1
|
Liang H, Wang Y, Li J, Zhang K. Crotonylation deficiency of S100A7 K49 promotes psoriatic keratinocyte proliferation through enhanced interaction with RAGE. Sci Rep 2025; 15:14678. [PMID: 40287453 PMCID: PMC12033245 DOI: 10.1038/s41598-025-96874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriasis is a chronic inflammatory dermatosis characterized by the hyperproliferative of keratinocytes. S100A7 plays a pivotal role in the pathogenesis of psoriasis. Lysine crotonylation of proteins is a newly identified modification that impacts diverse biological processes and its dysregulation has been implicated in autoimmune diseases. To investigate the profile of lysine crotonylation and its pathogenic role in psoriasis, we conducted a comparative analysis of crotonylation-modified proteins in psoriatic lesions versus healthy controls. Mutant keratinocytes with crotonylation deficiency of S100A7 were generated to explore its functional effects in psoriasis. Our omic analysis revealed a unique lysine crotonylation profile in psoriatic lesions, with a notable downregulation of crotonylation at lysine 49 (K49) of S100A7. In vitro studies demonstrated that S100A7-K49A crotonylation deficiency exhibited enhanced cell viability, augmented glycolytic metabolism, and upregulated expression of key metabolic enzymes. Furthermore, co-immunoprecipitation assays demonstrated that the K49 crotonylation-deficient form of S100A7 strengthens its interaction with RAGE, leading to enhanced phosphorylation of AKT and mTOR. Our findings suggest that S100A7 K49 crotonylation deficiency plays a pivotal role in promoting keratinocytes proliferation and metabolic reprogramming in psoriasis, and targeting abnormal S100A7 crotonylation as a potential therapeutic strategy for intervention in psoriasis-related pathologies.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| |
Collapse
|
2
|
Laha S, Das S, Banerjee U, Ganguly T, Senapati S, Chatterjee G, Chatterjee R. Genome-wide RNA-seq, DNA methylation and small RNA-seq analysis unraveled complex gene regulatory networks in psoriasis pathogenesis. Gene 2025; 933:148903. [PMID: 39233195 DOI: 10.1016/j.gene.2024.148903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Psoriasis is a complex inflammatory skin disease characterized by reversible albeit relapsing red scaly plaques in the skin of a patient. In addition to the genetic predisposition, involvement of epigenetic and non-coding RNAs have also been liked with the disease. Nevertheless, any comprehensive study involving transcriptomic, small-RNA and DNA methylation at the genomic level from same patients is lacking. To investigate the complex regulation of molecular pathways in psoriasis, we carried out multi-omics integrative analysis of RNA-sequencing, small RNA-sequencing and DNA methylation profiling from the psoriatic and adjacent normal skin tissues. Our multi-omics analysis identified the genes and biological processes regulated either independently or in combination by DNA methylation and microRNAs. We identified miRNAs that specifically regulated keratinocyte hyper-proliferation, and cell cycle progression and checkpoint signaling in psoriasis. On contrary, DNA methylation was found to be more predominant in regulating immune and inflammatory responses, another causative factor in psoriasis pathogenesis. Many characteristic pathways in psoriasis e.g., Th17 cell differentiation and JAK-STAT signaling, were found to be regulated by both miRNAs and DNA methylation. We carried out functional characterization of a downregulated miRNA hsa-let-7c-5p, predicted to target upregulated genes in psoriasis involved in cell cycle processes, Th17 cell differentiation and JAK-STAT signaling pathways. Overexpression of hsa-let-7c-5p in keratinocytes caused the downregulation of its target genes, resulting in reduced cell proliferation and migration rates, demonstrating potential of miRNAs in regulating psoriasis pathogenesis. In conclusion, our findings identified distinct and shared gene-networks regulated by DNA methylation and miRNAs of a complex disease with reversible phenotype.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Urbee Banerjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Swapan Senapati
