1
|
Chen G, Meng Z, Wang P. Cigarette smoke-exposed microparticles released from T lymphocytes contribute to autophagy and apoptosis dysfunction in pulmonary microvascular endothelial cells. Mol Immunol 2025; 181:9-17. [PMID: 40048930 DOI: 10.1016/j.molimm.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/13/2024] [Accepted: 02/24/2025] [Indexed: 04/07/2025]
Abstract
Cigarette smoke can cause dysfunction of the vascular endothelium; however, the underlying mechanisms have not been fully elucidated. We hypothesized that T lymphocyte-derived microparticles (TLMPs) are involved in cigarette-related diseases, especially those involving the vascular endothelium. The effect of cigarette smoke on the release of microparticles from human lymphocytes was investigated. The contributions of TLMPs induced by cigarette smoke to endothelial proliferation/apoptosis, autophagy and cytokine levels were also measured. Notably, the potential mechanism of autophagy and apoptosis dysfunction in endothelial cells was further examined. Cigarette smoke promoted the release of microparticles from T lymphocytes. TLMPs attenuated endothelial proliferation but promoted endothelial apoptosis/autophagy and the expression of proinflammatory cytokines, especially when T lymphocytes were preexposed to cigarette smoke. The potential mechanism may involve disorders of oxidative stress and STAT3 phosphorylation. In conclusion, cigarette smoke-exposed microparticles released from T lymphocytes contribute to autophagy and apoptosis dysfunction in pulmonary microvascular endothelial cells.
Collapse
Affiliation(s)
- Gang Chen
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhaoji Meng
- Department of Immune Allergy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
3
|
Takahashi T, Schleimer RP. Epithelial-Cell-Derived Extracellular Vesicles in Pathophysiology of Epithelial Injury and Repair in Chronic Rhinosinusitis: Connecting Immunology in Research Lab to Biomarkers in Clinics. Int J Mol Sci 2021; 22:11709. [PMID: 34769139 PMCID: PMC8583779 DOI: 10.3390/ijms222111709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial barrier disruption and failure of epithelial repair by aberrant epithelial-mesenchymal transition (EMT)-induced basal cells observed in nasal mucosa of chronic rhinosinusitis (CRS) are speculated to play important roles in disease pathophysiology. Microparticles (MPs) are a type of extracellular vesicle (EV) released by budding or shedding from the plasma membrane of activated or apoptotic cells. MPs are detected in nasal lavage fluids (NLFs) and are now receiving attention as potential biomarkers to evaluate the degree of activation of immune cells and injury of structural cells in nasal mucosa of subjects with sinus disease. There are three types of epithelial-cell-derived MPs, which are defined by the expression of different epithelial specific markers on their surface: EpCAM, E-cadherin, and integrin β6 (ITGB6). When these markers are on MPs that are also carrying canonical EMT/mesenchymal markers (Snail (SNAI1); Slug (SNAI2); alpha-smooth muscle actin (αSMA, ACTA2)) or pro- and anti-coagulant molecules (tissue factor (TF); tissue plasminogen activator (tPA); plasminogen activator inhibitor-1 (PAI-1)), they provide insight as to the roles of epithelial activation for EMT or regulation of coagulation in the underlying disease. In this review, we discuss the potential of epithelial MPs as research tools to evaluate status of nasal mucosae of CRS patients in the lab, as well as biomarkers for management and treatment of CRS in the clinic.
