1
|
Nag S, Mitra O, Tripathi G, Samanta S, Bhattacharya B, Chandane P, Mohanto S, Sundararajan V, Malik S, Rustagi S, Adhikari S, Mohanty A, León‐Figueroa DA, Rodriguez‐Morales AJ, Barboza JJ, Sah R. Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e1121. [PMID: 38156400 PMCID: PMC10755504 DOI: 10.1002/iid3.1121] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self-antigens, which can cause systemic or site-specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non-coding RNAs that have been identified as essential contributors to the post-transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. AIMS This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA-based theranostic interventions. RESULTS & DISCUSSION Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. CONCLUSION Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Oishi Mitra
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Garima Tripathi
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Souvik Samanta
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Bikramjit Bhattacharya
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Department of Applied MicrobiologyVellore Institute of Technology (VIT)Tamil NaduIndia
| | - Priti Chandane
- Department of BiochemistrySchool of Life SciencesUniversity of HyderabadHyderabadTelanganaIndia
| | - Sourav Mohanto
- Department of PharmaceuticsYenepoya Pharmacy College & Research CentreYenepoya (Deemed to be University)MangaluruKarnatakaIndia
| | - Vino Sundararajan
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Sumira Malik
- Amity Institute of BiotechnologyAmity University JharkhandRanchiJharkhandIndia
- University Centre for Research and DevelopmentUniversity of Biotechnology, Chandigarh University, GharuanMohaliPunjab
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | | | - Aroop Mohanty
- Department of Clinical MicrobiologyAll India Institute of Medical SciencesGorakhpurUttar PradeshIndia
| | | | - Alfonso J. Rodriguez‐Morales
- Clinical Epidemiology and Biostatistics, School of MedicineUniversidad Científica del SurLimaPeru
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityBeirutLebanon
| | | | - Ranjit Sah
- Department of Clinical MicrobiologyInstitute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Department of Clinical MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
2
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
3
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
4
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Yang Z, Yan L, Cao H, Gu Y, Zhou P, Shi M, Li G, Jiao X, Li N, Li X, Sun K, Shao F. Erythropoietin Protects against Diffuse Alveolar Hemorrhage in Mice by Regulating Macrophage Polarization through the EPOR/JAK2/STAT3 Axis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1752-1764. [PMID: 33811103 DOI: 10.4049/jimmunol.1901312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/08/2021] [Indexed: 11/19/2022]
Abstract
Macrophages play an important role in the pathogenesis of systemic lupus erythematosus-associated diffuse alveolar hemorrhage (DAH). The immunomodulation of macrophage responses might be a potential approach for the prevention and treatment of DAH. Erythropoietin (EPO) could regulate macrophage bioactivities by binding to the EPO receptor expressing on macrophages. This study assessed the effects of EPO on DAH protection using an immune-mediated DAH murine model with macrophages as the major contributor. A DAH murine model was established in female C57BL/6 mice by an i.p. injection of pristane. We found that EPO administration alleviates DAH by reducing pulmonary macrophages recruitment and promoting phenotype switch toward M2 macrophages in vivo. EPO drove macrophages to the anti-inflammatory phenotype in the primary murine bone marrow-derived macrophages and macrophages cell line RAW 264.7 with LPS, IFN-γ, and IL-4 in vitro. Moreover, EPO treatment increases the expression of EPOR and decreases the expression of miR-494-3p, resulting in increased phosphorylation of JAK2 and STAT3. In conclusion, EPO can be a potential therapeutic agent in DAH by reducing cell apoptosis and regulating macrophage polarization through the EPOR/JAK2/STAT3 axis. Further studies are also needed to validate the direct target of miR-494-3p in regulating JAK2/STAT3 signaling transduction.