- Consultant Dermatologist, Uttarpara, Hooghly, West Bengal 712258, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
3
|
Tabbarah S, Sulaiman H, Ansah Owusu F, Rajeev Joshi M, Marepalli NR, Pino N, Saleem Azam S, Ali Ahmed A, Abraham Suárez Álvarez J. Shared Pathophysiology of Inflammatory Bowel Disease and Psoriasis: Unraveling the Connection. Cureus 2024; 16:e70148. [PMID: 39463646 PMCID: PMC11506146 DOI: 10.7759/cureus.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) and psoriasis are both chronic autoimmune diseases with a unique set of characteristics. Interestingly, both conditions share considerable overlap in their pathophysiological mechanisms and immune dysregulation. Epidemiological studies validate the relationship by showing a greater prevalence of co-occurrence of the two disorders. At the genetic level, there is a confirmation of a link between shared susceptibility loci and DNA polymorphism, particularly interleukin-23 receptor (IL23R), interleukin-12 subunit beta (IL12B), tumor necrosis factor (ligand) superfamily member 15 (TNFSF15), and signal transducer and activator of transcription 3 (STAT3). In addition, epigenetic factors have a role in genetic predisposition in the development and progression through processes such as DNA methylation and histone modification adding another layer of genetic susceptibility. The relationship between psoriasis and IBD is emphasized by a comparable immunopathogenesis, which involves delicate relationships between the innate and adaptive immune responses. The primary interest is on the T-helper 17 (Th17) cell pathway and the cytokines interleukin-17 (IL-17), interleukin-23 (IL-23), and tumor necrosis factor-alpha (TNF-α). Consequently, both disorders exhibit chronic inflammation and tissue restructuring, resulting from similar cellular and molecular processes. The presence of overlapping pathophysiology highlights the significance of implementing integrated management strategies and employing multidisciplinary techniques for both diagnosis and therapy. Hence, understanding the mutual processes might facilitate the advancement of precise biologic treatments that aim at these commonly shared inflammatory pathways.
Collapse
Affiliation(s)
- Shadi Tabbarah
- Department of Medicine, Lebanese American University School of Medicine, Beirut, LBN
| | - Hakam Sulaiman
- Department of Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Frank Ansah Owusu
- Department of Medicine, Stavropol State Medical University, Stavropol, RUS
- Department of Medicine, West Pine Medical, St. Louis, USA
| | - Megha Rajeev Joshi
- Department of Medicine, Smt. Nathiba Hargovandas Lakhmichand (NHL) Municipal Medical College, Ahmedabad, IND
| | - Nitheesha Reddy Marepalli
- Department of Medicine, Dr. Patnam Mahender Reddy (PMR) Institute of Medical Sciences, Hyderabad, IND
| | - Nohelia Pino
- Department of Medicine, University of Manizales, Manizales, COL
| | | | - Aaliya Ali Ahmed
- Department of Internal Medicine, Aga Khan Hospital Mombasa, Mombasa, KEN
| | | |
Collapse
|
4
|
Das S, Laha S, Roy C, Chatterjee P, Chandra A, Senapati S, Chatterjee G, Chatterjee R. Circular RNA deregulation drives psoriasis pathogenesis via interfering with canonical microRNAs. Arch Dermatol Res 2024; 316:442. [PMID: 38951246 DOI: 10.1007/s00403-024-03207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Affiliation(s)
- Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| | - Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| | - Chitra Roy
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| | - Prajnya Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| | - Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| | - Swapan Senapati
- Consultant Dermatologist, Uttarpara, Hooghly, West Bengal, 712258, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India.
