1
|
Zhang M, Wang Y, Yang K, Chen Z, Sun N, Wang G. Mx of Sebastes schlegelii: expression pattern, antibacterial activity and antiviral mechanism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105374. [PMID: 40288621 DOI: 10.1016/j.dci.2025.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Myxovirus resistance (Mx) is a classical antiviral molecule that has been well understood in mammals. However, very limited studies on Mx antiviral activities have been documented in teleosts. In the present study, a novel Mx (SsMx) was cloned from black rockfish (Sebastes schlegelii) and the immunological activities of SsMx were examined in vitro and in vivo. SsMx contained conserved structural and functional domains including GTPase domain and GTPase effector domain. Quantitative real-time PCR (qRT-PCR) revealed that SsMx is extensively distributed in the immune cells and tissues examined with higher levels in spleen and liver. The mRNA expression of SsMx was significantly upregulated in head kidney, spleen and head kidney macrophages after pathogen infection. Recombinant SsMx (rSsMx) exhibited apparent binding activities against different bacteria in vitro. In vivo studies showed that rSsMx reduced pathogen dissemination and replication in head kidney and spleen. The subcellular localization results demonstrated that SsMx was predominantly distributed in the cytoplasm of transfected cells. Furthermore, SsMx was observed to inhibit apoptosis in virus-infected cells and reduce viral replication by interfering with the viral entry. SsMx and Spring viremia of carp virus Glycoprotein (SVCV G) were found to interact strongly with each other by co-immunoprecipitation and co-localization. These findings reveal an important role of SsMx in defencing the early stage of SVCV infection, which will be helpful to understand the molecular details of the antiviral mechanisms mediated by Mx proteins in teleosts.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Kai Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ziyue Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Nuo Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guanghua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
2
|
Leiva-Rebollo R, Labella AM, Gémez-Mata J, Castro D, Borrego JJ. Fish Iridoviridae: infection, vaccination and immune response. Vet Res 2024; 55:88. [PMID: 39010235 PMCID: PMC11247874 DOI: 10.1186/s13567-024-01347-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC® IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.
Collapse
Affiliation(s)
- Rocío Leiva-Rebollo
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Juan Gémez-Mata
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Dolores Castro
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
3
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
4
|
Groves L, Whyte SK, Purcell SL, Michaud D, Cai WC, Garber AF, Fast MD. Temperature impacts Atlantic salmon's ( Salmo salar) immunological response to infectious salmon anemia virus (ISAv). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100099. [PMID: 37293549 PMCID: PMC10245120 DOI: 10.1016/j.fsirep.2023.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
Ocean temperatures continue to rise annually due to the ever-growing consequences of global climate change. These temperature changes can have an impact on the immunological robustness of cultured fish, especially cold-water species such as Atlantic salmon. The salmon farming industry already loses hundreds of millions of dollars each year to infectious and non-infectious diseases. One particularly important and WOAH reportable disease is infectious salmon anemia caused by the orthomyxovirus ISAv. Considering the changing environment, it is necessary to find ways to mitigate the effect of diseases on the industry. For this study, 20 Atlantic salmon families were housed in each of 38 different tanks at the AVC, with half of the fish being kept at 10 °C and half being kept at 20 °C. Donor Atlantic salmon IP- injected with a highly virulent ISAv isolate (HPR4; TCID50 of 1 × 105/mL) were added to each tank as the source of co-habitation infection. Both temperatures were sampled at onset of mortality in co-habited fish and at resolution of mortality. Family background and temperature significantly impacted ISAv load, as assessed by qPCR, time to mortality and overall mortality. Mortality was more acute at 20 °C, but overall mortality was higher at 10 °C. Based on percent mortality calculated over the course of the study, different families demonstrated different levels of survival. The three families that demonstrated the highest percent mortality, and the three families with the lowest percent mortality were then assessed for their antiviral responses using relative gene expression. Genes significantly upregulated between the unexposed fish and ISAv exposed fish included mx1, il4/13a, il12rb2, and trim25, and these were further impacted by temperature. Understanding how ISAv resistance is impacted by temperature can help identify seasonal risks of ISAv outbreaks as well as ideal responses to be targeted through immunopotentiation.
Collapse
Affiliation(s)
- L Groves
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - SK Whyte
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - SL Purcell
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - D Michaud
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - WC Cai
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - AF Garber
- Huntsman Marine Science Centre, St. Andrews, NB, Canada
| | - MD Fast
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
5
|
Betancor G. You Shall Not Pass: MX2 Proteins Are Versatile Viral Inhibitors. Vaccines (Basel) 2023; 11:vaccines11050930. [PMID: 37243034 DOI: 10.3390/vaccines11050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Myxovirus resistance (MX) proteins are pivotal players in the innate immune response to viral infections. Less than 10 years ago, three independent groups simultaneously showed that human MX2 is an interferon (IFN)-stimulated gene (ISG) with potent anti-human immunodeficiency virus 1 (HIV-1) activity. Thenceforth, multiple research works have been published highlighting the ability of MX2 to inhibit RNA and DNA viruses. These growing bodies of evidence have identified some of the key determinants regulating its antiviral activity. Therefore, the importance of the protein amino-terminal domain, the oligomerization state, or the ability to interact with viral components is now well recognized. Nonetheless, there are still several unknown aspects of MX2 antiviral activity asking for further research, such as the role of cellular localization or the effect of post-translational modifications. This work aims to provide a comprehensive review of our current knowledge on the molecular determinants governing the antiviral activity of this versatile ISG, using human MX2 and HIV-1 inhibition as a reference, but drawing parallelisms and noting divergent mechanisms with other proteins and viruses when necessary.