Collapse
Affiliation(s)
- Zhongnan Yang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Department of Urology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Pan Zhou
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China; and
| | - Mingyue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China; and
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Na Li
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangnan Li
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China; and
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China;
| |
Collapse
|
6
|
Chi M, Ma K, Li Y, Quan M, Han Z, Ding Z, Liang X, Zhang Q, Song L, Liu C. Immunological Involvement of MicroRNAs in the Key Events of Systemic Lupus Erythematosus. Front Immunol 2021; 12:699684. [PMID: 34408748 PMCID: PMC8365877 DOI: 10.3389/fimmu.2021.699684] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an archetype autoimmune disease characterized by a myriad of immunoregulatory abnormalities that drives injury to multiple tissues and organs. Due to the involvement of various immune cells, inflammatory cytokines, and related signaling pathways, researchers have spent a great deal of effort to clarify the complex etiology and pathogenesis of SLE. Nevertheless, current understanding of the pathogenesis of SLE is still in the early stages, and available nonspecific treatment options for SLE patients remain unsatisfactory. First discovered in 1993, microRNAs (miRNAs) are small RNA molecules that control the expression of 1/3 of human genes at the post-transcriptional level and play various roles in gene regulation. The aberrant expression of miRNAs in SLE patients has been intensively studied, and further studies have suggested that these miRNAs may be potentially relevant to abnormal immune responses and disease progression in SLE. The aim of this review was to summarize the specific miRNAs that have been observed aberrantly expressed in several important pathogenetic processes in SLE, such as DCs abnormalities, overactivation and autoantibody production of B cells, aberrant activation of CD4+ T cells, breakdown of immune tolerance, and abnormally increased production of inflammatory cytokines. Our summary highlights a novel perspective on the intricate regulatory network of SLE, which helps to enrich our understanding of this disorder and ignite future interest in evaluating the molecular regulation of miRNAs in autoimmunity SLE.
Collapse
Affiliation(s)
- Mingxuan Chi
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University, Suita, Japan
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Quan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
7
|
Franzoi AEDA, de Moraes Machado FS, de Medeiros Junior WLG, Bandeira IP, Brandão WN, Gonçalves MVM. Altered expression of microRNAs and B lymphocytes during Natalizumab therapy in multiple sclerosis. Heliyon 2021; 7:e07263. [PMID: 34179535 PMCID: PMC8214090 DOI: 10.1016/j.heliyon.2021.e07263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/18/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of non-translated small ribonucleic acids (RNAs) measuring 21–25 nucleotides in length that play various roles in multiple sclerosis (MS). By regulating gene expression via either mediating translational repression or cleavage of the target RNA, miRNAs can alter the expression of transcripts in different cells, such as B lymphocytes, also known as B cells. They are crucial in the pathogenesis of MS; however, they have not been extensively studied during the treatment of some drugs such as natalizumab (NTZ). NTZ is a humanized immunoglobulin G4 antibody antagonist for integrin alpha 4 (α4) used in the treatment of MS. The drug reduces the homing of lymphocytes to inflammation sites. Integrin α4 expression on the cell surface of B cells is related to MS severity, indicating a critical component in the pathogenesis of the disease. NTZ plays an important role in modifying the gene expression in B cells and the levels of miRNAs in the treatment of MS. In this review, we have described changes in gene expression in B cells and the levels of miRNAs during NTZ therapy in MS and its relapse. Studies using the experimental autoimmune encephalomyelitis (EAE) model and those involving patients with MS have described changes in the levels of microRNAs in the regulation of proteins affected by specific miRNAs, gene expression in B cells, and certain functions of B cells as well as their subpopulations. Therefore, there is a possibility that some miRNAs could be studied at different stages of MS during NTZ treatment, and these specific miRNAs can be tested as markers of therapeutic response to this drug in future studies. Physiopathology, gene expression in B cells and their subpopulations can help understand this complex puzzle involving miRNAs and the therapeutic response of patients with MS.
Collapse
Affiliation(s)
| | | | | | | | - Wesley Nogueira Brandão
- Department of Neuroimmunology at the Institute of Biological Sciences, University of São Paulo (ICB-USP), Brazil
| | | |
Collapse
|
8
|
Sharan R, Bucşan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, Khader SA, Kaushal D. Chronic Immune Activation in TB/HIV Co-infection. Trends Microbiol 2020; 28:619-632. [PMID: 32417227 PMCID: PMC7390597 DOI: 10.1016/j.tim.2020.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022]
Abstract
HIV co-infection is the most critical risk factor for the reactivation of latent tuberculosis (TB) infection (LTBI). While CD4+ T cell depletion has been considered the major cause of HIV-induced reactivation of LTBI, recent work in macaques co-infected with Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) suggests that cytopathic effects of SIV resulting in chronic immune activation and dysregulation of T cell homeostasis correlate with reactivation of LTBI. This review builds on compelling data that the reactivation of LTBI during HIV co-infection is likely to be driven by the events of HIV replication and therefore highlights the need to have optimum translational interventions directed at reactivation due to co-infection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Allison N Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
9
|
Omidi F, Hosseini SA, Ahmadi A, Hassanzadeh K, Rajaei S, Cesaire HM, Hosseini V. Discovering the signature of a lupus-related microRNA profile in the Gene Expression Omnibus repository. Lupus 2020; 29:1321-1335. [PMID: 32723063 DOI: 10.1177/0961203320944473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lupus is one of the most prevalent systemic autoimmune diseases. It is a multifactorial disease in which genetic, epigenetic and environmental factors play significant roles. The pathogenesis of lupus is not yet well understood. However, deregulation of microRNAs (miRNAs) - one of the post-transcriptional regulators of genes - can contribute to the development of autoimmune diseases. Over the last two decades, advances in the profiling of miRNA using microarray have received much attention, and it has been demonstrated that miRNAs play a regulatory role in the pathogenesis of lupus. Therefore, dysregulated miRNAs can be considered as promising diagnostic biomarkers for lupus. This article is an overview of lupus-related miRNA profiling studies and arrays in the Gene Expression Omnibus (GEO) database. The aims of our study were to widen current knowledge of known dysregulated miRNAs as potential biomarkers of SLE and to introduce a bioinformatics approach to using microarray data and finding novel miRNA and gene candidates for further study. We identified hsa-miR-4709-5p, hsa-miR-140, hsa-miR-145, hsa-miR-659, hsa-miR-134, hsa-miR-150, hsa-miR-584, hsa-miR-409 and hsa-miR-152 as potential biomarkers by integrated bioinformatics analysis.