| |
Collapse
|
5
|
Zhan ZY, Zhang ZH, Sun RH, Wu YL, Nan JX, Lian LH. A therapeutic strategy of parthenolide in improving imiquimod-induced psoriasis-like skin inflammation targeting IL-36/NETs through skin transdermal therapeutic system. Int Immunopharmacol 2024; 131:111824. [PMID: 38461633 DOI: 10.1016/j.intimp.2024.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Psoriasis is an inflammatory skin disease that occurs repeatedly over time. The natural product of sesquiterpene lactones, Parthenolide (Par), is isolated from Tanacetum parthenium L. (feverfew) which has significant effects on anti-inflammatory. The therapeutic effect of the medication itself is crucial, but different routes of administration of the same drug can also produce different effects. PURPOSE The aim of our research sought to investigate the ameliorating effects of Par in psoriasis-like skin inflammation and its related mechanism of action. RESULTS In the IMQ-induced model, intragastric administration of Par reduced the Psoriasis Area and Severity Index (PASI) score, improved skin erythema, scaling, and other symptoms. And Par decreased the expression of Ki67, keratin14, keratin16 and keratin17, and increased the expression of keratin1. Par could reduce IL-36 protein expressions, meanwhile the expression of Il1b, Cxcl1 and Cxcl2 mRNA were also decreased. Par regulated the expression levels of F4/80, MPO and NE. However, skin transdermal administration of Par was more effective. Similarly, Par attenuated IL-36γ, IL-1β and caspase-1 activated by Poly(I:C) in in vitro and ex vivo. In addition, Par also reduced NE, PR3, and Cathepsin G levels in explant skin tissues. CONCLUSION Par ameliorated psoriasis-like skin inflammation in both in vivo and in vitro, especially after treatment with transdermal drug delivery, possibly by inhibiting neutrophil extracellular traps and thus by interfering IL-36 signaling pathway. It indicated that Par provides a new research strategy for the treatment of psoriasis-like skin inflammation and is expected to be a promising drug.
Collapse
Affiliation(s)
- Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Rong-Hui Sun
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
6
|
Ganguly T, Laha S, Senapati S, Chatterjee G, Chatterjee R. Serum miRNA profiling identified miRNAs associated with disease severity in psoriasis. Exp Dermatol 2024; 33:e14973. [PMID: 37926911 DOI: 10.1111/exd.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Psoriasis vulgaris is a chronic, autoimmune skin disease involving a complex interplay of epidermal keratinocytes, dermal fibroblast and infiltrating immune cells. Differential expressions of miRNAs are observed in psoriasis and the deregulated miRNAs are sometimes associated with disease severity. This study aims to identify miRNAs altered in the serum of psoriasis patients that are associated with the Psoriasis Area and Severity Index (PASI). In order to assess miRNA levels in the serum of psoriasis patients, we selected 24 differentially expressed miRNAs in the psoriatic skin are possibly derived from the skin and immune cells, as well as five miRNAs that are enriched in other tissues. We identified 16 miRNAs that exhibited significantly (p < 0.05) altered levels in the serum of psoriasis patients compared to healthy individuals. Among these, 13 miRNAs showed similar expression pattern in the serum of psoriasis patients as also observed in the psoriatic skin tissues. Ten miRNAs showed an accuracy of greater than 75% in classifying the psoriasis patients from healthy individuals. Further analysis of differential miRNA levels between the low PASI group and the high PASI group identified three miRNAs (miR-147b, miR-3614-5p, and miR-125a-5p) with significantly altered levels between the low severity and the high severity psoriasis patients. Our systematic investigation of skin and immune cell-derived miRNAs in the serum of psoriasis patients revealed alteration in miRNA levels to be associated with disease severity, which may help in monitoring the disease progression and therapeutic response.