Collapse
Affiliation(s)
- Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
6
|
Dong X, Li Z, Zhao S, Liu J, Luo S, Zhang Y, Xu Q, Chen G, Zhang Y. Molecular cloning and expression analysis of Myxovirus resistance gene in Yangzhou goose ( Anser cygnoides domesticus). Br Poult Sci 2023:1-9. [PMID: 36637331 DOI: 10.1080/00071668.2022.2163617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Myxovirus resistance (Mx) is a protein produced by the interferon-induced natural immune response with broad spectrum antiviral function. However, the role and expression characteristics of the Mx gene in immune defence against viral infection in goose have not yet been reported.2. This study found a 2576 bp genomic sequence and a 2112 bp mRNA sequence for Mx, encoding 703 amino acids. Multiple sequence alignments of the amino acid sequences showed that the Yangzhou goose Mx (goMx) had 86.99% similarity to the mallard duck (Anas platyrhynchos).3. Tissue-specific expression profiling revealed that the expression of goMx was highest in the lung and spleen. Both poly (I:C) and GPV were found to elevate the expression of goMx. The upregulated expression of goMx was associated with interferon pathway-related genes IRF7, JAK1, STAT1, and STAT2. Furthermore, overexpression of goMx significantly activated the transcription of poly (I:C) induced TNF-α, IL-1β, IL-6, and IL-18.4. The findings of this study suggest that the goMx modulation of the antiviral response is mediated by the interferon pathway.
Collapse
Affiliation(s)
- X Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Z Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Q Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - G Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Martinez R, Fernández-Trujillo MA, Hernández L, Page A, Béjar J, Estrada MP. Growth hormone secretagogue peptide A233 upregulates Mx expression in teleost fish in vitro and in vivo. Arch Virol 2022; 167:2041-2047. [DOI: 10.1007/s00705-022-05504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
|
8
|
He M, Ding NZ, He CQ. Novirhabdoviruses versus fish innate immunity: A review. Virus Res 2021; 304:198525. [PMID: 34339774 DOI: 10.1016/j.virusres.2021.198525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023]
Abstract
Novirhabdoviruses belong to the Rhabdoviridae family of RNA viruses. All of the four members are pathogenic for bony fish. Particularly, Infectious hematopoietic necrosis virus (IHNV) and Viral hemorrhagic septicemia virus (VHSV) often cause mass animal deaths and huge economic losses, representing major obstacles to fish farming industry worldwide. The interactions between fish and novirhabdoviruses are becoming better understood. In this review, we will present our current knowledge of fish innate immunity, particularly type I interferon (IFN-I) response, against novirhabdoviral infection, and the evasion strategies exploited by novirhabdoviruses. Members of Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) appear to be involved in novirhabdovirus surveillance. NF-κB activation and IFN-I induction are primarily triggered for antiviral defense. Autophagy can also be induced by viral glycoprotein (G). Although sensitive to IFN-I, novirhabdoviruses have nucleoprotein (N), matrix protein (M), and non-virion protein (NV) to interfere with host signal transduction and gene expression steps toward antiviral state establishment. Moreover, novirhabdoviruses may exploit some microRNAs for immunosuppression.
Collapse
Affiliation(s)
- Mei He
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Nai-Zheng Ding
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Cheng-Qiang He
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
9
|
Leiva-Rebollo R, Castro D, Moreno P, Borrego JJ, Labella AM. Evaluation of Gilthead Seabream ( Sparus aurata) Immune Response after LCDV-Sa DNA Vaccination. Animals (Basel) 2021; 11:ani11061613. [PMID: 34072482 PMCID: PMC8228267 DOI: 10.3390/ani11061613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Lymphocystis disease is the main viral pathology in gilthead seabream aquaculture. Currently, there are no treatments or vaccines to control this disease, thus our main goal was to construct a DNA vaccine that can be used in the future to stop the spread of this pathology in sea farms. The vaccine consisted of a plasmid DNA that contains a known viral gene. Once it was established that the vaccine drives the expression of the antigenic viral protein in fish, vaccination experiments were conducted to determine if the vaccinated fish become protected against the viral infection. In addition, the immune response triggered by the vaccine was also evaluated in order to understand the mechanisms underlying such protection. The obtained results showed that in vaccinated fish an activation of several genes relating to both the inflammatory process and the mucosal immunity were produced, as well as specific anti-viral antibodies. Although limited, our results deserve further investigation to assess the efficacy of the vaccine in bigger fish populations and to confirm the mode of action of the vaccine. Abstract Lymphocystis disease is the main viral pathology reported in gilthead seabream. Its etiological agent is Lymphocystis disease virus 3 (LCDV-Sa), genus Lymphocystivirus, family Iridoviridae. There are no effective treatments or vaccines for LCDV control, thus the main aim of this study was to develop a DNA vaccine, and to evaluate both the protection conferred against LCDV-Sa infection and the immune response in vaccinated fish. The vaccine was constructed by cloning the mcp gene (ORF LCDVSa062R) into pcDNA3.1/NT-GFP-TOPO. Two independent vaccination trials were conducted. In the first one, 5–7 g fish were intramuscularly injected with the vaccine (pcDNA-MCP) or the empty-plasmid, and the distribution and expression of the vaccine was investigated. Furthermore, vaccinated fish were challenged with LCDV-Sa in order to access the protective capacity of the vaccine. In the second trial, 70–100 g fish were vaccinated as specified, and the immune response was evaluated analyzing the expression of 23 immune-related genes and the production of specific antibodies. The results showed that the vaccine triggers an immune response characterized by the overexpression of genes relating to the inflammatory process, but not the innate antiviral immunity relating to type I IFN (interferon), and also induces the production of specific neutralizing antibodies, which could explain the protection against LCDV-Sa in vaccinated fish.
Collapse
|
10
|
Samanta M, Satapathy S, Paichha M, Choudhary P. Labeo rohita Mx1 exhibits the critical structural motifs of the family of large GTPases of mammals and is activated by rhabdovirus vaccination and bacterial RNA stimulations. Anim Biotechnol 2020; 33:22-42. [PMID: 32367758 DOI: 10.1080/10495398.2020.1759612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Myxovirus resistance (Mx) proteins belonging to the dynamin superfamily of high molecular weight GTPases exist in various isoforms and play crucial role in innate immunity. In addition to the isoforms, Mx1 also plays important role in exerting its anti-viral actions against a broad range of animal RNA viruses. In rohu (Labeo rohita), mx1 full-length cDNA sequence consists of 2440 nucleotides (nt) encoding 628 amino acids (aa) polypeptide of 71.289 kDa. Structurally, it belongs to the family of large GTPases with one DYNc domain (13-257aa) comprising of dynamin family motifs (LPRGSGIVTR) and the tripartite GTP-binding motifs (GDQSSGKS, DLPG and TKPD) at the N-terminal and one GED domain (537-628aa) at C-terminus. Rohu Mx1 is closely related to zebrafish Mx1 and is widely expressed in gill, liver, kidney, spleen and blood. In response to rhabdovirus vaccinations, poly I:C stimulation and bacterial infections, mx1 gene expression in rohu was significantly (p < 0.05) induced in majority of the tested organs/tissues. Stimulation of rohu gill cell line with bacterial RNA also induced mx1 gene expression. Together these data suggest the important role of Mx1 in innate immunity in rohu against wide spectrum of fish pathogens.