Collapse
Affiliation(s)
- Forouzan Omidi
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Abdolhakim Hosseini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Hosseini Nasab Medical Laboratory, Sanandaj, Iran
| | - Abbas Ahmadi
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shima Rajaei
- HelthWeX Clinical Research Co., Ltd, Tehran, Iran
| | | | - Vahedeh Hosseini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
10
|
Wu H, Chang C, Lu Q. The Epigenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:185-207. [PMID: 32445096 DOI: 10.1007/978-981-15-3449-2_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease that is characterized by dysregulated dendritic cells, T and B cells, and abundant autoantibodies. The pathogenesis of lupus remains unclear. However, increasing evidence has shown that environment factors, genetic susceptibilities, and epigenetic regulation contribute to abnormalities in the immune system. In the past decades, several risk gene loci have been identified, such as MHC and C1q. However, genetics cannot explain the high discordance of lupus incidence in homozygous twins. Environmental factor-induced epigenetic modifications on immune cells may provide some insight. Epigenetics refers to inheritable changes in a chromosome without altering DNA sequence. The primary mechanisms of epigenetics include DNA methylation, histone modifications, and non-coding RNA regulations. Increasing evidence has shown the importance of dysregulated epigenetic modifications in immune cells in pathogenesis of lupus, and has identified epigenetic changes as potential biomarkers and therapeutic targets. Environmental factors, such as drugs, diet, and pollution, may also be the triggers of epigenetic changes. Therefore, this chapter will summarize the up-to-date progress on epigenetics regulation in lupus, in order to broaden our understanding of lupus and discuss the potential roles of epigenetic regulations for clinical applications.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Wu H, Chen Y, Zhu H, Zhao M, Lu Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front Immunol 2019; 10:2305. [PMID: 31611879 PMCID: PMC6776919 DOI: 10.3389/fimmu.2019.02305] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases can be chronic with relapse of inflammatory symptoms, but it can be also acute and life-threatening if immune cells destroy life-supporting organs, such as lupus nephritis. The etiopathogenesis of autoimmune diseases has been revealed as that genetics and environmental factors-mediated dysregulated immune responses contribute to the initiation and development of autoimmune disorders. However, the current understanding of pathogenesis is limited and the underlying mechanism has not been well defined, which lows the development of novel biomarkers and new therapeutic strategies for autoimmune diseases. To improve this, broadening and deepening our understanding of pathogenesis is an unmet need. As genetic susceptibility cannot explain the low accordance rate of incidence in homozygous twins, epigenetic regulations might be an additional explanation. Therefore, this review will summarize current progress of studies on epigenetic dysregulations contributing to autoimmune diseases, including SLE, rheumatoid arthritis (RA), psoriasis, type 1 diabetes (T1D), and systemic sclerosis (SSc), hopefully providing opinions on orientation of future research, as well as discussing the clinical utilization of potential biomarkers and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res 2018; 2018:4126106. [PMID: 29854836 PMCID: PMC5964414 DOI: 10.1155/2018/4126106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.
Collapse
|
13
|
Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, Yang N. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Front Genet 2018; 9:128. [PMID: 29755503 PMCID: PMC5932955 DOI: 10.3389/fgene.2018.00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Egg weight (EW) is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS) in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80). Results reveal that a 90 Kb genomic region (169.42 Mb ~ 169.51 Mb) in GGA1 is significantly associated with EW36 and is also potentially associated with egg weight at 28, 56, and 66 week of age. The leading SNP could account for 3.66% of the phenotypic variation, while two promising genes (DLEU7 and MIR15A) can be mapped to this narrow significant region and may affect EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1) and two genes (MEIS1 and SPRED2 on GGA3), which involved in the processes of embryogenesis and organogenesis, were also considered to be candidates related to first egg weight (FEW) and EW56, respectively. Findings in our study could provide worthy theoretical basis to generate eggs of ideal size based on marker assisted breeding selection.
