KD): 7.5×10−10 M, as determined by flow cytometric analysis] for dog HER2-overexpressed CHO-K1 (CHO/dHER2) cells. H77Bf highly exerted antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) for CHO/dHER2 cells by canine mononuclear cells and complement, respectively. Moreover, administration of H77Bf significantly suppressed the development of CHO/dHER2 ×enograft tumor in mice compared with the control dog IgG. H77Bf also possesses a high binding-affinity (KD: 7.2×10−10 M) for a canine mammary gland tumor cell line (SNP), and showed high ADCC and CDC activities for SNP cells. Intraperitoneal administration of H77Bf in mouse xenograft models of SNP significantly suppressed the development of SNP xenograft tumors compared with the control dog IgG. These results indicated that H77Bf exerts antitumor activities against dHER2-positive canine cancers, and could be valuable treatment regimen for canine cancers.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753‑8515, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan
| | - Mika Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
16
|
Tanaka T, Ohishi T, Saito M, Suzuki H, Kaneko MK, Kawada M, Kato Y. Defucosylated Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Exerted Antitumor Activities in Mouse Xenograft Models of Canine Mammary Gland Tumor. Monoclon Antib Immunodiagn Immunother 2022; 41:142-149. [PMID: 35666554 DOI: 10.1089/mab.2022.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to tumor malignancy through gene amplification and/or protein overexpression. In our previous study, we developed an anti-human EGFR (hEGFR) monoclonal antibody, clone EMab-134 (mouse IgG1, kappa), which specifically detects both hEGFR and dog EGFR (dEGFR). The defucosylated mouse IgG2a version of EMab-134 (134-mG2a-f) exhibits antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed Chinese hamster ovary-K1 (CHO/dEGFR) cells and antitumor activities in mouse xenografts of CHO/dEGFR cells. In this study, the reactivity of 134-mG2a-f against a canine mammary gland tumor cell line (SNP) was examined by flow cytometry and immunocytochemistry. Furthermore, 134-mG2a-f highly exerted ADCC and CDC for SNP. The administration of 134-mG2a-f significantly suppressed the SNP xenograft growth. These results suggest that 134-mG2a-f exerts antitumor effects against dEGFR-expressing canine mammary gland tumors, and could be valuable as part of an antibody treatment regimen for them.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Li G, Suzuki H, Takei J, Asano T, Sano M, Tanaka T, Harada H, Mizuno T, Ohishi T, Kawada M, Kaneko MK, Kato Y. Antitumor Activities in Mouse Xenograft Models of Canine Mammary Gland Tumor by Defucosylated Mouse-Dog Chimeric Anti-Epidermal Growth Factor Receptor Antibody (E134Bf). Monoclon Antib Immunodiagn Immunother 2022; 41:53-58. [PMID: 35471048 DOI: 10.1089/mab.2021.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to tumor malignancy through gene amplification and/or protein overexpression. In our previous study, we developed an anti-human EGFR (hEGFR) monoclonal antibody (mAb), clone EMab-134 (mouse IgG1, kappa), which specifically detects both hEGFR and dog EGFR (dEGFR). The defucosylated mouse IgG2a version of EMab-134 exhibits antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells and antitumor activities in mouse xenografts of CHO/dEGFR cells. In this study, we produced a defucosylated mouse-dog chimeric anti-EGFR mAb (E134Bf), and the reactivity of E134Bf against a canine mammary gland tumor cell line (SNP) was examined by flow cytometry. Furthermore, E134Bf highly exerted ADCC and CDC for SNP cells. The administration of E134Bf with canine mononuclear cells significantly suppressed the SNP xenograft growth. These results suggest that E134Bf exerts antitumor effects against dEGFR-expressing canine mammary gland tumors and could be valuable as part of an antibody treatment regimen for them.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Valdivia G, Alonso-Diez Á, Alonso-Miguel D, Suárez M, García P, Ortiz-Díez G, Pérez-Alenza MD, Peña L. Epitheliosis is a histopathological finding associated with malignancy and poor prognosis in dogs with mammary tumors. Vet Pathol 2022; 59:747-758. [PMID: 35451346 DOI: 10.1177/03009858221092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Canine mammary epitheliosis (ME) is a poorly studied dysplasia that may have premalignant potential. In this study, the clinicopathological relevance of ME was prospectively studied in 90 female dogs with mammary tumors (MTs) that underwent radical mastectomy. ME distribution, extent, and coexistence with benign and malignant MTs were evaluated for each case (505 mammary glands). ME was macroscopically undetectable and was present in 47/90 (52%) cases, frequently bilateral. In dogs with malignant MTs and ME, diffuse ME throughout the mammary chain was present in 10/39 (26%) cases. A histological ME-carcinoma transition was evident in certain histotypes. By immunohistochemistry (AE1/AE3, cytokeratin 14 [CK-14], CK-8/18, vimentin, calponin, p63, Ki-67, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2), ME was a slow-growing, triple-negative process with a strong predominance of basal-like nonmyoepithelial cells. ME was associated with older dogs (P = .016), malignant tumors (P = .044), worse clinical stages (P = .013), lymph node metastasis (LNM, P = .021), higher histological grade tumors (P = .035), and shorter overall survival (OS) in univariate analysis (P = .012). Interestingly, ME was distantly located to the malignant tumor in most cases (P = .007). In multivariate analyses, LNM (P = .005), histological grade (P = .006), and tumor size (P = .006) were independent predictors of OS. For the pathologist, the observation of ME should be clearly stated in the MT biopsy report to alert the surgeon/oncologist. Given the differences between canine ME and its human histopathological counterpart (atypical ductal hyperplasia), "epitheliosis" should remain the preferred term for the dog.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laura Peña
- Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
19
|
Goto N, Suzuki H, Ohishi T, Harakawa A, Li G, Saito M, Takei J, Tanaka T, Asano T, Sano M, Kawada M, Kaneko MK, Kato Y. Antitumor Activities in Mouse Xenograft Models of Canine Fibroblastic Tumor by Defucosylated Anti-Epidermal Growth Factor Receptor Monoclonal Antibody. Monoclon Antib Immunodiagn Immunother 2022; 41:67-73. [PMID: 35377239 DOI: 10.1089/mab.2021.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is involved in tumor malignancy through gene amplification and/or protein overexpression. An anti-human EGFR (hEGFR) monoclonal antibody (clone EMab-134), which explicitly detects hEGFR and dog EGFR (dEGFR), was previously developed. The defucosylated mouse IgG2a version of EMab-134 (134-mG2a-f) exhibits antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells and antitumor activities in mouse xenografts of CHO/dEGFR cells. In this study, it was shown that 134-mG2a-f reacts with a canine fibroblastic tumor cell line (A-72) using flow cytometry and immunocytochemistry. Furthermore, 134-mG2a-f exerted ADCC and CDC on A-72 cell line. The administration of 134-mG2a-f significantly inhibited the A-72 xenograft growth. These results suggest that 134-mG2a-f exerts antitumor effects on dEGFR-expressing canine fibroblastic tumors.