Collapse
Affiliation(s)
- Mrinal Samanta
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| | - Sweta Satapathy
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| | - Mahismita Paichha
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| | - Pushpa Choudhary
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Liu Y, Li Y, Zhou Y, Jiang N, Fan Y, Zeng L. Characterization, Expression Pattern and Antiviral Activities of Mx Gene in Chinese Giant Salamander, Andrias davidianus. Int J Mol Sci 2020; 21:ijms21062246. [PMID: 32213935 PMCID: PMC7139979 DOI: 10.3390/ijms21062246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Mx, Myxovirus resistance is an important interferon-stimulated protein that mediates antiviral responses. In this study, the expression and activities of Chinese giant salamander, Andrias davidianus Mx gene, AdMx, were investigated. The AdMx cDNA sequence contains an open reading frame (ORF) of 2112 nucleotides, encoding a putative protein of 703 aa. Meanwhile, AdMx possesses the conserved tripartite GTP binding motif and a dynamin family signature. qRT-PCR analysis revealed a broad expression of AdMx in vivo, with the highest expression levels in brain, kidney and spleen. The AdMx expression level in kidney, spleen and muscle significantly increased at 6 h after Chinese giant salamander iridovirus (GSIV) infection and peaked at 48 h, while that in muscle cell line (GSM) was not noticeably up-regulated until 72 h post infection. Additionally, a plasmid expressing AdMx was constructed and transfected into the Chinese giant salamander GSM cells. The virus load and gene copies in AdMx over-expressed cells were significantly reduced compared with those in the control cells. Moreover, compared to the control cells, a lower level of virus major capsid protein (MCP) synthesis in AdMx over-expressed cells was confirmed by Western blot. These results collectively suggest that Mx plays an important antiviral role in the immune responses against GSIV in Chinese giant salamander.
Collapse
Affiliation(s)
- Yanan Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China (Y.Z.); (N.J.); (Y.F.)
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China (Y.Z.); (N.J.); (Y.F.)
| | - Yongze Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China (Y.Z.); (N.J.); (Y.F.)
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China (Y.Z.); (N.J.); (Y.F.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China (Y.Z.); (N.J.); (Y.F.)
| | - Lingbing Zeng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China (Y.Z.); (N.J.); (Y.F.)
- Correspondence: ; Tel.: +86-027-81780158
| |
Collapse
|
12
|
Leiva-Rebollo R, Labella AM, Borrego JJ, Castro D. Immune gene expression in gilthead seabream (Sparus aurata) after Lymphocystis disease virus (LCDV-Sa) challenge resulting in asymptomatic infection. J Appl Microbiol 2019; 128:41-53. [PMID: 31529740 DOI: 10.1111/jam.14454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/04/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
AIMS To determine the immune gene expression response of gilthead seabream (Sparus aurata) that is experimentally infected with the lymphocystivirus LCDV-Sa. METHODS AND RESULTS Viral DNA and transcripts were detected by qPCR in all samples from fish injected with LCDV-Sa, demonstrating that the virus establish a systemic and asymptomatic infection. The expression of 23 immune-related genes was also analysed by RT-qPCR in the head kidney (HK) and intestine at several times post-infection (dpi). In HK, the expression of five type I interferon (IFN)-related genes (ifn, irf3, mx2, mx3 and isg15), il10 and ck10 was upregulated at 1-3 dpi, while genes related to the inflammation process (tnfα, il1ß, il6, casp1) were not differentially expressed or even downregulated. The expression profile in the intestine was different regarding type I INF-related genes. An upregulated c3 and ighm expression was observed in both HK and intestine at 3-8 dpi. Finally, the transcription of nccrp1 and mhcIIα was induced in HK, whereas tcrβ expression was downregulated in both organs. CONCLUSIONS LCDV-Sa seems to trigger an immune response in gilthead seabream characterized by a partial activation of type I IFN system and a lack of systemic inflammatory response which may be related to viral persistence. SIGNIFICANCE AND IMPACT OF THE STUDY The immune response observed in gilthead seabream infected by LCDV-Sa could be implicated in the establishment of an asymptomatic persistent infection.
Collapse
Affiliation(s)
- R Leiva-Rebollo
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A M Labella
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - J J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - D Castro
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
13
|
Kim MS, Kim KH. Effect of CRISPR/Cas9-mediated knockout of either Mx1 or ISG15 gene in EPC cells on resistance against VHSV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1041-1046. [PMID: 31465870 DOI: 10.1016/j.fsi.2019.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Although the type I interferon-mediated increase of Mx1 and ISG15 gene expression in Epithelioma papulosum cyprini (EPC) cells has been reported, the antiviral role of Mx1 and ISG15 in EPC cells has not been investigated. In this study, to know the anti-viral hemorrhagic septicemia virus (VHSV) role of Mx1 and ISG15 of EPC cells, either Mx1 or ISG15 gene was knocked-out using a CRISPR/Cas9 system, and the progression of cytopathic effects (CPE) and viral growth were analyzed. Mx1 gene and ISG15 gene knockout EPC cells were successfully produced via CRISPR/Cas9 coupled with a single-cell cloning. Through the sequence analysis, one clone showing two heterozygous indel patterns in Mx1 gene and a clone showing three heterozygous indel patterns in ISG15 gene were selected for further analyses. Mx1 knockout EPC cells did not show any differences in VHSV-mediated CPE progression, even when pre-treated with polyinosinic:polycytidylic acid (poly I:C), compared to control EPC cells. These results suggest that Mx1 in EPC cells may be unfunctional to cytoplasmic RNA viruses. In contrast to Mx1, ISG15 knockout cells showed clearly hampered anti-VHSV activity even when pre-treated with poly I:C, indicating that ISG15 plays an important role in type I interferon-mediated anti-viral activity in EPC cells, which allowed VHSV to replicate more efficiently in ISG15 knockout cells than Mx1 knockout and control cells.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
14
|
Wang T, Liu F, Tian G, Secombes CJ, Wang T. Lineage/species-specific expansion of the Mx gene family in teleosts: Differential expression and modulation of nine Mx genes in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2019; 90:413-430. [PMID: 31063803 DOI: 10.1016/j.fsi.2019.04.303] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Myxovirus resistance (Mx) proteins are interferon (IFN)-inducible Dynamin-like GTPases, which play an important role in antiviral immunity. Three Mx genes (Mx1-3) have been cloned previously in rainbow trout. In this study, an additional six Mx genes were cloned that reside in four chromosomal loci. Further bioinformatics analysis suggests the presence of three teleost Mx groups (TMG) each with a characteristic gene organisation. Salmonid Mx belong to TMG1 and TMG2. The increased salmonid Mx gene copies are due mainly to local gene duplications that happened before and after salmonid speciation, in a lineage/species specific manner. Trout Mx molecules have been diversified in the loop 1 and 4 regions, and in the nuclear localisation signal in loop 4. The trout Mx genes were shown to be differentially expressed in tissues, with high levels of expression of TMG1 (Mx1-4) in blood and TMG2 (Mx5-9) in intestine. The expression of the majority of the trout Mx genes was induced by poly IC in vitro and in vivo, and increased during development. In addition, induction by antiviral (IFN) and proinflammatory cytokines was studied, and showed that type I IFN, IFNγ and IL-1β can induce Mx gene expression in an Mx gene-, cytokine- and cell line-dependent manner. These results show that salmonids possess a large number Mx genes as well as complex regulatory pathways, which may contribute to their success in an anadromous life style.