Collapse
Affiliation(s)
- Zhuang Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyuan Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Engineering Research Center of Layer, Beijing, China
| | - Guangqi Li
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Aiqiao Liu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 2018; 428:90-103. [PMID: 29680223 DOI: 10.1016/j.canlet.2018.04.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, endogenous non-coding RNAs that repress the expression of target genes via post-transcriptional mechanisms. Due to their broad regulatory effects, the precisely regulated, spatial-specific and temporal-specific expression of miRNAs is fundamentally important to various biological processes including the immune homeostasis and normal function of both innate and adaptive immune response. Aberrance of miRNAs is implicated in the development of various human diseases, especially cancers. Increasing evidence has revealed a dysregulated expression pattern of miRNAs in autoimmune diseases, among which many play key roles in the pathogenesis. In this review we summarize these findings on miRNA dysregulation implicated in autoimmune diseases, focusing on four representative systemic autoimmune diseases, i.e. systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis and dermatomyositis. The causes of the dysregulation of miRNA expression in autoimmune diseases may include genetic and epigenetic variants, and various environmental factors. Further understanding of miRNA dysregulation and its mechanisms during the development of different autoimmune diseases holds enormous potential to bring about novel therapeutic targets or strategies for these complex human disorders, as well as novel circulating or exosomal miRNA biomarkers.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xin Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yongjian Chen
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ling Wang
- Department of Stomatology, The Third Hospital of Changsha, 176 Laodong West Road, Changsha, Hunan, 410015, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
15
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
16
|
Yuan J, Chen S, Shi F, Wu G, Liu A, Yang N, Sun C. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens. BMC Genomics 2017; 18:699. [PMID: 28877683 PMCID: PMC5586008 DOI: 10.1186/s12864-017-4092-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022] Open
Abstract
Background Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81–82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. Results The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55–45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds. Bioinformatics analysis further revealed that gga-mir-15a could act on many target genes, such as forkhead box O1 (FOXO1) that is involved in the insulin-signaling pathway, which influences nutrient metabolism in many organisms. Additionally, some suggestively significant variants, located on GGA3 and GGA9, were identified to associate with FI and RFI. Conclusions This GWA analysis was conducted on feed intake and efficiency traits for chickens and was innovative for application in the late laying period. Our findings can be used as a reference in the genomic breeding programs for increasing the efficiency performance of old hens and to improve our understanding of the molecular determinants for feed efficiency. Electronic supplementary material The online version of this article (10.1186/s12864-017-4092-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingwei Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fengying Shi
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Aiqiao Liu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
|
18
|
Husakova M. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:327-42. [DOI: 10.5507/bp.2016.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
|
19
|
Long H, Yin H, Wang L, Gershwin ME, Lu Q. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun 2016; 74:118-138. [PMID: 27396525 DOI: 10.1016/j.jaut.2016.06.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/09/2023]
Abstract
One of the major disappointments in human autoimmunity has been the relative failure on genome-wide association studies to provide "smoking genetic guns" that would explain the critical role of genetic susceptibility to loss of tolerance. It is well known that autoimmunity refers to the abnormal state that the dysregulated immune system attacks the healthy cells and tissues due to the loss of immunological tolerance to self-antigens. Its clinical outcomes are generally characterized by the presence of autoreactive immune cells and (or) the development of autoantibodies, leading to various types of autoimmune disorders. The etiology and pathogenesis of autoimmune diseases are highly complex. Both genetic predisposition and environmental factors such as nutrition, infection, and chemicals are implicated in the pathogenic process of autoimmunity, however, how much and by what mechanisms each of these factors contribute to the development of autoimmunity remain unclear. Epigenetics, which refers to potentially heritable changes in gene expression and function that do not involve alterations of the DNA sequence, has provided us with a brand new key to answer these questions. In the recent decades, increasing evidence have demonstrated the roles of epigenetic dysregulation, including DNA methylation, histone modification, and noncoding RNA, in the pathogenesis of autoimmune diseases, especially systemic lupus erythematosus (SLE), which have shed light on a new era for autoimmunity research. Notably, DNA hypomethylation and reactivation of the inactive X chromosome are two epigenetic hallmarks of SLE. We will herein discuss briefly how genetic studies fail to completely elucidate the pathogenesis of autoimmune diseases and present a comprehensive review on landmark epigenetic findings in autoimmune diseases, taking SLE as an extensively studied example. The epigenetics of other autoimmune diseases such as rheumatic arthritis, systemic sclerosis and primary biliary cirrhosis will also be summarized. Importantly we emphasize that the stochastic processes that lead to DNA modification may be the lynch pins that drive the initial break in tolerance.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Heng Yin
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Ling Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| |
Collapse
|
20
|
Goilav B, Putterman C, Rubinstein TB. Biomarkers for kidney involvement in pediatric lupus. Biomark Med 2016; 9:529-43. [PMID: 26079958 DOI: 10.2217/bmm.15.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis (LN), the renal involvement in systemic lupus erythematosus, is currently diagnosed by histopathology obtained by percutaneous renal biopsy and is associated with increased morbidity and mortality in both adults and children. LN is more prevalent and severe in children, requiring aggressive and prolonged immunosuppression. The consequences of the diagnosis and its treatment have devastating long-term effects on the growth, well-being and quality of life of affected children. The paucity of reliable clinical indicators of the presence and severity of renal involvement have contributed to a halt in the reduction of progression to end-stage renal disease in recent years. Here, we discuss the recent development of biomarkers in the management of LN and their role as therapeutic targets.