Collapse
Affiliation(s)
- Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Akiko Harakawa
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
20
|
Nanamiya R, Takei J, Ohishi T, Asano T, Tanaka T, Sano M, Nakamura T, Yanaka M, Handa S, Tateyama N, Harigae Y, Saito M, Suzuki H, Kawada M, Kaneko MK, Kato Y. Defucosylated Anti-Epidermal Growth Factor Receptor Monoclonal Antibody (134-mG 2a-f) Exerts Antitumor Activities in Mouse Xenograft Models of Canine Osteosarcoma. Monoclon Antib Immunodiagn Immunother 2022; 41:1-7. [PMID: 35225663 DOI: 10.1089/mab.2021.0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein. Although EGFR is physiologically essential in normal cells, it contributes to tumor malignancy through gene amplification and/or protein overexpression, which augment signaling cascades in tumor cells. We previously developed an anti-human EGFR (hEGFR) monoclonal antibody (mAb), EMab-134 (mouse IgG1, kappa), which detects hEGFR and dog EGFR (dEGFR) with high sensitivity and specificity. The mouse IgG2a version of EMab-134 (134-mG2a) has antitumor effects toward mouse xenografts of hEGFR-expressing oral squamous cell carcinomas. Furthermore, 134-mG2a-f, the defucosylated version of 134-mG2a, exhibits antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells and antitumor activities in mouse xenografts of CHO/dEGFR cells. Herein, the reactivity of 134-mG2a-f against canine cancer cells with endogenous dEGFR was first examined by flow cytometry and immunocytochemistry. In vitro analysis demonstrated that 134-mG2a-f highly exerted ADCC and CDC for a canine osteosarcoma cell line, D-17, which expresses endogenous dEGFR. Moreover, in vivo administration of 134-mG2a-f significantly suppressed the development of D-17 compared with the results in response to control mouse IgG. These results suggest that 134-mG2a-f exerts antitumor effects against dEGFR-expressing canine cancers, and could be valuable as part of an antibody treatment regimen for them.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Harigae
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Li G, Ohishi T, Kaneko MK, Takei J, Mizuno T, Kawada M, Saito M, Suzuki H, Kato Y. Defucosylated Mouse-Dog Chimeric Anti-EGFR Antibody Exerts Antitumor Activities in Mouse Xenograft Models of Canine Tumors. Cells 2021; 10:cells10123599. [PMID: 34944112 PMCID: PMC8700185 DOI: 10.3390/cells10123599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to tumor malignancy via gene amplification and protein overexpression. Previously, we developed an anti-human EGFR (hEGFR) monoclonal antibody, namely EMab-134, which detects hEGFR and dog EGFR (dEGFR) with high sensitivity and specificity. In this study, we produced a defucosylated mouse–dog chimeric anti-EGFR monoclonal antibody, namely E134Bf. In vitro analysis revealed that E134Bf highly exerted antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against a canine osteosarcoma cell line (D-17) and a canine fibroblastic cell line (A-72), both of which express endogenous dEGFR. Moreover, in vivo administration of E134Bf significantly suppressed the development of D-17 and A-72 compared with the control dog IgG in mouse xenografts. These results indicate that E134Bf exerts antitumor effects against dEGFR-expressing canine cancers and could be valuable as part of an antibody treatment regimen for dogs.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Japan;
- Correspondence: (T.O.); (Y.K.); Tel.: +81-55-924-0601 (T.O.); +81-22-717-8207 (Y.K.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan;
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Japan;
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
- Correspondence: (T.O.); (Y.K.); Tel.: +81-55-924-0601 (T.O.); +81-22-717-8207 (Y.K.)
| |
Collapse
|
22
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
23
|
Klingemann H. Immunotherapy for Dogs: Still Running Behind Humans. Front Immunol 2021; 12:665784. [PMID: 34421888 PMCID: PMC8374065 DOI: 10.3389/fimmu.2021.665784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Despite all good intentions, dogs are still running behind humans in effective cancer immunotherapies. The more effective treatments in humans, like infusions of CAR-T and NK-cells are not broadly pursued for canines due to significant costs, the rather complicated logistics and the lack of targetable surface antigens. Monoclonal antibodies are challenging to develop considering the limited knowledge about canine target antigens and about their mode of action. Although immunogenic vaccines could be less costly, this approach is hampered by the fact that cancer by itself is immuno-suppressive and any preceding chemotherapy may suppress any clinically meaningful immune response. This review - rather than providing a comprehensive listing of all available immunotherapies for dogs, aims at pointing out the issues that are holding back this field but which hopefully can be addressed so that dogs can "catch up" with what is available to humans.
Collapse
|
24
|
Tateyama N, Nanamiya R, Ohishi T, Takei J, Nakamura T, Yanaka M, Hosono H, Saito M, Asano T, Tanaka T, Sano M, Kawada M, Kaneko MK, Kato Y. Defucosylated Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 134-mG 2a-f Exerts Antitumor Activities in Mouse Xenograft Models of Dog Epidermal Growth Factor Receptor-Overexpressed Cells. Monoclon Antib Immunodiagn Immunother 2021; 40:177-183. [PMID: 34424762 DOI: 10.1089/mab.2021.0022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a type I transmembrane protein, which is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. EGFR is a crucial mediator of cell growth and differentiation and forms homodimers or heterodimers with other HER family members to activate downstream signaling cascades. We previously established an anti-human EGFR (hEGFR) monoclonal antibody (mAb), clone EMab-134 (mouse IgG1), by immunizing mice with the ectodomain of hEGFR. In this study, the subclass of EMab-134 was converted from IgG1 to IgG2a (134-mG2a) and further defucosylated (134-mG2a-f) to facilitate antibody-dependent cellular cytotoxicity (ADCC). Although 134-mG2a-f was developed against hEGFR, it was shown to cross-react with dog EGFR (dEGFR) using flow cytometry. The dissociation constant (KD) of 134-mG2a-f against dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells was determined by flow cytometry to be 3.3 × 10-9 M, indicating that 134-mG2a-f possesses a high binding affinity to dEGFR. Analysis in vitro revealed that 134-mG2a-f contributed to high levels of ADCC and complement-dependent cytotoxicity (CDC) in experiments targeting CHO/dEGFR cells. Furthermore, the in vivo administration of 134-mG2a-f significantly inhibited the development of CHO/dEGFR in comparison with the results observed in response to control mouse IgG. Taken together, the findings of this study demonstrate that 134-mG2a-f could be useful as part of a therapeutic regimen for dEGFR-expressing canine cancers.
Collapse
Affiliation(s)
- Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
25
|
Doyle HA, Gee RJ, Masters TD, Gee CR, Booth CJ, Peterson-Roth E, Koski RA, Helfand SC, Price L, Bascombe D, Jackson D, Ho R, Post GR, Mamula MJ. Vaccine-induced ErbB (EGFR/HER2)-specific immunity in spontaneous canine cancer. Transl Oncol 2021; 14:101205. [PMID: 34419682 PMCID: PMC8379704 DOI: 10.1016/j.tranon.2021.101205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022] Open
Abstract
Spontaneous dog cancers closely resemble human cancer. Dogs with EGFR associated tumors were immunized with an EGFR/HER2 peptide vaccine. EGFR peptide vaccinated dogs developed anti-EGFR/HER2 antibodies. Vaccinated dogs have anti-EGFR antibody and T cells infiltrating tumors. Vaccinated dogs with osteosarcoma had tumor regression and increased survival.