Collapse
Affiliation(s)
- Tingyu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Guangming Tian
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
15
|
Carballo C, Ortiz-Delgado JB, Berbel C, Castro D, Borrego JJ, Sarasquete C, Manchado M. Feed and immersion challenges with lymphocystis disease virus (LCDV) reveals specific mechanisms for horizontal transmission and immune response in senegalese sole post-larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 89:710-718. [PMID: 30999043 DOI: 10.1016/j.fsi.2019.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
The horizontal transmission of lymphocystis disease virus (LCDV) through contaminated water and feed (using artemia as vehicle) and the associated immune gene expression profiles in Senegalese sole post-larvae were investigated. All specimens analyzed were positive for LCDV DNA detection at 1-day post-challenge (1 dpc) with the highest viral levels in specimens infected through the immersion route. However, the percentage of LCDV-positive animals and number of viral DNA copies dropped progressively at 2 and 7 dpc. The histological analysis identified structural changes in the skin, muscle and gills of sole post-larvae LCDV-challenged by immersion. In situ hybridization confirmed a wide distribution of LCDV in the skin, gut, surrounding vessels in trunk muscle and head kidney in the immersion route, while the signals were restricted to the liver and lamina propria in the feeding treatment. Expression analysis using a set of 22 genes related to innate immune defense system demonstrated clear differences in the time-course response to LCDV as function of the infection route. Most antiviral defense genes, the proinflammatory cytokines, the complement c3, g-type lysozyme and T-cell markers cd4 and cd8a were rapidly induced in the feeding-infected post-larvae, and they were remained activated at 2 dpc. In contrast, in the immersion-infected post-larvae the induction of most defensive genes was delayed, with a low intensity at 2 dpc. All these data demonstrate that LCDV can horizontally infect Senegalese sole post-larvae through the water or feed although with different patterns of histopathological disorders, virus distribution and route-specific expression profiles.
Collapse
Affiliation(s)
- Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC-Campus Universitario Río San Pedro, Puerto Real, 11510, Cádiz, Spain
| | - Concha Berbel
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Dolores Castro
- Universidad de Málaga, Departamento de Microbiología, Campus Teatinos, 29071, Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Campus Teatinos, 29071, Málaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC-Campus Universitario Río San Pedro, Puerto Real, 11510, Cádiz, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
16
|
TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discov 2018; 4:13. [PMID: 29581886 PMCID: PMC5859251 DOI: 10.1038/s41421-018-0010-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/02/2018] [Indexed: 02/05/2023] Open
Abstract
Innate immune system is armed by several lines of pattern recognition receptors to sense various viral infection and to initiate antiviral immune response. This process is under a tight control and the negative feedback induced by infection and/or inflammation is critical to maintain immune homoeostasis and to prevent autoimmune disorders, however, the molecular mechanism is not fully understood. Here we report TRIM29, a ubiquitin E3 ligase, functions as an inducible negative regulator of innate immune response triggered by DNA virus and cytosolic DNA. DNA virus and cytosolic DNA stimulation induce TRIM29 expression robustly in macrophages and dendritic cells, although the basal level of TRIM29 is undetectable in those cells. TRIM29 deficiency elevates IFN-I and proinflammatory cytokine production upon viral DNA and cytosolic dsDNA stimulation. Consistently, in vivo experiments show that TRIM29-deficient mice are more resistant to HSV-1 infection than WT controls, indicated by better survival rate and reduced viral load in organs. Mechanism studies suggest that STING-TBK1-IRF3 signaling pathway in TRIM29 KO cells is significantly enhanced and the degradation of STING is impaired. Furthermore, we identify that TRIM29 targets STING for K48 ubiquitination and degradation. This study reveals TRIM29 as a crucial negative regulator in immune response to DNA virus and cytosolic DNA, preventing potential damage caused by overcommitted immune responses.
Collapse
|
17
|
Wu C, Zhao Y, Lin Y, Yang X, Yan M, Min Y, Pan Z, Xia S, Shao Q. Bioinformatics analysis of differentially expressed gene profiles associated with systemic lupus erythematosus. Mol Med Rep 2017; 17:3591-3598. [PMID: 29257335 PMCID: PMC5802164 DOI: 10.3892/mmr.2017.8293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE.