Collapse
Affiliation(s)
- Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | | | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | | |
Collapse
|
7
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Man AM, Orăsan MS, Hoteiuc OA, Olănescu-Vaida-Voevod MC, Mocan T. Inflammation and Psoriasis: A Comprehensive Review. Int J Mol Sci 2023; 24:16095. [PMID: 38003284 PMCID: PMC10671208 DOI: 10.3390/ijms242216095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Psoriasis is an immune-mediated disease with a strong genetic component that brings many challenges to sick individuals, such as chronic illness, and which has multiple associated comorbidities like cardiovascular disease, metabolic syndrome, inflammatory bowel disease, and psychological disorders. Understanding the interplay between the innate and adaptative immune system has led to the discovery of specific cytokine circuits (Tumor Necrosis Factor-alpha (TNF-α), IL-23, IL-17), which has allowed scientists to discover new biomarkers that can be used as predictors of treatment response and pave the way for personalized treatments. In this review, we describe the footprint psoriasis leaves on the skin and beyond, key pathophysiological mechanisms, current available therapeutic options, and drawbacks faced by existing therapies, and we anticipate potential future perspectives that may improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Alessandra-Mădălina Man
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Meda Sandra Orăsan
- Physiopathology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania;
| | - Oana-Alina Hoteiuc
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Maria-Cristina Olănescu-Vaida-Voevod
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Teodora Mocan
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Membrive-Jiménez C, Vieira-Maroun S, Márquez-Pete N, Cura Y, Pérez-Ramírez C, Tercedor-Sánchez J, Jiménez-Morales A, Ramírez-Tortosa MDC. ABCC1, ABCG2 and FOXP3: Predictive Biomarkers of Toxicity from Methotrexate Treatment in Patients Diagnosed with Moderate-to-Severe Psoriasis. Biomedicines 2023; 11:2567. [PMID: 37761008 PMCID: PMC10526923 DOI: 10.3390/biomedicines11092567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Methotrexate (MTX) is one of the most extensively used drugs in the treatment of moderate-to-severe psoriasis (PS). However, it frequently must be suspended owing to the toxicity in certain patients. OBJECTIVE To evaluate the influence of ABCC1, ABCG2, and FOXP3 in the development of MTX toxicity in PS. METHODS Retrospective cohort study with 101 patients. Five single-nucleotide polymorphisms (SNPs) were genotyped using real-time polymerase chain reaction with TaqMan probes. RESULTS Patients carrying ABCC1 rs2238476-AG genotype (AG vs. GG: OR = 8.04; 95% CI = 1.48-46.78; p = 0.015); FOXP3 rs376154-GT and GG genotypes (GT vs. TT/GG: OR = 3.86; 95% CI = 1.17-13.92; p = 0.031) and ABCG2 rs13120400-T allele (T vs. CC: OR = 8.33; 95% CI = 1.24-164.79; p = 0.059) showed a higher risk of developing more than one adverse effect. The toxicity analysis by subtypes showed that the ABCC1 rs2238476-AG genotype (AG vs. GG: OR = 8.10; 95% CI = 1.69-46.63; p = 0.011) and FOXP3 rs376154-GT genotype (OR = 4.11; 95% CI = 1.22-15.30; p = 0.027) were associated with the appearance of asthenia. No association of the other ABCC1 polymorphisms (rs35592 and rs246240) with MTX toxicity was found. CONCLUSION ABCC1, ABCG2, and FOXP3 polymorphisms can be considered to be risk biomarkers of toxicities in PS patients treated with MTX.
Collapse
Affiliation(s)
- Cristina Membrive-Jiménez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain (N.M.-P.)
| | - Sayleth Vieira-Maroun
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain (N.M.-P.)
| | - Noelia Márquez-Pete
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain (N.M.-P.)
| | - Yasmin Cura
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain (N.M.-P.)
| | - Cristina Pérez-Ramírez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain (N.M.-P.)
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
| | | | - Alberto Jiménez-Morales
- Hospital Pharmacy Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | | |
Collapse
|
10
|
Ahn M, Cho WW, Park W, Lee JS, Choi MJ, Gao Q, Gao G, Cho DW, Kim BS. 3D biofabrication of diseased human skin models in vitro. Biomater Res 2023; 27:80. [PMID: 37608402 PMCID: PMC10464270 DOI: 10.1186/s40824-023-00415-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Human skin is an organ located in the outermost part of the body; thus, it frequently exhibits visible signs of physiological health. Ethical concerns and genetic differences in conventional animal studies have increased the need for alternative in vitro platforms that mimic the structural and functional hallmarks of natural skin. Despite significant advances in in vitro skin modeling over the past few decades, different reproducible biofabrication strategies are required to reproduce the pathological features of diseased human skin compared to those used for healthy-skin models. To explain human skin modeling with pathological hallmarks, we first summarize the structural and functional characteristics of healthy human skin. We then provide an extensive overview of how to recreate diseased human skin models in vitro, including models for wounded, diabetic, skin-cancer, atopic, and other pathological skin types. We conclude with an outlook on diseased-skin modeling and its technical perspective for the further development of skin engineering.
Collapse
Affiliation(s)
- Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea
| | - Won-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Min-Ju Choi
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Qiqi Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea.