Collapse
Affiliation(s)
- Toru Takahashi
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Croasdell Lucchini A, Gachanja NN, Rossi AG, Dorward DA, Lucas CD. Epithelial Cells and Inflammation in Pulmonary Wound Repair. Cells 2021; 10:339. [PMID: 33562816 PMCID: PMC7914803 DOI: 10.3390/cells10020339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory diseases are frequently characterised by epithelial injury, airway inflammation, defective tissue repair, and airway remodelling. This may occur in a subacute or chronic context, such as asthma and chronic obstructive pulmonary disease, or occur acutely as in pathogen challenge and acute respiratory distress syndrome (ARDS). Despite the frequent challenge of lung homeostasis, not all pulmonary insults lead to disease. Traditionally thought of as a quiescent organ, emerging evidence highlights that the lung has significant capacity to respond to injury by repairing and replacing damaged cells. This occurs with the appropriate and timely resolution of inflammation and concurrent initiation of tissue repair programmes. Airway epithelial cells are key effectors in lung homeostasis and host defence; continual exposure to pathogens, toxins, and particulate matter challenge homeostasis, requiring robust defence and repair mechanisms. As such, the epithelium is critically involved in the return to homeostasis, orchestrating the resolution of inflammation and initiating tissue repair. This review examines the pivotal role of pulmonary airway epithelial cells in initiating and moderating tissue repair and restitution. We discuss emerging evidence of the interactions between airway epithelial cells and candidate stem or progenitor cells to initiate tissue repair as well as with cells of the innate and adaptive immune systems in driving successful tissue regeneration. Understanding the mechanisms of intercellular communication is rapidly increasing, and a major focus of this review includes the various mediators involved, including growth factors, extracellular vesicles, soluble lipid mediators, cytokines, and chemokines. Understanding these areas will ultimately identify potential cells, mediators, and interactions for therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | | | - Christopher D. Lucas
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh EH16 4TJ, UK; (A.C.L.); (N.N.G.); (A.G.R.); (D.A.D.)
| |
Collapse
|
5
|
Qiu Q, Dan X, Yang C, Hardy P, Yang Z, Liu G, Xiong W. Increased airway T lymphocyte microparticles in chronic obstructive pulmonary disease induces airway epithelial injury. Life Sci 2020; 261:118357. [PMID: 32861794 DOI: 10.1016/j.lfs.2020.118357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
In our previous study, T lymphocyte microparticles (TLMPs) originated from CEM T lymphoblast-like cell line induced enhanced production of inflammation-associated cytokines and apoptosis in human bronchial epithelial cells (HBEs). To measure TLMP subpopulations in bronchoalveolar lavage fluids (BALF) from patients with chronic obstructive pulmonary disease (COPD), and to explore the effects of MPs derived from different T cell subpopulations on airway epithelium, this study was conducted. A hospital-based case-control study including 47 COPD patients and 28 healthy volunteers was performed. The cellular origins of MPs from airway in COPD and controls were evaluated using flow cytometry. CD4+ or CD8+ TLMPs were isolated by MACS to investigate their effects on HBEs in vitro. The numbers of MPs derived from T lymphocytes in BALF as well as these subpopulations (CD4+ and CD8+ T lymphocytes) were significantly upregulated in COPD patients compared with healthy volunteers. However, there was no significant difference between stable COPD and patients with acute exacerbation. Additionally, significant correlation between CD4+ and CD8+ TLMPs was observed, however neither type nor total level of TLMPs was correlated with any base parameter. Furthermore, isolated CD4+ and CD8+ TLMPs reduced cell viability and induced significant production of inflammatory cytokines including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, MCP-2, matrix metallopeptidase (MMP)-9 and tumor necrosis factor-alpha (TNF-α) in HBEs, while the levels of anti-inflammatory cytokine IL-10 were decreased. TLMPs in the airways, as putative biomarkers, may lead to airway epithelial injury and inflammation and serve essential roles in the pathophysiology of COPD.
Collapse
Affiliation(s)
- Qian Qiu
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, China; Research Institute of Tuberculosis, Chongqing Public Health Medical Center, Chongqing, China
| | - Xiaoping Dan
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Chun Yang
- Department of Pediatrics and Pharmacology, Research Center of CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Pierre Hardy
- Department of Pediatrics and Pharmacology, Research Center of CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Zaixing Yang
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Guoxiang Liu
- Department of Respiratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Wei Xiong
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Qiu Q, Yang Z, Cao F, Yang C, Hardy P, Yan X, Yang S, Xiong W. Activation of NLRP3 inflammasome by lymphocytic microparticles via TLR4 pathway contributes to airway inflammation. Exp Cell Res 2019; 386:111737. [PMID: 31759058 DOI: 10.1016/j.yexcr.2019.111737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
The presence of elevated T lymphocytic microparticles (TLMPs) during respiratory illness is associated with airway and lung inflammation and epithelial injuries. Although inflammasome and IL-1β signaling are crucial in airway inflammation, little was known about their regulatory mechanism. We hypothesized that TLMPs trigger inflammasome activation and IL-1β production in bronchial and alveolar epithelial cells to induce airway and lung inflammation. In this study, TLMPs induced IL-1β and IL-18 secretion through NLRP3 inflammasome activation and upregulated TLR4 mRNA and protein expression in alveolar (A549) and human airway epithelial (16HBE) cells. Pretreatment with CLI-095, a specific inhibitor of TLR4 signaling, dramatically diminished the TLMP-induced release of IL-1β and IL-18 by inhibiting the formation of NLRP3/ASC/pro-caspase-1 inflammasome in a dose-dependent manner. The TLMP-induced autophagy inhibition in epithelial cells was dependent on the PI3K/Akt signaling pathway, which significantly increased NLRP3 expression and enhanced TLMP-induced inflammation. TLR4, IL-1β, and IL-18 proteins harbored in TLMPs were nonessential for the pro-inflammatory effect. In conclusion, TLMPs induce bronchial and alveolar epithelial cell secretion of IL-1β and IL-18 cytokines by activating the TLR4 and PI3K/Akt signaling pathways and inhibiting autophagy. These effects lead to NLRP3 inflammasome formation and accumulation. TLMPs may be regarded as deleterious markers of airway and lung damage in respiratory diseases.