Collapse
Affiliation(s)
- Beatrice Goilav
- Children's Hospital at Montefiore, Department of Pediatrics, Division of Nephrology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Chaim Putterman
- Division of Rheumatology & Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Tamar B Rubinstein
- Children's Hospital at Montefiore, Department of Pediatrics, Division of Rheumatology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| |
Collapse
|
21
|
Liu XF, Wang RQ, Hu B, Luo MC, Zeng QM, Zhou H, Huang K, Dong XH, Luo YB, Luo ZH, Yang H. MiR-15a contributes abnormal immune response in myasthenia gravis by targeting CXCL10. Clin Immunol 2016; 164:106-13. [PMID: 26845678 DOI: 10.1016/j.clim.2015.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023]
Abstract
MiR-15a is likely to be associated with autoimmunity. Here, we aimed to examine the expression of miR-15 cluster in PBMCs from myasthenia gravis (MG) patients and investigate the potential roles of miR-15a in MG. We found that the expression of all miR-15 cluster was decreased in MG, furthermore, miR-15a levels in ocular MG (oMG) were much lower, while CXCL10 production was increased in MG. We display that CXCL10 was a functional target gene of miR-15a in MG. Increasing miR-15a expression could reduce CXCL10 expression and alleviate the abnormal T cells activation in immune response, while decreasing miR-15a expression could activate immune response abnormally. Moreover, miR-15a expression was significantly decreased after stimulation, and prednisone treatment could upregulate miR-15a expression in steroid-responsive MG patients. Take together, our data suggest that decreased miR-15a expression facilitates proinflammatory cytokines production and contributes to immune response at least in part via regulating CXCL10 expression in MG.
Collapse
Affiliation(s)
- Xiao-Fang Liu
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Run-Qi Wang
- Department of Pediatrics, The first affiliation hospital of Guangxi Medical University, People's Republic of China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Meng-Chuan Luo
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Qiu-Ming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Hao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Xiao-Hua Dong
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, People's Republic of China.
| |
Collapse
|
22
|
Wen C, Liu XY, Wan WQ, Yi ZW. Effects of Fetal and Neonatal Murine Peripheral Blood Mononuclear Cells Infusion on MicroRNA-145 Expression in Renal Vascular Smooth Muscle Cells in MRL/lpr Mice. Transplant Proc 2015; 47:2523-7. [PMID: 26518963 DOI: 10.1016/j.transproceed.2015.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
Abstract
For patients with refractory systemic lupus erythematosus, current medications are insufficient to control their condition, and new treatments are necessary. We aimed to evaluate the therapeutic effect of fetal and neonatal murine peripheral blood (FNPB) mononuclear cells and their impact on microRNA-145 (miR-145) in renal vascular smooth muscle cells (VSMCs) of MRL/lpr lupus-prone mice. MRL/lpr mice aged 20 weeks were randomized to 3 groups of 15 (control group, radiation group, infusion group). The renal tissues were subjected to pathological examination. In situ hybridization assay was applied to measure miR-145 expression in renal vessels of MRL/lpr mice. The infusion group had significantly better results for pathological renal tissue lesions than either the control or radiation group. In MRL/lpr mice, there was positive expression of miR-145 in renal VSMCs, although the expression of miR-145 was not discernible in renal vascular intima and adventitia. The miR-145 expression in renal VSMCs in the infusion group was significantly higher than in the control or radiation group, and higher in the radiation group than in the control group; however, the difference was not statistically significant. The increased expression of miR-145 in renal VSMCs might be one of the mechanisms supporting FNPB as a therapy for lupus nephritis; it also suggests that the miR-145 in renal vessels might be a new target for treatment of lupus nephritis.