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
11
|
Moreira CR, de Alcântara CC, Flauzino T, Martin LMM, Lozovoy MAB, Reiche EMV, Simão ANC. IL36G genetic variant is independently associated with susceptibility, severity and joint involvement in psoriasis. Mol Immunol 2023; 159:69-75. [PMID: 37285630 DOI: 10.1016/j.molimm.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Psoriasis (PsO) is a chronic, immune-mediated, inflammatory and polygenic dermatosis associated with both physical and psychological burden that can be triggered by injury, trauma, infections and medications. The etiology of PsO is not fully elucidated but genetic, epigenetic and environmental factors are all likely to play a role. A case-control study was carried out to evaluate the frequency of the IL36G C>T (rs13392494) and the IL36G A>G (rs7584409) variants and their association with susceptibility, joint involvement and severity of PsO. The study included 154 patients with PsO and 154 controls from Brazilian population. The severity of PsO was assessed by the Psoriasis Area and Severity Index (PASI). The IL36G (rs13392494 and rs7584409) variants were genotyped by allelic discrimination assay using the real-time polymerase chain reaction. The association between the IL36G genetic variants and the study variables was analyzed in allelic, dominant, codominant, overdominant, recessive, and haplotype models. The main results were that PsO patients were older (p < 0.001) and had higher body mass index (p < 0.001) than controls; 95.8% of the patients had plaque PsO, 16.1% had psoriatic arthritis (PsA), and 27.9% had PASI > 10. The IL36G rs1339294 variant showed no association with PsO in all genetic models while the IL36G rs7584409 variant showed a protective effect in PsO. However, the G allele of the IL36G rs7584409 in the dominant model was positively associated with PASI > 10 (p = 0.031). Moreover, patients with the GG genotype of the IL36G rs7584409 variant had about 5.0 times more chance of PsA than those with the AA genotype (p = 0.014). Regarding the haplotypes, the C/A in a recessive model (CACA versus C/G and T/A carriers) was associated with PsO (p = 0.035) while the C/G haplotype in a dominant model (C/A carriers versus C/G and T/A carriers) showed a protective effect for PsO (p = 0.041). In conclusion, the G allele of the IL36G rs7584409 variant was associated with protection to PsO; however, in patients with PsO, this same allele was associated with moderate to severe disease and PsA. These results suggest that the IL36G rs7584409 variant may be used as a possible genetic biomarker to predict severity and joint involvement of PsO.
Collapse
Affiliation(s)
- Cássio Rafael Moreira
- Outpatient Clinic of Dermatology, University Hospital, State University of Londrina, Londrina, PR, Brazil
| | | | - Tamires Flauzino
- Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, PR, Brazil
| | - Ligia Marcia Mario Martin
- Outpatient Clinic of Dermatology, University Hospital, State University of Londrina, Londrina, PR, Brazil
| | - Marcell Alysson Batisti Lozovoy
- Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil.
| | - Andréa Name Colado Simão
- Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
12
|
Aldabbas R, Shaker OG, Ismail MF, Fathy N. miRNA-559 and MTDH as possible diagnostic markers of psoriasis: Role of PTEN/AKT/FOXO pathway in disease pathogenesis. Mol Cell Biochem 2023; 478:1427-1438. [PMID: 36348199 PMCID: PMC10209283 DOI: 10.1007/s11010-022-04599-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Psoriasis is a persistent, inflammatory, autoimmune skin disorder which can be elicited by genetic and environmental factors. Several microRNAs (miRNAs) that are abnormally expressed in psoriasis have emerged as an interesting candidate in psoriasis pathogenesis. However, the expression profile and function of miRNA-559, and its direct target metadherin (MTDH), in psoriasis need to be further illuminated. This study intended to assess miRNA-559 and MTDH levels in skin and sera of psoriatic patients and to investigate their clinical significance in an attempt for developing novel distinct tools for early diagnosis of psoriasis. Moreover, this study aimed at exploring participation of miRNA-559 in regulating MTDH/PTEN/AKT pathway in psoriasis. Expression levels of miRNA-559, AKT, FOXO1 and PTEN were measured by real-time qRT-PCR, whereas MTDH and p27 levels were assessed by ELISA in lesional, non-lesional tissues and serum of 20 psoriatic patients and 20 matching controls. Correlation study was conducted between different parameters. The diagnostic performance of miRNA-559 and MTDH in psoriasis was estimated by receiver operating characteristic (ROC) curve analysis. Expression of miRNA-559 in psoriatic patients was significantly downregulated in both lesional tissues and serum as compared to controls. Conversely, MTDH protein level showed significant increase in both tissues and serum of psoriatic patients and was inversely correlated with miRNA-559 level. Meanwhile, levels of PTEN, AKT and FOXO1 were dramatically changed in psoriatic patients compared to controls. Furthermore, serum miRNA-559 and MTDH displayed comparable diagnostic accuracy in discriminating psoriatic patients from controls. Yet, miRNA-559 demonstrated superior diagnostic performance than MTDH in psoriasis diagnosis. Together, the current findings provide the first suggestion of a new mechanism by which downregulation of miRNA-559 might induce proliferation in psoriasis through modulating PTEN/AKT/FOXO1 pathway by positive regulation of MTDH. Thus, miRNA-559 and MTDH might be proposed as promising diagnostic biomarkers of psoriasis.