Collapse
Affiliation(s)
- Qian Qiu
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China; Research Institute of Tuberculosis, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Zaixing Yang
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Fuli Cao
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Chun Yang
- Departments of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Xiaofeng Yan
- Research Institute of Tuberculosis, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Song Yang
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Wei Xiong
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol 2018; 9:2723. [PMID: 30619239 PMCID: PMC6300519 DOI: 10.3389/fimmu.2018.02723] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Sabine Katharina Urban
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Bern MM. Extracellular vesicles: how they interact with endothelium, potentially contributing to metastatic cancer cell implants. Clin Transl Med 2017; 6:33. [PMID: 28933058 PMCID: PMC5607152 DOI: 10.1186/s40169-017-0165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are blebs of cellular membranes, which entrap small portions of subjacent cytosol. They are released from a variety of cells, circulate in the blood for an unknown length of time and come to rest on endothelial surfaces. They contribute to an array of physiologic pathways, the complexity of which is still being investigated. They contribute to metastatic malignant cell implants and tumor-related angiogenesis, possibly abetted by the tissue factor that they carry. It is thought that the adherence of the EV to endothelium is dependent upon a combination of their P-selectin glycoprotein ligand-1 and exposed phosphatidylserine, the latter of which is normally hidden on the inner bilayer of the intact cellular membrane. This manuscript reviews what is known about EV origins, their clearance from the circulation and how they contribute to malignant cell implants upon endothelium surfaces and subsequent tumor growth.
Collapse
Affiliation(s)
- Murray M Bern
- University of New Mexico Comprehensive Cancer Center, 1201 Camino de Salud, Albuquerque, NM, 87131, USA.
| |
Collapse
|
9
|
Nieri D, Neri T, Petrini S, Vagaggini B, Paggiaro P, Celi A. Cell-derived microparticles and the lung. Eur Respir Rev 2017; 25:266-77. [PMID: 27581826 DOI: 10.1183/16000617.0009-2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/19/2016] [Indexed: 12/20/2022] Open
Abstract
Cell-derived microparticles are small (0.1-1 μm) vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Dario Nieri
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy Both authors contributed equally
| | - Tommaso Neri
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy Both authors contributed equally
| | - Silvia Petrini
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| | - Barbara Vagaggini
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| | - Pierluigi Paggiaro
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Tahiri H, Omri S, Yang C, Duhamel F, Samarani S, Ahmad A, Vezina M, Bussières M, Vaucher E, Sapieha P, Hickson G, Hammamji K, Lapointe R, Rodier F, Tremblay S, Royal I, Cailhier JF, Chemtob S, Hardy P. Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization. Sci Rep 2016; 6:37391. [PMID: 27874077 PMCID: PMC5118818 DOI: 10.1038/srep37391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/27/2016] [Indexed: 11/13/2022] Open
Abstract
Pathological choroidal neovascularization (CNV) is the common cause of vision loss in patients with age-related macular degeneration (AMD). Macrophages possess potential angiogenic function in CNV. We have demonstrated that human T lymphocyte-derived microparticles (LMPs) exert a potent antiangiogenic effect in several pathological neovascularization models. In this study, we investigated the alteration of proangiogenic properties of macrophages by LMPs treatment in vitro and in vivo models. LMPs regulated the expression of several angiogenesis-related factors in macrophages and consequently stimulated their antiangiogenic effects evidenced by the suppression of the proliferation of human retinal endothelial cells in co-culture experiments. The involvement of CD36 receptor in LMPs uptake by macrophages was demonstrated by in vitro assays and by immunostaining of choroidal flat mounts. In addition, ex vivo experiments showed that CD36 mediates the antiangiogenic effect of LMPs in murine and human choroidal explants. Furthermore, intravitreal injection of LMPs in the mouse model of laser-induced CNV significantly suppressed CNV in CD36 dependent manner. The results of this study suggested an ability of LMPs to alter the gene expression pattern of angiogenesis-related factors in macrophages, which provide important information for a new therapeutic approach for efficiently interfering with both vascular and extravascular components of CNV.