Collapse
Affiliation(s)
- Chengjiang Wu
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yu Lin
- Center for Computational Science, University of Miami, Coral Gables, FL 33146, USA
| | - Xinxin Yang
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Meina Yan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yujiao Min
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihui Pan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
18
|
Carballo C, Castro D, Borrego JJ, Manchado M. Gene expression profiles associated with lymphocystis disease virus (LCDV) in experimentally infected Senegalese sole (Solea senegalensis). FISH & SHELLFISH IMMUNOLOGY 2017; 66:129-139. [PMID: 28476672 DOI: 10.1016/j.fsi.2017.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the pathogenesis of lymphocystis disease virus (LCDV) and the immune gene expression patterns associated with this viral infection were determined in the flatfish Senegalese sole. The results indicate that LCDV spreads rapidly from the peritoneal cavity through the bloodstream to reach target organs such as kidney, gut, liver, and skin/fin. The viral load was highest in kidney and reduced progressively thorough the experiment in spite of the viral major capsid protein gene was transcribed. The LCDV injection activated a similar set of differentially expressed transcripts in kidney and intestine although with some differences in the intensity and time-course response. This set included antiviral-related transcripts (including the mx and interferon-related factors irf1, irf2, irf3, irf7, irf8, irf9, irf10), cytokines (il1b, il6, il8, il12 and tnfa) and their receptors (il1r, il8r, il10r, il15ra, il17r), chemokines (CXC-type, CC-type and IL-8), prostaglandins (cox-2), g-type lysozymes, hepcidin, complement fractions (c2, c4-1 and c4-2) and the antigen differentiation factors cd4, cd8a, and cd8b. The expression profile observed indicated that the host triggered a systemic defensive response including inflammation able to cope with the viral challenge.
Collapse
Affiliation(s)
- Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Dolores Castro
- Universidad de Málaga, Departamento de Microbiología, Campus Universitario Teatinos, 29071 Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Campus Universitario Teatinos, 29071 Málaga, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
19
|
Solbakken MH, Rise ML, Jakobsen KS, Jentoft S. Successive Losses of Central Immune Genes Characterize the Gadiformes' Alternate Immunity. Genome Biol Evol 2016; 8:3508-3515. [PMID: 27797950 PMCID: PMC5203787 DOI: 10.1093/gbe/evw250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
Great genetic variability among teleost immunomes, with gene losses and expansions of central adaptive and innate components, has been discovered through genome sequencing over the last few years. Here, we demonstrate that the innate Myxovirus resistance gene (Mx) is lost from the ancestor of Gadiformes and the closely related Stylephorus chordatus, thus predating the loss of Major Histocompatibility Complex class II (MHCII) in Gadiformes. Although the functional implication of Mx loss is still unknown, we demonstrate that this loss is one of several ancient events appearing in successive order throughout the evolution of teleost immunity. In particular, we find that the loss of Toll-like receptor 5 predates the loss of Mx involving the entire Paracanthopterygii lineage. Using a time-calibrated phylogeny, we show that loss of MHCII and Mx overlap with major paleoclimatic and geological events indicating that these genetic changes were adaptive responses to the changing environment at the time.
Collapse
Affiliation(s)
- Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
20
|
Cordero H, Cuesta A, Meseguer J, Esteban MA. Characterization of the gilthead seabream (Sparus aurata L.) immune response under a natural lymphocystis disease virus outbreak. JOURNAL OF FISH DISEASES 2016; 39:1467-1476. [PMID: 27133966 DOI: 10.1111/jfd.12481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Lymphocystis or lymphocystis disease virus (LCDV) is distributed worldwide and affects many fresh and marine water fish species. LCDV is commonly found in aquaria fish species but also in farmed fish species, among them the gilthead seabream (Sparus aurata L.). The immune status of gilthead seabream (S. aurata) specimens under a natural outbreak of LCDV was studied. The replication of the virus was demonstrated in infected fish, but not in control fish. The results showed decreased total serum IgM levels and increased innate cellular immune response (peroxidase and respiratory burst activities) of head kidney leucocytes in LCDV-infected fish, compared to the values obtained in uninfected specimens. In addition, transcription of antiviral genes (ifn and irf3) was down-regulated in the skin of LCDV-positive fish as well as genes involved in cellular immunity (csf1r, mhc2a, tcra and ighm) that were down-regulated in skin and head kidney of infected fish. By contrast, the transcription of nccrp1 was up-regulated in head kidney after LCDV infection. These present results show that head kidney leucocytes are activated to encounter the virus at the sites of replication.
Collapse
Affiliation(s)
- H Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - A Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - J Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - M A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
| |
Collapse
|
21
|
Wen CM. Characterization and viral susceptibility of a brain cell line from brown-marbled grouper Epinephelus fuscoguttatus (Forsskål) with persistent betanodavirus infection. JOURNAL OF FISH DISEASES 2016; 39:1335-1346. [PMID: 27087415 DOI: 10.1111/jfd.12464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
A continuous cell line designated BMGB (brown-marbled grouper brain) was established from the brain tissues of the brown-marbled grouper Epinephelus fuscoguttatus and characterized. BMGB cells were identified as astroglial progenitor cells because they expressed glial fibrillary acidic protein and keratin and were persistently infected by betanodavirus, as confirmed through immunocytochemistry, polymerase chain reaction and immunoblot analyses. Because few intact virions were present in the BMGB cell culture fluid, the cytopathic effect (CPE) was not observed when the culture fluid was inoculated with GBC1 cells. However, BMGB cells displayed typical CPE after infection with additional betanodavirus, megalocytivirus and chum salmon reovirus. BMGB cells showed low myxovirus resistance (Mx) protein expression, which increased following betanodavirus and reovirus infection. Because the cells contained several unusual or degraded viral proteins, the persistent infection of betanodavirus in the BMGB cells may have resulted from a mechanism that destroys the viral proteins rather than the result of Mx protein expression. Despite the persistent betanodavirus infection, BMGB cells proliferated in a manner similar to other normal tropic fish cells and supported the propagation of several piscine viruses; however, the yield was lower than that of normal cells. The BMGB cells will be useful for investigating virus and host cell interaction.
Collapse
Affiliation(s)
- C M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Parreño R, Torres S, Almagro L, Belló-Pérez M, Estepa A, Perez L. Induction of viral interference by IPNV-carrier cells on target cells: A cell co-culture study. FISH & SHELLFISH IMMUNOLOGY 2016; 58:483-489. [PMID: 27693199 DOI: 10.1016/j.fsi.2016.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
IPNV is a salmonid birnavirus that possesses the ability to establish asymptomatic persistent infections in a number of valuable fish species. The presence of IPNV may interfere with subsequent infection by other viruses. In the present study we show that an IPNV-carrier cell line (EPCIPNV) can induce an antiviral state in fresh EPC by co-cultivating both cell types in three different ways: a "droplet" culture system, a plastic chamber setup, and a transmembrane (Transwell®) system. All three cell co-culture methods were proven useful to study donor/target cell interaction. Naïve EPC cells grown in contact with EPCIPNV cells develop resistance to VHSV superinfection. The transmembrane system seems best suited to examine gene expression in donor and target cells separately. Our findings point to the conclusion that one or more soluble factors produced by the IPNV carrier culture induce the innate immune response within the target cells. This antiviral response is associated to the up-regulation of interferon (ifn) and mx gene expression in target EPC cells. To our knowledge this is the first article describing co-culture systems to study the interplay between virus-carrier cells and naive cells in fish.