Collapse
Affiliation(s)
- Rana Aldabbas
- PHD Student at Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, 11562 Egypt
| | - Manal F. Ismail
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562 Egypt
| | - Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562 Egypt
| |
Collapse
|
13
|
Wu Z, Yang Q, Xu K, Wu J, Yang B. Study on the Key Genes and Molecular Mechanisms of IL-27 Promoting Keratinocytes Proliferation Based on Transcriptome Sequencing. Clin Cosmet Investig Dermatol 2023; 16:1457-1472. [PMID: 37309428 PMCID: PMC10257925 DOI: 10.2147/ccid.s414633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Background IL-27 involves psoriasis pathogenesis potentially by promoting excessive keratinocyte proliferation. However, the underlying mechanisms remain unclear. This study aims to explore the key genes and molecular mechanisms of IL-27-induced keratinocyte proliferation. Methods Primary keratinocytes and immortalized human keratinocyte HaCaT cells were treated with different concentrations of IL-27 for 24 h and 48 h respectively. CCK-8 assay was used to detect cell viability and Western blot was used to detect the expression of CyclinE and CyclinB1. Primary keratinocytes and HaCaT cells were treated with IL-27, and their differentially expressed (DE) genes were obtained by transcriptome sequencing. Then Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to predict related pathways, and the long non-coding RNA-microRNA-messenger RNA network and protein-protein interaction network were constructed to screen key genes. Biochemical experiments were performed to assess the content of glucose (Glu), lactic acid (LA), and ATP. Flow cytometry and Mito-Tracker Green staining were used to detect mitochondrial membrane potential and the number of mitochondria respectively. Western blot was performed to assess the expression of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), phosphoglycerate kinase 1 (PGK1), phosphorylated dynamin-related protein 1 (p-DRP1) (s637) and mitofusin 2 (MFN2). Results IL-27 concentration-dependently increased keratinocyte viability and the expression of CyclinE and CyclinB1. Bioinformatics analysis showed that the enriched pathways of DE genes were closely associated with cellular metabolism. miR-7-5p, EGFR, PRKCB, PLCB1 and CALM3 were key genes. IL-27 increased the content of LA, mitochondrial membrane potential, and the expression of GLUT1, HK2, LDHA, PGK1, p-DRP1 (s637), and MFN2, accompanied by decreased contents of Glu and ATP (P<0.001). Conclusion IL-27 potentially promotes keratinocyte proliferation by enhancing glycolysis, mitochondrial function, and mitochondrial fusion. The findings of this study may be conducive to revealing the role of IL-27 in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Zijun Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Qin Yang
- Department of Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Kai Xu
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Juanjuan Wu
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Bin Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| |
Collapse
|
14
|
Membrive-Jiménez C, Pérez-Ramírez C, Arias-Santiago S, Richetta AG, Ottini L, Pineda-Lancheros LE, Ramírez-Tortosa MDC, Jiménez-Morales A. Impact of Functional Polymorphisms on Drug Survival of Biological Therapies in Patients with Moderate-to-Severe Psoriasis. Int J Mol Sci 2023; 24:ijms24108703. [PMID: 37240048 DOI: 10.3390/ijms24108703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Biological therapies (BTs) indicated for psoriasis are highly effective; however, not all patients obtain good results, and loss of effectiveness is the main reason for switching. Genetic factors may be involved. The objective of this study was to evaluate the influence of single-nucleotide polymorphisms (SNPs) on the drug survival of tumor