Collapse
Affiliation(s)
- Houda Tahiri
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada.,Research Center CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Samy Omri
- Research Center Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada
| | - Chun Yang
- Research Center CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - François Duhamel
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Samarani
- Departments of Microbiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Ali Ahmad
- Departments of Microbiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Mark Vezina
- Charles River Laboratories, Senneville, Montreal, QC, Canada
| | | | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montréal, QC, Canada
| | - Przemyslaw Sapieha
- Research Center Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada.,Department of Ophthalmology, Université de Montréal, Montréal, QC, Canada
| | - Gilles Hickson
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Karim Hammamji
- Department of Ophthalmology, Université de Montréal, Montréal, QC, Canada
| | - Réjean Lapointe
- Institut du Cancer de Montréal, CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Francis Rodier
- Institut du Cancer de Montréal, CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sophie Tremblay
- University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Isabelle Royal
- Institut du Cancer de Montréal, CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Cailhier
- Institut du Cancer de Montréal, CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada.,Research Center CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada.,Research Center Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada.,Department of Ophthalmology, Université de Montréal, Montréal, QC, Canada.,Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada.,Research Center CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada.,Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Dynamic microvesicle release and clearance within the cardiovascular system: triggers and mechanisms. Clin Sci (Lond) 2015; 129:915-31. [PMID: 26359252 DOI: 10.1042/cs20140623] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in cell-derived microvesicles (or microparticles) within cardiovascular diagnostics and therapeutics is rapidly growing. Microvesicles are often measured in the circulation at a single time point. However, it is becoming clear that microvesicle levels both increase and decrease rapidly in response to certain stimuli such as hypoxia, acute cardiac stress, shear stress, hypertriglyceridaemia and inflammation. Consequently, the levels of circulating microvesicles will reflect the balance between dynamic mechanisms for release and clearance. The present review describes the range of triggers currently known to lead to microvesicle release from different cellular origins into the circulation. Specifically, the published data are used to summarize the dynamic impact of these triggers on the degree and rate of microvesicle release. Secondly, a summary of the current understanding of microvesicle clearance via different cellular systems, including the endothelial cell and macrophage, is presented, based on reported studies of clearance in experimental models and clinical scenarios, such as transfusion or cardiac stress. Together, this information can be used to provide insights into potential underlying biological mechanisms that might explain the increases or decreases in circulating microvesicle levels that have been reported and help to design future clinical studies.