Epidermal Growth Factor Receptor (EGFR) is overexpressed on a number of human cancers, and often is indicative of a poor outcome. Treatment of EGFR/HER2 overexpressing cancers includes monoclonal antibody therapy (cetuximab/trastuzumab) either alone or in conjunction with other standard cancer therapies. While monoclonal antibody therapy has been proven to be efficacious in the treatment of EGFR/HER2 overexpressing tumors, drawbacks include the lack of long-lasting immunity and acquired resistance to monoclonal therapy. An alternative approach is to induce a polyclonal anti-EGFR/HER2 tumor antigen response by vaccine therapy. In this phase I/II open-label study, we examined anti-tumor immunity in companion dogs with spontaneous EGFR expressing tumors. Canine cancers represent an outbred population in which the initiation, progression of disease, mutations and growth factors closely resemble that of human cancers. Dogs with EGFR expressing tumors were immunized with a short peptide of the EGFR extracellular domain with sequence homology to HER2. Serial serum analyses demonstrated high titers of EGFR/HER2 binding antibodies with biological activity similar to that of cetuximab and trastuzumab. Canine antibodies bound both canine and human EGFR on tumor cell lines and tumor tissue. CD8 T cells and IgG deposition were evident in tumors from immunized dogs. The antibodies inhibited EGFR intracellular signaling and inhibited tumor growth in vitro. Additionally, we illustrate objective responses in reducing tumors at metastatic sites in host animals. The data support the approach of amplifying anti-tumor immunity that may be relevant in combination with other immune modifying therapies such as checkpoint inhibitors.
Collapse
Key Words
- Abbreviations: BSA, bovine serum albumin
- CTLA-4, cytotoxic T-lymphocyte associated protein 4
- Canine
- DAPI, 4′,6-diamidino-2-phenylindole
- EGF, epidermal growth factor
- EGFR
- EGFR, epidermal growth factor receptor
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3 phosphate dehydrogenase
- HER2, human epidermal growth factor receptor 2, HER3, human epidermal growth factor receptor 3
- HER4, human epidermal growth factor receptor 4
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- OD, optical density
- OSA, osteosarcoma
- Osteosarcoma
- PBS, phosphate buffered saline
- Peptide
- RT, room temperature
- Vaccine
- pERK, phosphorylated extracellular signal-regulated kinase
- pNPP, p-nitrophenyl phosphate
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Renelle J Gee
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Tyler D Masters
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Christian R Gee
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | - Stuart C Helfand
- Oregon State University (Professor, retired), Corvallis, OR 97330, USA
| | - Lauren Price
- Clinton Veterinary Hospital, Clinton, CT 06413, USA
| | | | | | - Rita Ho
- MedVet, Norwalk, CT 06850, USA
| | - Gerald R Post
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; MedVet, Norwalk, CT 06850, USA
| | - Mark J Mamula
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA.
| |
Collapse
|
26
|
Leis-Filho AF, de Faria Lainetti P, Emiko Kobayashi P, Fonseca-Alves CE, Laufer-Amorim R. Effects of Lapatinib on HER2-Positive and HER2-Negative Canine Mammary Carcinoma Cells Cultured In Vitro. Pharmaceutics 2021; 13:897. [PMID: 34204236 PMCID: PMC8235449 DOI: 10.3390/pharmaceutics13060897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
HER2 is a prognostic and predictive marker widely used in breast cancer. Lapatinib is a tyrosine kinase inhibitor that works by blocking the phosphorylation of the receptor HER2. Its use is related to relatively good results in the treatment of women with HER2+ breast cancer. Thus, this study aimed to verify the effects of lapatinib on four canine primary mammary gland carcinoma cell cultures and two paired metastatic cell cultures. Cultures were treated with lapatinib at concentrations of 100, 500, 1000 and 3000 nM for 24 h and the 50% inhibitory concentration (IC50) for each cell culture was determined. In addition, a transwell assay was performed to assess the ability of lapatinib to inhibit cell migration. Furthermore, we verified HER2 expression by RT-qPCR analysis of cell cultures and formalin-fixed paraffin-embedded tissues from samples corresponding to those used in cell culture. Lapatinib was able to inhibit cell proliferation in all cell cultures, but it was not able to inhibit migration in all cell cultures. The higher the expression of HER2 in a culture, the more sensitive the culture was to treatment. This relationship may be an indication that the expression of HER2 may be a predictive factor and opens a new perspective for the treatment of primary and metastatic mammary gland cancer.
Collapse
Affiliation(s)
- Antonio Fernando Leis-Filho
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| | - Patrícia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University-UNESP, Botucatu 18618-681, Brazil; (P.d.F.L.); (C.E.F.-A.)
| | - Priscila Emiko Kobayashi
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University-UNESP, Botucatu 18618-681, Brazil; (P.d.F.L.); (C.E.F.-A.)
- Institute of Health Sciences, Paulista University-UNIP, Bauru 17048-290, Brazil
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| |
Collapse
|
27
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
28
|
Cho SH, Seung BJ, Kim SH, Bae MK, Lim HY, Sur JH. EGFR Overexpression and Sequence Analysis of KRAS, BRAF, and EGFR Mutation Hot Spots in Canine Intestinal Adenocarcinoma. Vet Pathol 2021; 58:674-682. [PMID: 33926328 DOI: 10.1177/03009858211009778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many human colorectal cancers and anti-EGFR agents are employed as immunotherapies. However, KRAS, EGFR, and BRAF gene mutations can influence the activity of the anti-EGFR agents. We evaluated EGFR expression at protein and mRNA levels in canine intestinal adenocarcinomas using immunohistochemistry (IHC) and RNA in situ hybridization (RNA-ISH). We also investigated the mutation status of EGFR, KRAS, and BRAF to aid the development of anti-EGFR agents for canine intestinal adenocarcinoma. EGFR expression was highest in adenocarcinoma, followed by intramucosal neoplasia (adenoma and in situ carcinoma), and nonneoplastic canine intestinal tissue, at both protein (P = .000) and mRNA (P = .005) levels. The EGFR, KRAS, and BRAF genes showed wild-type sequences at the mutation hot spots in all 13 specimens. Thus, EGFR might serve as a promising diagnostic marker in canine intestinal adenocarcinoma, and further studies would be needed to develop EGFR-targeted anticancer therapies.