Collapse
Affiliation(s)
- C Wen
- Department of Pediatrics, the Second Xiangya Hospital of Central South University, Changsha, China
| | - X Y Liu
- Department of Pediatrics, the Second Xiangya Hospital of Central South University, Changsha, China
| | - W Q Wan
- Department of Pediatrics, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Z W Yi
- Department of Pediatrics, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders. Clin Rev Allergy Immunol 2015; 50:301-11. [DOI: 10.1007/s12016-015-8494-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Wu H, Zhao M, Chang C, Lu Q. The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 2015; 16:11013-33. [PMID: 25988383 PMCID: PMC4463688 DOI: 10.3390/ijms160511013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 02/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Renal involvement is a major cause of morbidity and mortality in systemic lupus erythematosus. In this review, we provide an update on recent discoveries in the pathogenesis, diagnosis, and treatment of lupus nephritis. RECENT FINDINGS Localized long-lived plasma cells have been identified as playing an important role in lupus nephritis. In addition, the roles of aberrant expression of microRNAs and proinflammatory cytokines have been explored. Early diagnosis is important for effective treatment and multiple biomarkers have been identified; however, none has been yet validated for clinical use. Biomarker panels may turn out to be more accurate than each individual component. Biologic agents for the treatment of lupus nephritis are being studied, including belimumab which was recently approved for nonrenal systemic lupus erythematosus. Rituximab has not proven itself in large, placebo-controlled trials, although it is still being used in refractory cases of lupus nephritis. SUMMARY Lupus nephritis is a potentially devastating complication of systemic lupus erythematosus. Immune cells, cytokines, and epigenetic factors have all been recently implicated in lupus nephritis pathogenesis. These recent discoveries may enable a paradigm shift in the treatment of this complex disease, allowing the tailoring of treatment to target specific pathogenic mediators at specific points in time in the progression of disease. VIDEO ABSTRACT
Collapse
|
26
|
Yan S, Yim LY, Lu L, Lau CS, Chan VSF. MicroRNA Regulation in Systemic Lupus Erythematosus Pathogenesis. Immune Netw 2014; 14:138-48. [PMID: 24999310 PMCID: PMC4079820 DOI: 10.4110/in.2014.14.3.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNA molecules best known for their function in post-transcriptional gene regulation. Immunologically, miRNA regulates the differentiation and function of immune cells and its malfunction contributes to the development of various autoimmune diseases including systemic lupus erythematosus (SLE). Over the last decade, accumulating researches provide evidence for the connection between dysregulated miRNA network and autoimmunity. Interruption of miRNA biogenesis machinery contributes to the abnormal T and B cell development and particularly a reduced suppressive function of regulatory T cells, leading to systemic autoimmune diseases. Additionally, multiple factors under autoimmune conditions interfere with miRNA generation via key miRNA processing enzymes, thus further skewing the miRNA expression profile. Indeed, several independent miRNA profiling studies reported significant differences between SLE patients and healthy controls. Despite the lack of a consistent expression pattern on individual dysregulated miRNAs in SLE among these studies, the aberrant expression of distinct groups of miRNAs causes overlapping functional outcomes including perturbed type I interferon signalling cascade, DNA hypomethylation and hyperactivation of T and B cells. The impact of specific miRNA-mediated regulation on function of major immune cells in lupus is also discussed. Although research on the clinical application of miRNAs is still immature, through an integrated approach with advances in next generation sequencing, novel tools in bioinformatics database analysis and new in vitro and in vivo models for functional evaluation, the diagnostic and therapeutic potentials of miRNAs may bring to fruition in the future.
