1
|
Ru X, Chen S, Chen D, Shao Q, Shao W, Ye Q. Simulating the clinical manifestations and disease progression of human sepsis: A monobacterial injection approach for animal modeling. Virulence 2024; 15:2395835. [PMID: 39219264 PMCID: PMC11370922 DOI: 10.1080/21505594.2024.2395835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, with great clinical heterogeneity, high morbidity, and high mortality. At the same time, there are many kinds of infection sources, the pathophysiology is very complex, and the pathogenesis has not been fully elucidated. An ideal animal model of sepsis can accurately simulate clinical sepsis and promote the development of sepsis-related pathogenesis, treatment methods, and prognosis. The existing sepsis model still uses the previous Sepsis 2.0 modelling standard, which has some problems, such as many kinds of infection sources, poor repeatability, inability to take into account single-factor studies, and large differences from clinical sepsis patients. To solve these problems, this study established a new animal model of sepsis. The model uses intravenous tail injection of a single bacterial strain, simplifying the complexity of multibacterial infection, and effectively solving the above problems.
Collapse
Affiliation(s)
- Xuanwen Ru
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simiao Chen
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danlei Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingyi Shao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxia Shao
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Ye
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
3
|
Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:231. [PMID: 33148302 PMCID: PMC7641842 DOI: 10.1186/s13046-020-01727-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of endogenous, non-protein coding RNAs that are highly linked to various cellular functions and pathological process. Emerging evidence indicates that lncRNAs participate in crosstalk between tumor and stroma, and reprogramming of tumor immune microenvironment (TIME). TIME possesses distinct populations of myeloid cells and lymphocytes to influence the immune escape of cancer, the response to immunotherapy, and the survival of patients. However, hitherto, a comprehensive review aiming at relationship between lncRNAs and TIME is missing. In this review, we focus on the functional roles and molecular mechanisms of lncRNAs within the TIME. Furthermore, we discussed the potential immunotherapeutic strategies based on lncRNAs and their limitations.
Collapse
|
4
|
Wu X, Yao D, Bao L, Liu D, Xu X, An Y, Zhang X, Cao B. Ficolin A derived from local macrophages and neutrophils protects against lipopolysaccharide-induced acute lung injury by activating complement. Immunol Cell Biol 2020; 98:595-606. [PMID: 32339310 DOI: 10.1111/imcb.12344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Ficolins are important and widely distributed pattern recognition molecules that can induce lectin complement pathway activation and initiate the innate immune response. Although ficolins can bind lipopolysaccharide (LPS) in vitro, the sources, dynamic changes and roles of local ficolins in LPS-induced pulmonary inflammation and injury remain poorly understood. In this study, we established a ficolin knockout mouse model by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology, and used flow cytometry and hematoxylin and eosin staining to study the expressions and roles of local ficolins in LPS-induced pulmonary inflammation and injury. Our results show that besides ficolin B (FcnB), ficolin A (FcnA) is also expressed in leukocytes from the bone marrow, peripheral blood, lung and spleen. Further analyses showed that macrophages and neutrophils are the main sources of FcnA and FcnB, and T and B cells also express a small amount of FcnB. The intranasal administration of LPS induced local pulmonary inflammation with the increased recruitment of macrophages and neutrophils. LPS stimulation induced increased expression of FcnA and FcnB in neutrophils at the acute stage and in macrophages at the late stage. The severity of the lung injury and local inflammation of Fcna-/- mice was increased by the induction of extracellular complement activation. The recovery of LPS-induced local lung inflammation and injury was delayed in Fcnb-/- mice. Hence, these findings suggested that the local macrophage- and neutrophil-derived FcnA protects against LPS-induced acute lung injury by mediating extracellular complement activation.