Collapse
Affiliation(s)
- Seung-Hee Cho
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | | | - Soo-Hyeon Kim
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Min-Kyung Bae
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Ha-Young Lim
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Jung-Hyang Sur
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
29
|
Immunohistochemical Screening of HER2 in Canine Carcinomas: A Preliminary Study. Animals (Basel) 2021; 11:ani11041006. [PMID: 33916691 PMCID: PMC8065471 DOI: 10.3390/ani11041006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
HER2 overexpression has been reported in various human and canine tumours. The aim of this study is to investigate the expression of HER2 protein in different histotypes of canine carcinomas in order to identify potential tumours that could benefit from the HER2-targeted therapy. Eighty-two (82) canine carcinomas (squamous cell, gastro-intestinal, rectal, pulmonary, prostatic, urothelial, and ovarian) from paraffin-embedded samp les were immunohistochemically evaluated. The degree of HER2 expression was scored based on the ASCO/CAP 2018 guidelines. Intestinal carcinomas were those with greater HER2 overexpression (3+) with 81% of positive cases, followed by 42% of rectal carcinomas and 28% of squamous cell carcinomas. These observations suggest that HER2 overexpression could be a driver in the oncogenesis of several types of canine carcinomas and lay the foundations for the identification of different types of canine carcinomas that could benefit from HER2-targeted therapy.
Collapse
|
30
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
31
|
Jordakieva G, Bianchini R, Reichhold D, Piehslinger J, Groschopf A, Jensen SA, Mearini E, Nocentini G, Crevenna R, Zlabinger GJ, Karagiannis SN, Klaus A, Jensen-Jarolim E. IgG4 induces tolerogenic M2-like macrophages and correlates with disease progression in colon cancer. Oncoimmunology 2021; 10:1880687. [PMID: 33628623 PMCID: PMC7889146 DOI: 10.1080/2162402x.2021.1880687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
IgG4 subclass antibodies are expressed in alternative Th2 environments featuring high IL-10 expression, including several solid tumors such as melanoma. To induce tolerance, allergen immunotherapy mediates antibody class switching from pro-inflammatory IgE to anti-inflammatory IgG4. We previously reported that IgG4 drives allergic M2 macrophages toward tolerogenic states. Here we assessed the roles of IgG4 and macrophage activation in colorectal cancer (CRC). In this observer-blinded, case-control study, we analyzed total circulating serum IgE, IgG1 and IgG4 levels in CRC (n = 38) patients with (n = 13, TxNxM1) or without (n = 25, TxNxM0) metastasis, and in healthy donors (n = 21). Primary cultures of circulating monocyte-derived macrophages from healthy controls and CRC patients were further evaluated in their responses to stimulation with IgG1 or IgG4. We found higher absolute serum levels of IgG4 in patients with CRC. IgG4 enabled polarization of macrophages derived from CRC patients and healthy controls into alternatively-activated tolerogenic M2b phenotypes. IgG4-stimulated M2 macrophages were characterized by lower surface CD206, CD163, CD14, and CD11b expression and higher CCL-1, IL-10, and IL-6 production. IgG4 was less potent that IgG1 in triggering antibody-dependent cell-mediated phagocytosis (ADCP) of cancer cells. Further, higher z-normalized IgG4/-IgE sera level ratios correlated with the presence of metastasis (p = .0247 and p = .0009, respectively) in CRC patients. High IgG4 in CRC synergizes with macrophages in shaping an immunosuppressive microenvironment and impairs anti-cancer effector cell functions. The shift of serum IgG4/IgE ratios toward enhanced tolerance induction in metastatic disease indicates a role for high IgG4 in disease progression and poor prognostic outcome.
Collapse
Affiliation(s)
- Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Vienna, Austria
| | - Rodolfo Bianchini
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine, the Medical University of Vienna and the University of Vienna, Unit of Comparative Medicine, Vienna, Austria
- Institute Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Division of Comparative Immunology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Daniel Reichhold
- Department of General Surgery, Barmherzige Schwestern Krankenhaus Wien, Vienna, Austria
| | - Jakob Piehslinger
- Department of General Surgery, Barmherzige Schwestern Krankenhaus Wien, Vienna, Austria
| | - Alina Groschopf
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine, the Medical University of Vienna and the University of Vienna, Unit of Comparative Medicine, Vienna, Austria
- Institute Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Division of Comparative Immunology and Oncology, Medical University of Vienna, Vienna, Austria
- FH Campus Wien, Department of Health Science, Section of Biomedical Analytics, University of Applied Sciences, Vienna, Austria
| | - Sebastian A. Jensen
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ettore Mearini
- Department of Surgical and Biomedical Sciences, Urology Clinic of Perugia, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Richard Crevenna
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Vienna, Austria
| | - Gerhard J. Zlabinger
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, UK
| | - Alexander Klaus
- Department of General Surgery, Barmherzige Schwestern Krankenhaus Wien, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine, the Medical University of Vienna and the University of Vienna, Unit of Comparative Medicine, Vienna, Austria
- Institute Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Division of Comparative Immunology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|
33
|
Gray M, Turnbull AK, Meehan J, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. Comparative Analysis of the Development of Acquired Radioresistance in Canine and Human Mammary Cancer Cell Lines. Front Vet Sci 2020; 7:439. [PMID: 32851022 PMCID: PMC7396503 DOI: 10.3389/fvets.2020.00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Research using in vitro canine mammary cancer cell lines and naturally-occurring canine mammary tumors are not only fundamental models used to advance the understanding of cancer in veterinary patients, but are also regarded as excellent translational models of human breast cancer. Human breast cancer is commonly treated with radiotherapy; however, tumor response depends on both innate radiosensitivity and on tumor repopulation by cells that develop radioresistance. Comparative canine and human studies investigating the mechanisms of radioresistance may lead to novel cancer treatments that benefit both species. In this study, we developed a canine mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular mechanisms related to the development of acquired radioresistance. We performed a comparative analysis of this resistant model with our previously developed human breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231 RR), characterizing inherent differences through genetic, molecular, and cell biology approaches. RR cells demonstrated enhanced invasion/migration capabilities, with phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT, PI3K, and MAPK pathway activation. Following the development of radioresistance, transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To our knowledge, our study is the first to generate a canine mammary cancer RR cell line model and provide a comparative genetic and phenotypic analysis of the mechanisms of acquired radioresistance between canine and human cancer cell lines. We demonstrate that the cellular processes that occur with the development of acquired radioresistance are similar between the human and canine cell lines; our results therefore suggest that the canine model is appropriate to study both human and canine radioresistant mammary cancers, and that treatment strategies used in human medicine may also be applicable to veterinary patients.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Lainetti PDF, Zuliani F, Leis-Filho AF, Fonseca Alves RH, Fonseca-Alves CE. Controlled Drug Delivery Vehicles in Veterinary Oncology: State-of-the-Art and Future Directions. Processes (Basel) 2020; 8:541. [DOI: 10.3390/pr8050541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Controlled drug delivery systems can be used to carry several anticancer agents, including classical chemotherapeutic agents such as doxorubicin, paclitaxel or cisplatin, and are also used for the encapsulation of tyrosine kinase inhibitors and monoclonal antibodies. Usually, the controlled systems are used to decrease drug toxicity, increase local drug concentration or target specific organs or systems. In dogs, liposomal doxorubicin is the most known controlled drug delivery vehicle in veterinary medicine. However, several antitumor drugs can be encapsulated within these systems. Since the delivery vehicles are a relatively new topic in veterinary oncology, this review aims to discuss the current knowledge regarding the controlled drug delivery vehicles and discuss the current challenges and future direction of its use in veterinary oncology.