Collapse
Affiliation(s)
- Sheng Yan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lok Yan Yim
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Liwei Lu
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chak Sing Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
27
|
Lee HM, Nguyen DT, Lu LF. Progress and challenge of microRNA research in immunity. Front Genet 2014; 5:178. [PMID: 24971086 PMCID: PMC4053854 DOI: 10.3389/fgene.2014.00178] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are 19–24 nucleotide long non-coding RNA species that regulate the expression of multiple target genes at the post-transcriptional level. They are required for normal immune system development and function, and their expression is dynamically regulated in different immune cell subsets during lineage differentiation and immune response. Aberrant expression of miRNAs results in dysregulated innate and adaptive immunity. This in turn can lead to failure to fight against invading pathogens and the development of autoimmune diseases and hematopoietic malignancies. In this article, we review current progress in miRNA research in immunity in both physiological and pathological settings. We also discuss research limitations and challenges that researchers are just beginning to solve.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Division of Biological Sciences, University of California, San Diego La Jolla, CA, USA
| | - Duc T Nguyen
- Division of Biological Sciences, University of California, San Diego La Jolla, CA, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego La Jolla, CA, USA ; Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
28
|
MicroRNAs in autoimmune diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:527895. [PMID: 24991561 PMCID: PMC4065654 DOI: 10.1155/2014/527895] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/18/2014] [Accepted: 04/18/2014] [Indexed: 12/22/2022]
Abstract
Autoimmune diseases (ADs) are featured by body's immune responses being directed towards its own specific target organs or multiple organ systems, causing persistent inflammation and consequent tissue damage. miRNAs are small noncoding RNAs in a size of approximately 22 nt that play important regulatory roles in many organisms by cleavage or translational inhibition of targeted mRNAs. Many miRNAs are reported to be differentially expressed in ADs and may play a pivotal role in regulating immune responses and autoimmunity. In this review, current research progress in the miRNAs in ADs was elucidated.
Collapse
|
29
|
Danger R, Braza F, Giral M, Soulillou JP, Brouard S. MicroRNAs, Major Players in B Cells Homeostasis and Function. Front Immunol 2014; 5:98. [PMID: 24653724 PMCID: PMC3949129 DOI: 10.3389/fimmu.2014.00098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/24/2014] [Indexed: 01/04/2023] Open
Abstract
As a main actor in humoral immunity, B cells participate in various antibody-related disorders. However, a deeper understanding of B-cell differentiation and function is needed in order to decipher their immune-modulatory roles, notably with the recent highlighting of regulatory B cells. microRNAs (miRNAs), key factors in various biological and pathological processes, have been shown to be essential for B-cell homeostasis, and therefore understanding their participation in B-cell biology could help identify biomarkers and contribute toward curing B-cell-related immune disorders. This review aims to report studies casting light on the roles played by miRNAs in B-cell lineage and function and B-cell-related immune pathologies.
Collapse
Affiliation(s)
- Richard Danger
- Institute of Liver Studies, Medical Research Council Centre for Transplantation, King's College Hospital, King's College London , London , UK ; Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France
| | - Faouzi Braza
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France
| | - Magali Giral
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France ; Centre Hospitalier Universitaire, Hôtel Dieu , Nantes , France
| | - Jean-Paul Soulillou
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France ; Centre Hospitalier Universitaire, Hôtel Dieu , Nantes , France
| | - Sophie Brouard
- Institut National de la Santé et de la Recherche Médicale, U1064, Institut de Transplantation Urologie Néphrologie , Nantes , France ; Faculté de Médecine, Université de Nantes , Nantes , France ; Centre Hospitalier Universitaire, Hôtel Dieu , Nantes , France
| |
Collapse
|
30
|
Chang C. Unmet needs in the treatment of autoimmunity: from aspirin to stem cells. Autoimmun Rev 2014; 13:331-46. [PMID: 24462645 DOI: 10.1016/j.autrev.2014.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 12/26/2022]
Abstract
As rheumatologic diseases became understood to be autoimmune in nature, the drugs used to treat this group of conditions has evolved from herbal or plant derived anti-inflammatory agents, such as salicylates, quinine and colchicine to the many recently approved biological response modifiers. These new drugs, especially the anti-tumor necrosis factor agents, have shown remarkable efficacy in autoimmune diseases, and there are new agents under investigation that will provide additional treatment options. In between, the world was introduced to cortisone and all of its derivatives, as chemical synthesis led to better, more efficacious drugs with lesser side effects. Disease modifying anti-rheumatic agents have actually been around since the first half of the 20th century, but only began to be used in the treatment of autoimmune diseases in the 1970s and 1980s. One advantage is that they have been invaluable in their ability to offer "steroid sparing" to decrease the adverse effects of steroids. Research over the past decade has resulted in a new class of drugs that influence cytokine regulatory pathways such as the Janus associated kinase inhibitors. The promise of personalized medicine now permeates current research into new pharmacological agents for the treatment of autoimmune disease. The new appreciation for the gene-environment interaction in the pathogenesis of most diseases especially those as heterogeneous as autoimmune diseases, has led to our focus on targeted therapies. Add to that the new knowledge of epigenetics and how changes in DNA and histone structure affect expression of genes that can play a role in immune signaling, and we now have a new exciting frontier for cutting edge drug development. The history of treatment of autoimmune diseases is really only a little over a century, but so much has changed, leading to increasing lifespans and improved quality of life of those who suffer from these ailments.