Collapse
Affiliation(s)
- Ricardo Parreño
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. Universidad s/n, 03202 Elche, Spain
| | - Susana Torres
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. Universidad s/n, 03202 Elche, Spain
| | - Lucía Almagro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. Universidad s/n, 03202 Elche, Spain
| | - Melissa Belló-Pérez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. Universidad s/n, 03202 Elche, Spain
| | - Amparo Estepa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. Universidad s/n, 03202 Elche, Spain
| | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. Universidad s/n, 03202 Elche, Spain.
| |
Collapse
|
23
|
Al-Hussinee L, Pham PH, Russell S, Tubbs L, Tafalla C, Bols NC, Dixon B, Lumsden JS. Temporary protection of rainbow trout gill epithelial cells from infection with viral haemorrhagic septicaemia virus IVb. JOURNAL OF FISH DISEASES 2016; 39:1099-1112. [PMID: 26850791 DOI: 10.1111/jfd.12442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The branchial epithelium is not only a primary route of entry for viral pathogens, but is also a site of viral replication and subsequent shedding may also occur from the gill epithelium. This study investigated the potential of agents known to stimulate innate immunity to protect rainbow trout epithelial cells (RTgill-W1) from infection with VHSV IVb. RTgill-W1 cells were pretreated with poly I:C, FuGENE(®) HD + poly I:C, lipopolysaccharide (LPS), LPS + poly I:C or heat-killed VHSV IVb and then infected with VHSV IVb 4 days later. Cytopathic effect (CPE) was determined at 2, 3, 4, 7 and 11 days post-infection. Virus in cells and supernatant was detected using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). All of the treatments delayed the onset of CPE (per cent of monolayer destruction), compared with untreated controls; however, killed VHSV or poly I:C combined with LPS was the most effective. Similarly, the detection of viral RNA in the supernatant was delayed, and the quantity was significantly (P < 0.05) reduced by all treatments with the exception of LPS alone (4 days). Unlike many of the other treatments, pretreatment of RTgill-W1 with heat-killed VHSV did not upregulate interferon 1, 2 or MX 1 gene expression.
Collapse
Affiliation(s)
- L Al-Hussinee
- Fish Pathology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - P H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - S Russell
- Novartis Animal Health Inc., Victoria, PEI, Canada
| | - L Tubbs
- Novartis Animal Health Inc., Victoria, PEI, Canada
| | - C Tafalla
- Centro de Investigacion en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - N C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - B Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J S Lumsden
- Fish Pathology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
González-Mariscal JA, Fernández-Trujillo MA, Alonso MC, García-Rosado E, Álvarez MC, Béjar J. Gilthead seabream (Sparus aurata) Mx gene promoters respond differentially to IPNV and VHSV infections in RTG-2 cells. Vet Immunol Immunopathol 2016; 171:73-80. [PMID: 26964720 DOI: 10.1016/j.vetimm.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
The understanding of virus-host interactions relies on the knowledge of the regulatory mechanisms of the type I interferon (IFN I)-stimulated genes (ISGs). Among ISGs, those coding Mx proteins play a main role due to their direct antiviral activity. The study of these genes in gilthead seabream is interesting, since this species displays high natural resistance to viral diseases, being asymptomatic carrier of infectious pancreatic necrosis virus (IPNV) and viral haemorrhagic septicaemia virus (VHSV). Gilthead seabream has three Mx genes (Mx1, Mx2, and Mx3), encoding proteins with a wide spectrum of antiviral activity. The structure of the three promoters (pMx1, pMx2 and pMx3) has been previously disclosed, and their response to poly I:C in RTG-2 cells characterized. To further analyze these promoters, their response to two viral infections has been evaluated in the present study. For that purpose, RTG-2 cells transiently transfected with the luciferase gene under the control of each promoter were inoculated with either IPNV or VHSV at two different doses. The highest and lowest fold induction values were recorded for pMx2 and pMx3, respectively. The promoter induction was always stronger after VHSV inoculation than in IPNV-inoculated cells. In addition, the higher dose of VHSV tested induced higher response of the three promoters, whereas in IPNV-infected cells the highest induction was recorded after inoculation with the lower viral dose. To further study the response of the Mx2 promoter, RTG-2 cells stably transfected with the luciferase gene under the control of pMx2 were stimulated with poly I:C and subsequently infected with IPNV or VHSV. Interestingly, IPNV infection inhibited the induction caused by poly I:C, suggesting an antagonistic activity of IPNV on Mx2 transcription. In contrast, VHSV infection did not alter the response triggered by poly I:C. These results highlight the specific regulation that controls the activity of each promoter, and support the existence of complex interactions between host cells, specific Mx promoters, and viruses, which are responsible for the final outcome of a viral infection.
Collapse
Affiliation(s)
| | | | - M C Alonso
- Universidad de Málaga, Department of Microbiology, Spain
| | | | - M C Álvarez
- Universidad de Málaga, Department of Genetics, Spain
| | - J Béjar
- Universidad de Málaga, Department of Genetics, Spain.