Collapse
Affiliation(s)
- Patricia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil
| | - Fernanda Zuliani
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil
| | | | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil
- Institute of Health Sciences, Universidade Paulista—UNIP, Bauru 17048-290, Brazil
| |
Collapse
|
35
|
Gray M, Meehan J, Martínez-Pérez C, Kay C, Turnbull AK, Morrison LR, Pang LY, Argyle D. Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer. Front Oncol 2020; 10:617. [PMID: 32411603 PMCID: PMC7198768 DOI: 10.3389/fonc.2020.00617] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 01/03/2023] Open
Abstract
Despite extensive research over many decades, human breast cancer remains a major worldwide health concern. Advances in pre-clinical and clinical research has led to significant improvements in recent years in how we manage breast cancer patients. Although survival rates of patients suffering from localized disease has improved significantly, the prognosis for patients diagnosed with metastatic disease remains poor with 5-year survival rates at only 25%. In vitro studies using immortalized cell lines and in vivo mouse models, typically using xenografted cell lines or patient derived material, are commonly used to study breast cancer. Although these techniques have undoubtedly increased our molecular understanding of breast cancer, these research models have significant limitations and have contributed to the high attrition rates seen in cancer drug discovery. It is estimated that only 3-6% of drugs that show promise in these pre-clinical models will reach clinical use. Models that can reproduce human breast cancer more accurately are needed if significant advances are to be achieved in improving cancer drug research, treatment outcomes, and prognosis. Canine mammary tumors are a naturally-occurring heterogenous group of cancers that have several features in common with human breast cancer. These similarities include etiology, signaling pathway activation and histological classification. In this review article we discuss the use of naturally-occurring canine mammary tumors as a translational animal model for human breast cancer research.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Linda R Morrison
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Yoshimoto S, Kato D, Kamoto S, Yamamoto K, Tsuboi M, Shinada M, Ikeda N, Tanaka Y, Yoshitake R, Eto S, Saeki K, Chambers J, Hashimoto Y, Uchida K, Nishimura R, Nakagawa T. Overexpression of human epidermal growth factor receptor 2 in canine primary lung cancer. J Vet Med Sci 2020; 82:804-808. [PMID: 32249253 PMCID: PMC7324825 DOI: 10.1292/jvms.20-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been reported in
various human cancers. HER2-targeted therapies showed clinical responses in humans with
HER2-positive tumors. The incidence of canine primary lung cancer (cPLC) is increasing,
but there are no effective systemic therapies for dogs with late-stage cPLC. HER2-targeted
therapy could be an option for cPLC, but HER2 expression in cPLC remains unknown. We
evaluated HER2 expression in cPLC. Immunohistochemical analysis revealed that 3 samples
(19%) scored 3+; 8 (50%), 2+; 5 (31%); and 1+ and 0 (0%), 0. Of the cPLC tissues, 69% were
HER2 positive (scored ≥2+). These data would lead to further evaluation of the role of
HER2 in cPLC as a mechanism of malignancy and therapeutic target.
Collapse
Affiliation(s)
- Sho Yoshimoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kie Yamamoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
37
|
Oyamada T, Okano S. Cytotoxicity effect of trastuzumab on canine peripheral blood mononuclear cells. IRANIAN JOURNAL OF VETERINARY RESEARCH 2020; 21:263-268. [PMID: 33584838 PMCID: PMC7871734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Trastuzumab is an antibody drug used to treat human epidermal growth factor receptor 2 (HER2) overexpressing human metastatic breast cancer. Antibody-dependent cellular cytotoxicity (ADCC) is considered to be the major mechanism of cytotoxicity of the drug. However, its ability to induce an ADCC response in canine peripheral blood mononuclear cells (PBMCs) is not well established. AIMS We aimed to evaluate the ability of trastuzumab in enhancing the cytotoxicity of PBMCs against canine tumor cells. METHODS We used canine tumor cell lines isolated from metastatic mammary gland tumors (CHMm and CIPm) and thyroid adenocarcinoma (CTAC). The binding of trastuzumab to the cells was confirmed using flow cytometry analysis. Peripheral blood mononuclear cells obtained from healthy beagles and lymphokine-activated killer (LAK) cells, generated by interleukin-2 (IL-2) stimulation of PBMCs, were used as effector cells. Standard lactate dehydrogenase (LDH) release assay was used to measure the cytotoxicity of the LAK cells against tumor cell lines in the presence of trastuzumab. RESULTS Trastuzumab enhanced the cytotoxicity of PBMCs against CHMm. Moreover, LAK cells killed CHMm synergistically in the presence of trastuzumab. However, the presence of trastuzumab did not produce such a synergistic effect when LAK cells acted against CIPm and CTAC. CONCLUSION We confirmed the ability of trastuzumab to induce an ADCC response in canine PBMCs and determined its synergistic effect with LAK cells. Although the in vitro system in the present study did not show the induction of trastuzumab-mediated ADCC response against all canine tumor cell lines, the results of this study indicate the potential antitumor activity of trastuzumab in canines.
Collapse
Affiliation(s)
- T. Oyamada
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - S. Okano
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| |
Collapse
|
38
|
Migliorini D, Mason NJ, Posey AD. Keeping the Engine Running: The Relevance and Predictive Value of Preclinical Models for CAR-T Cell Development. ILAR J 2019; 59:276-285. [PMID: 31095687 DOI: 10.1093/ilar/ilz009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/03/2019] [Indexed: 12/24/2022] Open
Abstract
The cellular immunotherapy field has achieved important milestones in the last 30 years towards the treatment of a variety of cancers due to improvements in ex-vivo T cell manufacturing processes, the invention of synthetic T cell receptors, and advances in cellular engineering. Here, we discuss major preclinical models that have been useful for the validation of chimeric antigen receptor (CAR)-T cell therapies and also promising new models that will fuel future investigations towards success. However, multiple unanswered questions in the CAR-T cell field remain to be addressed that will require innovative preclinical models. Key challenges facing the field include premature immune rejection of universal CAR-T cells and the immune suppressive tumor microenvironment. Immune competent models that accurately recapitulate tumor heterogeneity, the hostile tumor microenvironment, and barriers to CAR-T cell homing, toxicity, and persistence are needed for further advancement of the field.