Collapse
Affiliation(s)
- Christopher Chang
- Division of Allergy and Immunology, Thomas Jefferson University, Nemours/A.I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| |
Collapse
|
31
|
Abstract
The role of type I interferons (IFNs) in SLE pathogenesis has been a subject of intense investigation in the last decade. The strong link between type I IFNs and SLE was initially provided by ex vivo studies showing that exposure of peripheral blood mononuclear cells to immune complexes from SLE patients elicits a signature of IFN inducible genes and was then further highlighted by human genetic studies. The mechanisms by which type I IFNs, especially IFN alpha (IFNα), modulate the immune system and exacerbate SLE have been largely elucidated through studies in mouse lupus models. In this review, we discuss the characteristics of several such models in which disease is accelerated by ectopically expressed IFNα. We also summarize several studies which tested therapeutic interventions in these models and discuss the advantages and disadvantages of using IFNα accelerated models to study experimental treatments for lupus.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset , New York, NY , USA
| | | |
Collapse
|
32
|
Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus. Cell Signal 2013; 25:1828-36. [DOI: 10.1016/j.cellsig.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/06/2013] [Indexed: 12/31/2022]
|
33
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
34
|
Lower levels of hsa-mir-15a, which decreases VEGFA, in the CD4+ T cells of pediatric patients with asthma. J Allergy Clin Immunol 2013; 132:1224-1227.e12. [PMID: 23954351 DOI: 10.1016/j.jaci.2013.06.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/11/2013] [Accepted: 06/24/2013] [Indexed: 01/28/2023]
|
35
|
MicroRNAs implicated in the immunopathogenesis of lupus nephritis. Clin Dev Immunol 2013; 2013:430239. [PMID: 23983769 PMCID: PMC3741610 DOI: 10.1155/2013/430239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/20/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the deposition of immune complexes due to widespread loss of immune tolerance to nuclear self-antigens. Deposition in the renal glomeruli results in the development of lupus nephritis (LN), the leading cause of morbidity and mortality in SLE. In addition to the well-recognized genetic susceptibility to SLE, disease pathogenesis is influenced by epigenetic regulators such as microRNAs (miRNAs). miRNAs are small, noncoding RNAs that bind to the 3′ untranslated region of target mRNAs resulting in posttranscriptional gene modulation. miRNAs play an important and dynamic role in the activation of innate immune cells and are critical in regulating the adaptive immune response. Immune stimulation and the resulting cytokine milieu alter miRNA expression while miRNAs themselves modify cellular responses to stimulation. Here we examine dysregulated miRNAs implicated in LN pathogenesis from human SLE patients and murine lupus models. The effects of LN-associated miRNAs in the kidney, peripheral blood mononuclear cells, macrophages, mesangial cells, dendritic cells, and splenocytes are discussed. As the role of miRNAs in immunopathogenesis becomes delineated, it is likely that specific miRNAs may serve as targets for therapeutic intervention in the treatment of LN and other pathologies.
Collapse
|
36
|
Li J, Wan Y, Ji Q, Fang Y, Wu Y. The role of microRNAs in B-cell development and function. Cell Mol Immunol 2013; 10:107-12. [PMID: 23314697 DOI: 10.1038/cmi.2012.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA)-mediated gene silencing at the translational level has led to novel discoveries for numerous biological processes. Recently, there has been increasing evidence to indicate that miRNAs are involved in normal immune functions and inflammation. In this review, we focus on recent advances that have elucidated the role of miRNAs in B-cell development, differentiation, apoptosis and function. While the regulatory mechanisms of miRNAs in controlling and maintaining B-cell fate remain largely uncharacterized, further studies on miRNAs and their targets will increase our understanding of B-cell development and function. Such studies may be able to provide new therapeutic strategies for treating autoimmune diseases.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Rheumatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
37
|
Ceribelli A, Satoh M, Chan EKL. MicroRNAs and autoimmunity. Curr Opin Immunol 2012; 24:686-91. [PMID: 22902047 DOI: 10.1016/j.coi.2012.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/31/2022]
Abstract
The role of microRNAs (miRNAs) in the regulation of many physiological and pathological processes has been intensely studied in recent years. Some miRNAs, such as miR-146a and miR-182, play a dominant role in the regulation of the innate and adaptive immune responses, respectively. Many miRNAs are reportedly deregulated in autoimmune diseases, but miR-146a in particular seems to be consistently altered. The overexpression or underexpression of miRNAs can influence specific targets and pathways, leading to autoimmune disease phenotypes, and this is supported also by some in vivo studies. Targeting miRNAs could represent a valid future therapeutic option for autoimmune diseases.
Collapse
Affiliation(s)
- Angela Ceribelli
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, United States
| | | | | |
Collapse
|