Collapse
Affiliation(s)
- Xu Wu
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine , Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Di Liu
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100006, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
5
|
Tian X, Zheng Y, Yin K, Ma J, Tian J, Zhang Y, Mao L, Xu H, Wang S. LncRNA AK036396 Inhibits Maturation and Accelerates Immunosuppression of Polymorphonuclear Myeloid-Derived Suppressor Cells by Enhancing the Stability of Ficolin B. Cancer Immunol Res 2020; 8:565-577. [PMID: 32102837 DOI: 10.1158/2326-6066.cir-19-0595] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) are emerging as crucial regulators of cell biology. However, the role of lncRNAs in the development and function of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) remains unclear. Here, we identified that the lncRNA F730016J06Rik (AK036396) was highly expressed in PMN-MDSCs and that lncRNA AK036396 knockdown promoted the maturation and decreased the suppressive function of PMN-MDSCs. Ficolin B (Fcnb), the expression of which could be assessed as a surrogate for PMN-MDSC development, was the predicted target gene of lncRNA AK036396 based on microarray results. LncRNA AK036396 knockdown attenuated Fcnb protein stability in a manner dependent on the ubiquitin-proteasome system. Moreover, Fcnb inhibition downregulated the suppressive function of PMN-MDSCs. In addition, the expression of human M-ficolin, which is an ortholog of mouse Fcnb, was increased and positively correlated with arginase1 (ARG1) expression. This suppressive molecule is released by MDSCs, and its production is commonly used to represent the suppressive activity of MDSCs in patients with lung cancer, suggesting clinical relevance for these findings. These results indicate that lncRNA AK036396 can inhibit maturation and accelerate immunosuppression of PMN-MDSCs by enhancing Fcnb protein stability.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu Zheng
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Jarlhelt I, Genster N, Kirketerp-Møller N, Skjoedt MO, Garred P. The ficolin response to LPS challenge in mice. Mol Immunol 2019; 108:121-127. [PMID: 30818229 DOI: 10.1016/j.molimm.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The ficolins belong to an important family of pattern recognition molecules, which contributes to complement activation via the lectin pathway. How the ficolins respond to inflammatory stimuli remains only partly understood. In the present study, we investigated the ficolin A and ficolin B expression and protein distribution patterns in a mouse model of LPS-induced inflammation. The time- and tissue-specific expression of ficolin A and B was determined by real time PCR. Furthermore, ficolin protein levels in serum and bone marrow extracts from LPS challenged mice were determined by novel in-house developed sandwich ELISAs. Ficolin A was mainly expressed in liver and spleen. However, our data also suggested that ficolin A is expressed in bone marrow, which is the main site of ficolin B expression. The level of ficolin A and B expression was increased after stimulation with LPS in the investigated tissues. This was followed by a downregulation of expression, causing mRNA levels to return to baseline 24 h post LPS challenge. Protein levels appeared to follow the same pattern as the expression profiles, with an exception of ficolin B levels in serum, which kept increasing for 24 h. Ficolin A was likewise significantly increased in bronchoalveolar lavage fluid from mice infected with the fungi A. fumigatus, pointing towards a similar effect of the ficolins in non-sterile mouse models of inflammation. The results demonstrate that LPS-induced inflammation can induce a significant ficolin response, suggesting that the murine ficolins are acute phase reactants with increase in both mRNA expression and protein levels during systemic inflammation.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Møller
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Li J, Li H, Yu Y, Liu Y, Liu Y, Ma Q, Zhang L, Lu X, Wang XY, Chen Z, Zuo D, Zhou J. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE 2 pathway. Oncoimmunology 2018; 8:e1527650. [PMID: 30713782 DOI: 10.1080/2162402x.2018.1527650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
Mannan binding lectin (MBL), initially known to activate the complement lectin pathway and defend against infection, was recently shown to be potentially involved in the development of several types of cancer; however, its exact role in cancers, especially its effect on tumor microenvironment remain largely unknown. Here, using a murine hepatocellular carcinoma (HCC) model, we showed that MBL was a component of liver microenvironment and MBL-deficient (MBL-/-) mice exhibited an enhanced tumor growth compared with wild-type (WT) mice. This phenomenon was associated with elevation of myeloid derived suppressed cells (MDSCs) in tumor tissue of MBL-/- mice. MBL deficiency also resulted in an increase of activated hepatic stellate cells (HSCs), which showed enhanced cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production. Pharmacological inhibition of COX-2 in vivo partially abrogated the MBL deficiency-promoted tumor growth and MDSC accumulation. Mechanistic studies revealed that MBL could interact directly with HSCs and inhibit HCC-induced HSCs activation via downregulating the extracellular signal-regulated kinase (ERK)/COX-2/PGE2 signaling pathway. Furthermore, MBL-mediated suppression of HCC is validated by administration of MBL-expressing, liver-specific adeno-associated virus (AAV), which significantly inhibited HCC progression in MBL-/- mice. Taken together, these data reveal that MBL may impact on tumor development by shaping the tumor microenvironment via its interaction with the local stromal cells, and also suggests its potential therapeutic use for the treatment of HCC.