Collapse
Affiliation(s)
- Denis Migliorini
- University Hospital, Geneva, Switzerland; and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy
| | - Nicola J Mason
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy, Philadelphia, PA
| | - Avery D Posey
- Department of Pathology and Laboratory Medicine, and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy; and Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Kim Y, Lee SH, Kim CJ, Lee JJ, Yu D, Ahn S, Shin DJ, Kim SK. Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody-coated tumor cells. BMC Vet Res 2019; 15:339. [PMID: 31610784 PMCID: PMC6790994 DOI: 10.1186/s12917-019-2068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Background The antibody-dependent cellular cytotoxicity (ADCC) is a cell-mediated immune defense mechanism in which effector immune cells actively lyse antibody-coated target cells. The ADCC of tumor cells is employed in the treatment of various cancers overexpressing unique antigens, and only natural killer (NK) cells are known to be major effectors of antibody mediated ADCC activity. Canine NK cells are still defined as non-B, non-T large granular lymphocytes because of the lack of information regarding the NK cell-restricted specific marker in dogs, and it has never been demonstrated that canine NK cells have ADCC ability against tumor cells. In the present study, we investigated whether canine non-B, non-T NK cells have ADCC ability against target antibody-coated tumor cells, using cetuximab and trastuzumab, the only human antibodies reported binding to canine cancer cells. Results Activated canine non-B, non-T NK cells (CD3−CD21−CD5−TCRαβ−TCRγδ−) for 13~17 days ex vivo showed ADCC ability against trastuzumab- or cetuximab-coated target tumor cells expressing various levels of human epidermal growth factor receptor 2 (HER-2) and epidermal growth factor receptor (EGFR). Trastuzumab and cetuximab induced significant ADCC responses of canine NK cells even in CMT-U334 and CF41.Mg cells expressing low levels of HER-2 and/or EGFR, as well as in SKBR3 and DU145 cells overexpressing HER-2 and/or EGFR. The trastuzumab-mediated ADCC activity of NK cells was significantly enhanced by treatment with rcIL-21. Conclusions The results of this study suggest that canine non-B, non-T NK lymphocytes have a potential ADCC function and that combinational strategies of monoclonal antibodies with either cytokines, which activate NK cells in vivo, or adoptive transfer of NK cells may be a feasible method for amplifying the efficacy of immunotherapy against malignant cancers even with very low expression of target molecules in dogs. Electronic supplementary material The online version of this article (10.1186/s12917-019-2068-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoseop Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.,Present Address: Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jellanamdo, Republic of Korea
| | - Soo-Hyeon Lee
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.,Present Address: CHABiolab Co.,Ltd, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Cheol-Jung Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea
| | - Je-Jung Lee
- Department of Hemotology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Dohyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Soomin Ahn
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong-Jun Shin
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea. .,Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea. .,Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.
| |
Collapse
|
40
|
Lorch G, Sivaprakasam K, Zismann V, Perdigones N, Contente-Cuomo T, Nazareno A, Facista S, Wong S, Drenner K, Liang WS, Amann JM, Sinicropi-Yao SL, Koenig MJ, La Perle K, Whitsett TG, Murtaza M, Trent JM, Carbone DP, Hendricks WPD. Identification of Recurrent Activating HER2 Mutations in Primary Canine Pulmonary Adenocarcinoma. Clin Cancer Res 2019; 25:5866-5877. [PMID: 31431454 DOI: 10.1158/1078-0432.ccr-19-1145] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Naturally occurring primary canine lung cancers share clinicopathologic features with human lung cancers in never-smokers, but the genetic underpinnings of canine lung cancer are unknown. We have charted the genomic landscape of canine lung cancer and performed functional characterization of novel, recurrent HER2 (ERBB2) mutations occurring in canine pulmonary adenocarcinoma (cPAC). EXPERIMENTAL DESIGN We performed multiplatform genomic sequencing of 88 primary canine lung tumors or cell lines. Additionally, in cPAC cell lines, we performed functional characterization of HER2 signaling and evaluated mutation-dependent HER2 inhibitor drug dose-response. RESULTS We discovered somatic, coding HER2 point mutations in 38% of cPACs (28/74), but none in adenosquamous (cPASC, 0/11) or squamous cell (cPSCC, 0/3) carcinomas. The majority (93%) of HER2 mutations were hotspot V659E transmembrane domain (TMD) mutations comparable to activating mutations at this same site in human cancer. Other HER2 mutations were located in the extracellular domain and TMD. HER2 V659E was detected in the plasma of 33% (2/6) of dogs with localized HER2 V659E tumors. HER2 V659E cPAC cell lines displayed constitutive phosphorylation of AKT and significantly higher sensitivity to the HER2 inhibitors lapatinib and neratinib relative to HER2-wild-type cell lines (IC50 < 200 nmol/L in HER2 V659E vs. IC50 > 2,500 nmol/L in HER2 WT). CONCLUSIONS This study creates a foundation for molecular understanding of and drug development for canine lung cancer. These data also establish molecular contexts for comparative studies in dogs and humans of low mutation burden, never-smoker lung cancer, and mutant HER2 function and inhibition.
Collapse
Affiliation(s)
- Gwendolen Lorch
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | | | | | | | | | | | | | - Shukmei Wong
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Kevin Drenner
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Joseph M Amann
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Sara L Sinicropi-Yao
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Michael J Koenig
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Krista La Perle
- Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | | | | | | | - David P Carbone
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | | |
Collapse
|
41
|
Yoshimoto S, Kato D, Kamoto S, Yamamoto K, Tsuboi M, Shinada M, Ikeda N, Tanaka Y, Yoshitake R, Eto S, Saeki K, Chambers J, Kinoshita R, Uchida K, Nishimura R, Nakagawa T. Immunohistochemical evaluation of HER2 expression in canine thyroid carcinoma. Heliyon 2019; 5:e02004. [PMID: 31360780 PMCID: PMC6639692 DOI: 10.1016/j.heliyon.2019.e02004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/21/2019] [Accepted: 06/21/2019] [Indexed: 12/04/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is expressed in various human cancers including thyroid cancers (TC) and is used as a diagnostic marker and therapeutic target. Canine TC (cTC), the most common endocrine malignancy in dogs, shows a high metastasis rate, and HER2-targeted therapy could be a candidate for treatment. Here, we immunohistochemically evaluated HER2 expression in 21 paraffin-embedded cTC tissues and scored the degree of expression based on intensity and positivity (score: 0–3+). Four samples (19%) scored 3+; 6 (29%), 2+; 7 (33%), 1+; and 4 (19%), 0. Therefore, 48% of the cTC tissues were HER2 positive (scored ≥2+). These data may lead to further evaluation of the role of HER2 in cTC as a mechanism of malignancy and a therapeutic target.
Collapse
Affiliation(s)
- Sho Yoshimoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kie Yamamoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryohei Kinoshita
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
42
|
Yoshimoto S, Kato D, Kamoto S, Yamamoto K, Tsuboi M, Shinada M, Ikeda N, Tanaka Y, Yoshitake R, Eto S, Saeki K, Chambers JK, Kinoshita R, Uchida K, Nishimura R, Nakagawa T. Detection of human epidermal growth factor receptor 2 overexpression in canine anal sac gland carcinoma. J Vet Med Sci 2019; 81:1034-1039. [PMID: 31142682 PMCID: PMC6656818 DOI: 10.1292/jvms.19-0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Canine anal sac gland carcinoma (ASGC) frequently occurs in the apocrine glands of the canine anal sac and shows aggressive biological behavior. The expression of human epidermal growth factor receptor 2 (HER2) has been reported in various human and canine tumors. HER2 is a promising therapeutic target of these tumors, and HER2-targeted drugs, such as trastuzumab and lapatinib, have improved the outcome of these patients. In this study, HER2 expression in ASGC was evaluated to investigate its potential as a therapeutic target for canine ASGC. HER2 mRNA expression in surgically resected ASGC tissues was significantly higher than that in normal anal sac tissue. To evaluate the expression of HER2 protein, paraffin-embedded ASGC tissues were immunohistochemically evaluated. Strong and broad staining of HER2 was detected in ASGC tissues, while HER2 was weakly to moderately stained in normal anal sac apocrine glands and squamous epithelia. The degree of HER2 expression in ASGC tissues was scored based on its intensity and positivity (score: 0-3+). Scoring of HER2 expression revealed 6 samples (24%) scored 3+, 14 (56%) scored 2+, and 5 (20%) scored 1+, with no samples scoring 0. In all, 80% of canine ASGC tissues were positive for HER2 (scored ≥2+). Furthermore, putative HER2-overexpressed cells in ASGC were detected with trastuzumab by flow cytometry. These preliminary data may lead to further evaluation of the role of HER2 in canine ASGC as a mechanism of malignancy and as a therapeutic target for HER2-targeted therapy.