Collapse
|
12
|
Milbank E, Soleti R, Martinez E, Lahouel B, Hilairet G, Martinez MC, Andriantsitohaina R, Noireaud J. Microparticles from apoptotic RAW 264.7 macrophage cells carry tumour necrosis factor-α functionally active on cardiomyocytes from adult mice. J Extracell Vesicles 2015; 4:28621. [PMID: 26498917 PMCID: PMC4620690 DOI: 10.3402/jev.v4.28621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/26/2015] [Accepted: 09/30/2015] [Indexed: 11/14/2022] Open
Abstract
After ischaemic injury and in patients with atherosclerosis, the pool of inflammatory macrophages is enlarged in the heart and in atherosclerotic plaques. Monocyte/macrophage-derived microparticles (MPs) are part of the pathological process of unstable atherosclerotic plaques. The present study focused on effects of MPs, produced by apoptotic murine RAW 264.7 macrophage cell line, in adult murine cardiomyocytes. Flow cytometry and western blot analysis showed that these MPs contained the soluble form of tumour necrosis factor alpha (TNF-α). Cardiomyocyte sarcomere shortening amplitudes and kinetics were reduced within 5 min of exposure to these MPs. Conversely, Ca2+ transient amplitude and kinetics were not modified. The contractile effects of MPs were completely prevented after pretreatment with nitric oxide synthase, guanylate cyclase or TNF-α inhibitors as well as blocking TNF-α receptor 1 with neutralizing antibody. Microscopy showed that, after 1 h, MPs were clearly surrounding rod-shaped cardiomyocytes, and after 2 h they were internalized into cardiomyocytes undergoing apoptosis. After 4 h of treatment with MPs, cardiomyocytes expressed increased caspase-3, caspase-8, Bax and cytochrome C. Thus, MPs from apoptotic macrophages induced a negative inotropic effect and slowing of both contraction and relaxation, similar to that observed in the presence of TNF-α. The use of specific inhibitors strongly suggests that TNF-α receptors and the guanylate cyclase/cGMP/PKG pathway were involved in the functional responses to these MPs and that the mitochondrial intrinsic pathway was implicated in their proapoptotic effects. These data suggest that MPs issued from activated macrophages carrying TNF-α could contribute to propagation of inflammatory signals leading to myocardial infarction.
Collapse
Affiliation(s)
- Edward Milbank
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France
| | - Raffaella Soleti
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France
| | - Emilie Martinez
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France
| | - Badreddine Lahouel
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France
| | - Grégory Hilairet
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France
| | - M Carmen Martinez
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France;
| | - Jacques Noireaud
- Inserm UMR 1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers, Angers, France
| |
Collapse
|
13
|
SYK is a target of lymphocyte-derived microparticles in the induction of apoptosis of human retinoblastoma cells. Apoptosis 2015; 20:1613-22. [DOI: 10.1007/s10495-015-1177-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Yang C, Xiong W, Qiu Q, Tahiri H, Gagnon C, Liu G, Hardy P. Generation of lymphocytic microparticles and detection of their proapoptotic effect on airway epithelial cells. J Vis Exp 2015:e52651. [PMID: 25742309 DOI: 10.3791/52651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interest in the biological roles of cell membrane-derived vesicles in cell-cell communication has increased in recent years. Microparticles (MPs) are one such type of vesicles, ranging in diameter from 0.1 μm to 1 μm, and typically shed from the plasma membrane of eukaryotic cells undergoing activation or apoptosis. Here we describe the generation of T lymphocyte-derived microparticles (LMPs) from apoptotic CEM T cells stimulated with actinomycin D. LMPs are isolated through a multistep differential centrifugation process and characterized using flow cytometry. This protocol also presents an in situ cell death detection method for demonstrating the proapoptotic effect of LMPs on bronchial epithelial cells derived from mouse primary respiratory bronchial tissue explants. Methods described herein provide a reproducible procedure for isolating abundant quantities of LMPs from apoptotic lymphocytes in vitro. LMPs derived in this manner can be used to evaluate the characteristics of various disease models, and for pharmacology and toxicology testing. Given that the airway epithelium offers a protective physical and functional barrier between the external environment and underlying tissue, use of bronchial tissue explants rather than immortalized epithelial cell lines provides an effective model for investigations requiring airway tract tissue.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics and Pharmacology, University of Montréal
| | - Wei Xiong
- Department of Pulmonology, Chongqing Southwest Hospital, Third Military Medical University
| | - Qian Qiu
- Department of Pulmonology, Chongqing Southwest Hospital, Third Military Medical University
| | - Houda Tahiri
- Departments of Pediatrics and Pharmacology, University of Montréal
| | - Carmen Gagnon
- Departments of Pediatrics and Pharmacology, University of Montréal
| | - Guoxiang Liu
- Department of Pulmonology, Chongqing Southwest Hospital, Third Military Medical University
| | - Pierre Hardy
- Departments of Pediatrics and Pharmacology, University of Montréal;
| |
Collapse
|
15
|
Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. Biochim Biophys Acta Gen Subj 2014; 1840:2299-309. [DOI: 10.1016/j.bbagen.2014.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 01/17/2023]
|
16
|
Lymphocyte-derived microparticles induce apoptosis of airway epithelial cells through activation of p38 MAPK and production of arachidonic acid. Apoptosis 2014; 19:1113-27. [DOI: 10.1007/s10495-014-0993-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|