Collapse
Affiliation(s)
- Junru Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huifang Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, USA
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangdong, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Genster N, Østrup O, Schjalm C, Eirik Mollnes T, Cowland JB, Garred P. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo. Sci Rep 2017; 7:3852. [PMID: 28634324 PMCID: PMC5478672 DOI: 10.1038/s41598-017-04121-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested. Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and K.J. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Genster N, Præstekjær Cramer E, Rosbjerg A, Pilely K, Cowland JB, Garred P. Ficolins Promote Fungal Clearance in vivo and Modulate the Inflammatory Cytokine Response in Host Defense against Aspergillus fumigatus. J Innate Immun 2016; 8:579-588. [PMID: 27467404 PMCID: PMC6738752 DOI: 10.1159/000447714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 01/24/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes severe invasive infections in immunocompromised patients. Innate immunity plays a major role in protection against A. fumigatus. The ficolins are a family of soluble pattern recognition receptors that are capable of activating the lectin pathway of complement. Previous in vitro studies reported that ficolins bind to A. fumigatus, but their part in host defense against fungal infections in vivo is unknown. In this study, we used ficolin-deficient mice to investigate the role of ficolins during lung infection with A. fumigatus. Ficolin knockout mice showed significantly higher fungal loads in the lungs 24 h postinfection compared to wild-type mice. The delayed clearance of A. fumigatus in ficolin knockout mice could not be attributed to a compromised recruitment of inflammatory cells. However, it was revealed that ficolin knockout mice exhibited a decreased production of proinflammatory cytokines in the lungs compared to wild-type mice following A. fumigatus infection. The impaired clearance and cytokine production in ficolin knockout mice was independent of complement, as shown by equivalent levels of A. fumigatus-mediated complement activation in ficolin knockout mice and wild-type mice. In conclusion, this study demonstrates that ficolins are important in initial innate host defense against A. fumigatus infections in vivo.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Præstekjær Cramer
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack Bernard Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Jaillon S, Ponzetta A, Magrini E, Barajon I, Barbagallo M, Garlanda C, Mantovani A. Fluid phase recognition molecules in neutrophil-dependent immune responses. Semin Immunol 2016; 28:109-18. [PMID: 27021644 DOI: 10.1016/j.smim.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 01/01/2023]
Abstract
The innate immune system comprises both a cellular and a humoral arm. Neutrophils are key effector cells of the immune and inflammatory responses and have emerged as a major source of humoral pattern recognition molecules (PRMs). These molecules, which include collectins, ficolins, and pentraxins, are specialised in the discrimination of self versus non-self and modified-self and share basic multifunctional properties including recognition and opsonisation of pathogens and apoptotic cells, activation and regulation of the complement cascade and tuning of inflammation. Neutrophils act as a reservoir of ready-made soluble PRMs, such as the long pentraxin PTX3, the peptidoglycan recognition protein PGRP-S, properdin and M-ficolin, which are stored in neutrophil granules and are involved in neutrophil effector functions. In addition, other soluble PRMs, such as members of the collectin family, are not expressed in neutrophils but can modulate neutrophil-dependent immune responses. Therefore, soluble PRMs are an essential part of the innate immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on molecules involved in neutrophil effector functions.
Collapse
Affiliation(s)
- Sébastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
| | - Andrea Ponzetta
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Isabella Barajon
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Marialuisa Barbagallo
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Alberto Mantovani
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
11
|
Activated Complement Factors as Disease Markers for Sepsis. DISEASE MARKERS 2015; 2015:382463. [PMID: 26420913 PMCID: PMC4572436 DOI: 10.1155/2015/382463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023]
Abstract
Sepsis is a leading cause of death in the United States and worldwide. Early recognition and effective management are essential for improved outcome. However, early recognition is impeded by lack of clinically utilized biomarkers. Complement factors play important roles in the mechanisms leading to sepsis and can potentially serve as early markers of sepsis and of sepsis severity and outcome. This review provides a synopsis of recent animal and clinical studies of the role of complement factors in sepsis development, together with their potential as disease markers. In addition, new results from our laboratory are presented regarding the involvement of the complement factor, mannose-binding lectin, in septic shock patients. Future clinical studies are needed to obtain the complete profiles of complement factors/their activated products during the course of sepsis development. We anticipate that the results of these studies will lead to a multipanel set of sepsis biomarkers which, along with currently used laboratory tests, will facilitate earlier diagnosis, timely treatment, and improved outcome.
Collapse
|
12
|
Characterization of monoclonal antibodies against porcine pulmonary alveolar macrophages of gnotobiotic miniature swine. Biochem Biophys Res Commun 2015; 461:427-34. [DOI: 10.1016/j.bbrc.2015.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
|
13
|
Masia R, Krause DS, Yellen G. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver. Am J Physiol Cell Physiol 2014; 308:C264-76. [PMID: 25472961 DOI: 10.1152/ajpcell.00176.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner.
Collapse
Affiliation(s)
- Ricard Masia
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Daniela S Krause
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Genster N, Takahashi M, Sekine H, Endo Y, Garred P, Fujita T. Lessons learned from mice deficient in lectin complement pathway molecules. Mol Immunol 2014; 61:59-68. [PMID: 25060538 DOI: 10.1016/j.molimm.2014.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/04/2023]
Abstract
The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from studies of these.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuichi Endo
- Radioisotope Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Teizo Fujita
- Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|