Collapse
Affiliation(s)
- Sho Yoshimoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kie Yamamoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James Kenn Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Kinoshita
- Veterinary Medical Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
43
|
Chung S, Nguyen V, Lin YL, Lafrance-Vanasse J, Scales SJ, Lin K, Deng R, Williams K, Sperinde G, Li JJ, Zheng K, Sukumaran S, Tesar D, Ernst JA, Fischer S, Lazar GA, Prabhu S, Song A. An in vitro FcRn- dependent transcytosis assay as a screening tool for predictive assessment of nonspecific clearance of antibody therapeutics in humans. MAbs 2019; 11:942-955. [PMID: 30982394 PMCID: PMC6601550 DOI: 10.1080/19420862.2019.1605270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A cell-based assay employing Madin–Darby canine kidney cells stably expressing human neonatal Fc receptor (FcRn) heavy chain and β2-microglobulin genes was developed to measure transcytosis of monoclonal antibodies (mAbs) under conditions relevant to the FcRn-mediated immunoglobulin G (IgG) salvage pathway. The FcRn-dependent transcytosis assay is modeled to reflect combined effects of nonspecific interactions between mAbs and cells, cellular uptake via pinocytosis, pH-dependent interactions with FcRn, and dynamics of intracellular trafficking and sorting mechanisms. Evaluation of 53 mAbs, including 30 marketed mAb drugs, revealed a notable correlation between the transcytosis readouts and clearance in humans. FcRn was required to promote efficient transcytosis of mAbs and contributed directly to the observed correlation. Furthermore, the transcytosis assay correctly predicted rank order of clearance of glycosylation and Fv charge variants of Fc-containing proteins. These results strongly support the utility of this assay as a cost-effective and animal-sparing screening tool for evaluation of mAb-based drug candidates during lead selection, optimization, and process development for desired pharmacokinetic properties.
Collapse
Affiliation(s)
- Shan Chung
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Van Nguyen
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Yuwen Linda Lin
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | | | - Suzie J Scales
- c Department of Molecular Biology , Genentech Inc ., South San Francisco , CA , USA
| | - Kevin Lin
- d Department of Analytical Operations , Genentech Inc ., South San Francisco , CA , USA
| | - Rong Deng
- e Department of Clinical Pharmacology , Genentech Inc ., South San Francisco , CA , USA
| | - Kathi Williams
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Gizette Sperinde
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Juan Jenny Li
- f Department of Biochemistry and Cellular Pharmacology , Genentech Inc ., South San Francisco , CA , USA
| | - Kai Zheng
- g Department of Late Stage Pharmaceutical Development , Genentech Inc ., South San Francisco , CA , USA
| | - Siddharth Sukumaran
- h Department of Pharmacokinetics & Pharmacodynamics , Genentech Inc ., South San Francisco , CA , USA
| | - Devin Tesar
- i Department of Drug Delivery , Genentech Inc ., South San Francisco , CA , USA
| | - James A Ernst
- b Department of Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - Saloumeh Fischer
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Greg A Lazar
- j Department of Antibody Engineering , Genentech Inc ., South San Francisco , CA , USA
| | - Saileta Prabhu
- h Department of Pharmacokinetics & Pharmacodynamics , Genentech Inc ., South San Francisco , CA , USA
| | - An Song
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| |
Collapse
|
44
|
Tsuboi M, Sakai K, Maeda S, Chambers JK, Yonezawa T, Matsuki N, Uchida K, Nakayama H. Assessment of HER2 Expression in Canine Urothelial Carcinoma of the Urinary Bladder. Vet Pathol 2019; 56:369-376. [PMID: 30612533 DOI: 10.1177/0300985818817024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Canine urothelial carcinoma (UC) has a poor prognosis and high metastatic rate. Human epidermal growth factor receptor 2 (HER2), a receptor tyrosine kinase involved in cell proliferation and differentiation regulation, has been attracting interest as a therapeutic target molecule for human breast cancer. This study investigated expression of the canine homolog of HER2 (ERBB2) in canine UC, and its association with clinical factors. Since it has been controversial whether commercial anti-human HER2 antibody (Dako A0485) correctly recognizes the canine homolog of HER2, an application of the antibody using a canine UC cell line was validated first. By Western blot, a single band at the appropriate size for canine HER2 (185 kDa) was recognized. Immunohistochemistry for HER2 was performed on 23 samples of UC, 8 samples of polypoid cystitis, and 8 samples of normal urinary bladder, and the results were scored as either 0, 1+, 2+, or 3+ with reference to the evaluation method for human UC. Intense membranous HER2 immunoreactivity was frequently observed in neoplastic cells, especially in grade 2 UC. Minor HER2 expression was found in the epithelial cells of polypoid cystitis and normal bladder. The incidence of HER2 positivity (scores of 2+ or 3+) was 14 of 23 (60.9%) in UC, 3 of 8 (37.5%) in polypoid cystitis, and 0 of 8 (0%) in normal bladder. There was no significant correlation between HER2 positivity and clinical factors. While increased HER2 expression was observed in a subset of urothelial carcinomas, further mechanistic studies are needed to determine its role in the pathogenesis and targeted therapy of this cancer.
Collapse
Affiliation(s)
- Masaya Tsuboi
- 1 Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,These authors contributed equally to this work
| | - Kosei Sakai
- 2 Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,These authors contributed equally to this work
| | - Shingo Maeda
- 2 Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- 1 Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- 2 Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Matsuki
- 2 Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- 1 Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakayama
- 1 Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Kaszak I, Ruszczak A, Kanafa S, Kacprzak K, Król M, Jurka P. Current biomarkers of canine mammary tumors. Acta Vet Scand 2018; 60:66. [PMID: 30373614 PMCID: PMC6206704 DOI: 10.1186/s13028-018-0417-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
Mammary tumors are the second most common neoplasia in dogs. Due to the high similarity of canine mammary tumors (CMT) to human breast cancers (HBC), human biomarkers of HBC are also detectable in cases of CMT. The evaluation of biomarkers enables clinical diagnoses, treatment options and prognosis for bitches suffering from this disease. The aim of this article is to give a short summary of the biomarkers of CMT based on current literature. Very promising biomarkers are miRNAs, cancer stem cells, and circulating tumor cells, as well as mutations of the breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2). Until now, the most studied and reliable biomarkers of CMT have remained antigen Ki-67 (Ki-67), endothelial growth factor receptor, human epidermal growth factor receptor 2 (HER-2), estrogen receptor, progesterone receptor and cyclooxygenase 1 (COX-2), which can be detected in both serum and tissue samples using different molecular methods. However, carcinoembryonic antigen and cancer antigen 15-3 (CA 15-3), while poorly studied, seem to be good biomarkers, especially for the early detection and prognosis of CMT. We will also mention the following: proliferative cell nuclear antigen, tumor protein p53 (p53), E-cadherin, vascular endothelial growth factor, microRNAs, cancer stem cells and circulating tumor cells, which can also be useful biomarkers. Although many studies have been conducted so far, the estimation of biomarkers in cases of CMT is still not a common practice, and more detailed research should be done.