| |
Collapse
|
25
|
Gu T, Rao Y, Su J, Yang C, Chen X, Chen L, Yan N. Functions of MDA5 and its domains in response to GCRV or bacterial PAMPs. FISH & SHELLFISH IMMUNOLOGY 2015; 46:693-702. [PMID: 26260315 DOI: 10.1016/j.fsi.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is a member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can initiate type I IFN expression in response to RNA virus infection. In this study, we constructed six mutants of Ctenopharyngodon idella MDA5 (CiMAD5) overexpression plasmids and generated stable transfected C. idella kidney (CIK) cell lines to study the function of different domains of CiMAD5. After ploy(I:C) stimulation, the downstream genes of CiMDA5 in transfected cells was repressed. Overexpression of CiMDA5 or its variant repressed the replication of grass carp reovirus (GCRV) in CIK cells and decreased the viral titer of GCRV more or less compared to that in control cells. After GCRV or bacterial pathogen-associated molecular patterns (PAMPs) stimulation, overexpression of CiMDA5 or CARD domain significantly induced the expression of CiIFN-I, CiIL-1β and CiMx1. The deletion of Helicase or RD domain reduced the inductive effect of CiMDA5 on CiIFN-I, CiIL-1β and CiMx1 expression. RD overexpression resulted in an enhanced expression of CiIFN-I, CiIL-1β and CiMx1. These observations collectively demonstrate that, in CIK cells, after GCRV or bacterial PAMPs stimulation, CARD domain alone can mediate signaling; Helicase or RD domain alone negatively regulates CARD function by intramolecular interaction with CARD. However, RD domain acts as an enhancer by intermolecular interaction. These results enlarge the response spectrum of MDA5 and contribute to a further understanding of the functions of MDA5 and its domains in evolution.
Collapse
Affiliation(s)
- Tianle Gu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Chunrong Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lijun Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Nana Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
26
|
Fernández-Trujillo MA, García-Rosado E, Alonso MC, Álvarez MC, Béjar J. Synergistic effects in the antiviral activity of the three Mx proteins from gilthead seabream (Sparus aurata). Vet Immunol Immunopathol 2015; 168:83-90. [PMID: 26319936 DOI: 10.1016/j.vetimm.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023]
Abstract
Due to their direct antiviral activity, Mx proteins play a main role in the response mediated by type I interferon against viral infections. The study on gilthead seabream Mx proteins is especially interesting, since this species is unusually resistant to viral diseases, being asymptomatic carrier of several viruses pathogenic to other fish species. Gilthead seabream has three Mx proteins (Mx1, Mx2 and Mx3) that, separately, display antiviral activity against a wide range of viruses, showing interesting differences in their antiviral specificities. In this work, the possible synergy between the three Mx isoforms has been studied using in vitro systems consisting of CHSE-214 cells stably expressing two or the three gilthead seabream Mx proteins. The antiviral activity of these Mx combinations has been tested against the Infectious Pancreatic Necrosis Virus (IPNV), the Viral Haemorrhagic Septicaemia Virus (VHSV), the European Sheatfish Virus (ESV) and the Lymphocystis Disease Virus (LCDV). A synergistic effect of the Mx proteins was only detected against ESV, no synergy was observed against LCDV, and a negative interference was detected against the two RNA viruses tested, IPNV and VHSV, as viral replication was higher in cells expressing certain Mx combinations than in cells expressing these proteins separately. These results suggest a functional interaction between gilthead seabream Mx isoforms, which results in a higher or lower antiviral activity depending on the virus tested, thus supporting the idea of complex virus-host interactions and finely tuned mechanisms controlling the antiviral activity of Mx proteins.
Collapse
Affiliation(s)
- M A Fernández-Trujillo
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - E García-Rosado
- Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, 29071 Málaga, Spain
| | - M C Alonso
- Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, 29071 Málaga, Spain
| | - M C Álvarez
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - J Béjar
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain.
| |
Collapse
|
27
|
Estepa A, Coll J. Innate Multigene Family Memories Are Implicated in the Viral-Survivor Zebrafish Phenotype. PLoS One 2015; 10:e0135483. [PMID: 26270536 PMCID: PMC4535885 DOI: 10.1371/journal.pone.0135483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Since adaptive features such as memory were discovered in mammalian innate immunity, interest in the immunological status of primitive vertebrates after infections has grown. In this context, we used zebrafish (Danio rerio), a primitive vertebrate species suited to molecular and genetic studies to explore transcriptional memories of the immune system in long-term survivors of viral haemorrhagic septicemia virus infections. Immune-gene targeted microarrays designed in-house, multipath genes, gene set enrichment, and leading-edge analysis, reveal unexpected consistent correlations between the viral-survivor phenotype and several innate multigene families. Thus, here we describe in survivors of infections the upregulation of the multigene family of proteasome subunit macropains, zebrafish-specific novel gene sets, mitogen activated protein kinases, and epidermal growth factor. We also describe the downregulation of the multigene families of c-reactive proteins, myxovirus-induced proteins and novel immunoglobulin-type receptors. The strength of those immunological memories was reflected by the exceptional similarity of the transcriptional profiles of survivors before and after re-infection compared with primary infected fish. On the other hand, the high levels of neutralizing antibodies in the blood plasma of survivors contrasted with the depletion of transcripts specific for most cell types present in lymphoid organs. Therefore, long-term survivors maintained unexpected molecular/cellular memories of previous viral encounters by modulating the expression levels of innate multigene families as well as having specific adaptive antibodies. The implications of the so-called "trained immunity" for future research in this field are also discussed.
Collapse
Affiliation(s)
- Amparo Estepa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (UMH), Alicante, Spain
| | - Julio Coll
- Department of Biotechnology, Instituto Nacional Investigaciones Agrarias (INIA), Madrid, Spain
| |
Collapse
|
28
|
Alvarez-Torres D, Alonso MC, Garcia-Rosado E, Collet B, Béjar J. Differential response of the Senegalese sole (Solea senegalensis) Mx promoter to viral infections in two salmonid cell lines. Vet Immunol Immunopathol 2014; 161:251-7. [DOI: 10.1016/j.vetimm.2014.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
29
|
González-Mariscal JA, Gallardo-Gálvez JB, Méndez T, Álvarez MC, Béjar J. Cloning and characterization of the Mx1, Mx2 and Mx3 promoters from gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2014; 38:311-317. [PMID: 24704419 DOI: 10.1016/j.fsi.2014.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Mx proteins are main effectors of the antiviral innate immune response mediated by type I interferon (IFN I). Actually, diverse Mx proteins from fish proved highly active against fish viruses, standing out among them the Mx1, Mx2 and Mx3 from gilthead seabream (Sparus aurata), a species exhibiting a natural resistance to viral diseases. In this study, the structure and functional activity of their corresponding promoters (pMx1, pMx2 and pMx3) have been assessed. The three promoters present an identical 3' region of 157 bp, exhibiting a single canonical interferon-stimulated response element (ISRE), which is indispensible for the poli:IC induction of pMx1 and pMx3, while not for that of pMx2. In the remaining part of the three promoters other regulatory motifs were identified, as gamma IFN activated sites in variable number (1, 4 and 2 in pMx1, pMx2 and pMx3, respectively), as well as several independent GAAA elements or ISRE core sequences (13, 15 and 12 in pMx1, pMx2 and pMx3, respectively). The structural dissimilarities shown by the three promoters parallels with the differences observed in their response profiles, in terms of the time course of the induction, and basal and induced expression levels of each promoter. Altogether, these findings indicate that the expression of Mx1, Mx2 and Mx3 genes from the gilthead seabream might be specifically regulated, in accordance with the functional role of each Mx protein in the successful antiviral response shown by this species.