Collapse
|
46
|
Fazekas-Singer J, Singer J, Ilieva KM, Matz M, Herrmann I, Spillner E, Karagiannis SN, Jensen-Jarolim E. AllergoOncology: Generating a canine anticancer IgE against the epidermal growth factor receptor. J Allergy Clin Immunol 2018; 142:973-976.e11. [PMID: 29746883 DOI: 10.1016/j.jaci.2018.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Josef Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Kristina M Ilieva
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; NIHR Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, Guy's Hospital, King's College London, London, United Kingdom; Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Miroslawa Matz
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ina Herrmann
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria; Department for Companion Animals and Horses, Small Animal Clinic, Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Edzard Spillner
- Immunological Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; NIHR Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
47
|
Nagaya T, Okuyama S, Ogata F, Maruoka Y, Knapp DW, Karagiannis SN, Fazekas-Singer J, Choyke PL, LeBlanc AK, Jensen-Jarolim E, Kobayashi H. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget 2018; 9:19026-19038. [PMID: 29721181 PMCID: PMC5922375 DOI: 10.18632/oncotarget.24876] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/06/2018] [Indexed: 12/23/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro. In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Deborah W. Knapp
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, UK
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy K. LeBlanc
- Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas. J Neurooncol 2018; 137:653-663. [PMID: 29350351 DOI: 10.1007/s11060-018-2764-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/13/2018] [Indexed: 01/04/2023]
Abstract
Cetuximab conjugated iron-oxide nanoparticles (cetuximab-IONPs) have shown both in-vitro and in-vivo anti-tumor efficacy against gliomas. The purpose of this pilot study was to evaluate the safety and potential efficacy of cetuximab-IONPs for treatment of spontaneously occurring intracranial gliomas in canines after convection-enhanced delivery (CED). The use of CED allowed for direct infusion of the cetuximab-IONPs both intratumorally and peritumorally avoiding the blood brain barrier (BBB) and limiting systemic effects. A total of eight dogs participated in the study and only two developed mild post-operative complications, which resolved with medical therapy. All canines underwent a single CED treatment of the cetuximab-IONPs over 3 days and did not receive any further adjuvant treatments. Volumetric analysis showed a median reduction in tumor size of 54.9% by MRI at 1-month (4-6 weeks) follow-up. Five dogs were euthanized due to recurrence of neurological signs other than seizures, two due to recurrent seizures, and one dog died in his sleep. Median survival time after surgery was 248 days (mean 367 days).
Collapse
|
49
|
Nguyen F, Peña L, Ibisch C, Loussouarn D, Gama A, Rieder N, Belousov A, Campone M, Abadie J. Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast Cancer Res Treat 2017; 167:635-648. [PMID: 29086231 PMCID: PMC5807494 DOI: 10.1007/s10549-017-4548-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/30/2022]
Abstract
Purpose Dogs have been proposed as spontaneous animal models of human breast cancer, based on clinicopathologic similarities between canine and human mammary carcinomas. We hypothesized that a better knowledge of the natural history and prognostic factors of canine invasive mammary carcinomas would favor the design of preclinical trials using dogs as models of breast cancer. Methods The 2-year outcome of 350 female dogs with spontaneous invasive mammary carcinoma was studied. The investigated prognostic factors included age at diagnosis, pathologic tumor size, pathologic nodal stage, lymphovascular invasion, histological grade, and expression of Estrogen Receptor alpha (ERα), Progesterone Receptor, Ki-67, Human Epidermal Growth Factor Receptor 2, basal cytokeratins 5/6, and Epidermal Growth Factor Receptor. Multivariate survival analyses were performed using the Cox proportional hazards model. Results The overall survival after mastectomy was 11 months. Within 1 year post mastectomy, 41.5% of dogs (145/350) died from their mammary carcinoma. By multivariate analysis, the significant prognostic factors for overall survival included a pathologic tumor size larger than 20 mm [HR 1.47 (95% confidence interval 1.15–1.89)], a positive nodal stage [pN+, HR 1.89 (1.43–2.48)], a histological grade III [HR 1.32 (1.02–1.69)], ERα negativity [HR 1.39 (1.01–1.89)], a high Ki-67 proliferation index [HR 1.32 (1.04–1.67)], and EGFR absence [HR 1.33 (1.04–1.69)]. Conclusion The short natural history of spontaneous canine invasive mammary carcinomas and high rate of cancer-related death allow for rapid termination of preclinical investigations. The prognostic factors of invasive mammary carcinomas are remarkably similar in dogs and humans, highlighting the similarities in cancer biology between both species.
Collapse
Affiliation(s)
- Frédérique Nguyen
- Oniris, Nantes Atlantic College of Veterinary Medicine Food Science and Engineering, Animal Cancers, Models for Research in Comparative Oncology (AMaROC) Research Unit, Site de La Chantrerie, 102 Route de Gachet, CS40706, 44307, Nantes, France. .,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Complutense University of Madrid, Madrid, Spain
| | - Catherine Ibisch
- Oniris, Nantes Atlantic College of Veterinary Medicine Food Science and Engineering, Animal Cancers, Models for Research in Comparative Oncology (AMaROC) Research Unit, Site de La Chantrerie, 102 Route de Gachet, CS40706, 44307, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Delphine Loussouarn
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Department of Pathology, University Hospital, Nantes, France
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Natascha Rieder
- Pathology and Tissue Analytics, Pharma Research & Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Anton Belousov
- Pharmaceutical Sciences, Pharma Research & Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Mario Campone
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Angers, France
| | - Jérôme Abadie
- Oniris, Nantes Atlantic College of Veterinary Medicine Food Science and Engineering, Animal Cancers, Models for Research in Comparative Oncology (AMaROC) Research Unit, Site de La Chantrerie, 102 Route de Gachet, CS40706, 44307, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
50
|
Mazzega E, de Marco A. Engineered cross-reacting nanobodies simplify comparative oncology between humans and dogs. Vet Comp Oncol 2017; 16:E202-E206. [DOI: 10.1111/vco.12359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- E. Mazzega
- Laboratory for Environmental and Life Sciences; University of Nova Gorica; Vipava Slovenia
| | - A. de Marco
- Laboratory for Environmental and Life Sciences; University of Nova Gorica; Vipava Slovenia
| |
Collapse
|