Collapse
Affiliation(s)
| | | | - T Méndez
- Department of Genetics, University of Málaga, Spain
| | - M C Álvarez
- Department of Genetics, University of Málaga, Spain
| | - J Béjar
- Department of Genetics, University of Málaga, Spain.
| |
Collapse
|
30
|
Cheng K, Escalon BL, Robert J, Chinchar VG, Garcia-Reyero N. Differential transcription of fathead minnow immune-related genes following infection with frog virus 3, an emerging pathogen of ectothermic vertebrates. Virology 2014; 456-457:77-86. [PMID: 24889227 DOI: 10.1016/j.virol.2014.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/03/2014] [Accepted: 03/13/2014] [Indexed: 12/24/2022]
Abstract
Frog virus 3 (FV3) and other ranaviruses are responsible for die-offs involving wild, farmed, and captive amphibians, fish, and reptiles. To ascertain which elements of the immune system respond to infection, we explored transcriptional responses following infection of fathead minnow cells with either wild type (wt) FV3 or a knock out (KO) mutant targeting the 18 kDa immediate early gene (18K). At 8h post infection we observed marked upregulation of multiple transcripts encoding proteins affecting innate and acquired immunity. Sequences expressed 4-fold or higher in wt-infected cells included transcripts encoding interferon (IFN), IFN regulatory factors (IRFs), IFN stimulated genes (ISGs) such as Mx and MHC class I, and interleukins IL-1β, IL-8, IL-17C and IL-12. Cells infected with the 18K KO mutant (∆18K) showed qualitative differences and lower levels of induction. Collectively, these results indicate that ranavirus infection induced expression of multiple cellular genes affecting both innate and acquired immunity.
Collapse
Affiliation(s)
- Kwang Cheng
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39211, USA
| | - B Lynn Escalon
- US Army Corps of Engineers, Engineering Research and Development Center, Vicksburg, MS 39180, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - V Gregory Chinchar
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39211, USA.
| | - Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
31
|
Yeh YC, Hsu YJ, Chen YM, Lin HY, Yang HL, Chen TY, Wang HC. EcVig, a novel grouper immune-gene associated with antiviral activity against NNV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:68-75. [PMID: 24211340 DOI: 10.1016/j.dci.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
VHSV-induced genes (VIGs) were first identified in rainbow trout (Oncorhynchus mykiss) and subsequently isolated in a variety of fish. Recent studies have shown that most VIGs have immunological functions against pathogenic infections. However, most research has focused on Vig1, such that our present understanding of these genes in other fish species remains limited. This study isolated a homologue of the uncharacterized O. mykiss Vig-B319 (EcVig) from orange-spotted grouper (Epinephelus coioides). Genomic organization suggests that four EcVig isoforms (EcVig A-D), are generated through alternative splicing. Due to the encoding of 2 immunoglobulin (Ig) domains, the EcVig protein can be considered a member of the immunoglobulin superfamily. The expression of EcVig increased 3 days after hatching (dph) and peaked at 9 dph. This pattern is similar to that displayed by EcMx, an important grouper antiviral gene. Additionally, a tissue tropism assay revealed that EcVig A is the major EcVig isoform present in the tissues considered by this study, with the expression of EcVig A exceeding that of EcVig B. We subsequently investigated whether EcVig expression was induced by the viral pathogen nervous necrosis virus (NNV) or the bacterial pathogen Vibrio anguillarum. Following injection with NNV, the expression levels of EcVig showed significant up-regulation. Conversely, a significant reduction was observed in EcVig expression in brain samples collected from V. anguillarum injected grouper. The overexpression of EcVig A suppressed the replication of NNV in grouper GF-1 cell lines, suggesting that EcVig is an important antiviral factor in the grouper immune responses.
Collapse
Affiliation(s)
- Ying-Chun Yeh
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Jiou Hsu
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Min Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Han-You Lin
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Huey-Lang Yang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC; Merit Ocean Biotech Inc., Tainan, Taiwan, ROC
| | - Tzong-Yueh Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
32
|
Alvarez-Torres D, Bejar J, Collet B, Alonso MC, Garcia-Rosado E. Structural and functional characterization of the Senegalese sole (Solea senegalensis) Mx promoter. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1642-1648. [PMID: 24056275 DOI: 10.1016/j.fsi.2013.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Mx proteins are one of the most studied interferon-stimulated genes (ISGs). The antiviral activity against different fish viruses has been demonstrated for diverse fish Mx proteins, including the Senegalese sole (Solea senegalensis) Mx protein (SsMx). The aim of the current study is to characterize the structure and functional activity of the SsMx promoter. Several polyclonal cell populations expressing the luciferase reporter gene under the control of the SsMx promoter have been used to determine the ability of this promoter to drive the expression of the luciferase gene after poly I:C stimulation. In addition, the implication of each interferon-stimulated response element (ISRE) in the activation of the promoter has also been analysed. The genomic structure of the Senegalese sole and Japanese flounder Mx promoters (containing three ISREs) differs from the rest of the fish Mx promoters described to date. The ISRE1, the one closest to the start codon, is the main ISRE involved in the SsMx promoter activity, whereas ISRE2 and ISRE3 show a minor additive effect on this activity. Another feature differing SsMx promoter from the rest of the fish Mx promoters is the presence of a 24-bp GC island close to the ATG codon, including one Sp1 binding site, which may constitute the transcriptional start site. Furthermore, the SsMx promoter contains a gamma interferon activation site (GAS) element.
Collapse
Affiliation(s)
- Daniel Alvarez-Torres
- Department of Genetics, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain; Department of Microbiology, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain
| | | | | | | | | |
Collapse
|