necrosis factor inhibitors (anti-TNF) medications and ustekinumab (UTK) in patients diagnosed with moderate-to-severe psoriasis. We conducted an ambispective observational cohort study that included 379 lines of treatment with anti-TNF (n = 247) and UTK (132) in 206 white patients from southern Spain and Italy. The genotyping of the 29 functional SNPs was carried out using real-time polymerase chain reaction (PCR) with TaqMan probes. Drug survival was evaluated with Cox regression and Kaplan-Meier curves. The multivariate analysis showed that the HLA-C rs12191877-T (hazard ratio [HR] = 0.560; 95% CI = 0.40-0.78; p = 0.0006) and TNF-1031 (rs1799964-C) (HR = 0.707; 95% CI = 0.50-0.99; p = 0.048) polymorphisms are associated with anti-TNF drug survival, while TLR5 rs5744174-G (HR = 0.589; 95% CI = 0.37-0.92; p = 0.02), CD84 rs6427528-GG (HR = 0.557; 95% CI = 0.35-0.88; p = 0.013) and PDE3A rs11045392-T together with SLCO1C1 rs3794271-T (HR = 0.508; 95% CI = 0.32-0.79; p = 0.002) are related to UTK survival. The limitations are the sample size and the clustering of anti-TNF drugs; we used a homogeneous cohort of patients from 2 hospitals only. In conclusion, SNPs in the HLA-C, TNF, TLR5, CD84, PDE3A, and SLCO1C1 genes may be useful as biomarkers of drug survival of BTs indicated for psoriasis, making it possible to implement personalized medicine that will reduce financial healthcare costs, facilitate medical decision-making and improve patient quality of life. However, further pharmacogenetic studies need to be conducted to confirm these associations.
Collapse
Affiliation(s)
- Cristina Membrive-Jiménez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avenida. de las Fuerzas Armadas 2, 18004 Granada, Spain
| | - Cristina Pérez-Ramírez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18011 Granada, Spain
| | | | - Antonio Giovanni Richetta
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties Sapienza, University of Rome, 00161 Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Elena Pineda-Lancheros
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avenida. de las Fuerzas Armadas 2, 18004 Granada, Spain
| | - Maria Del Carmen Ramírez-Tortosa
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18011 Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avenida. de las Fuerzas Armadas 2, 18004 Granada, Spain
| |
Collapse
|
15
|
Ghosh D, Ganguly T, Chatterjee R. Emerging roles of non-coding RNAs in psoriasis pathogenesis. Funct Integr Genomics 2023; 23:129. [PMID: 37072609 DOI: 10.1007/s10142-023-01057-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023]
Abstract
Psoriasis is a complex genetic skin disorder typically manifested by red, scaly, and itchy plaques most commonly over the scalp, trunk, elbows, and knees. Histopathological features include thickening of the epidermal layer due to hyper-proliferation and abnormal differentiation of epidermal keratinocytes along with infiltration of immune cells in the psoriatic skin. It is a chronic inflammatory relapsing disease, and there is currently no permanent cure for psoriasis. Proper medications can reduce the severity of the disease and improve the quality of life of the patients. While the genetic components of psoriasis pathogenesis are well explored, the full understanding of its epigenetic component remains elusive. Non-coding RNAs (ncRNAs) are documented to regulate various epigenetic processes that lead to the pathogenesis of different diseases including psoriasis. In this review, we have discussed the molecular interplay of different ncRNAs in psoriasis pathogenesis. The roles of microRNAs (miRNAs) in psoriasis are pretty well studied, whereas the roles of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are emerging. This review provides ideas covering some of the latest findings of different modes of functions played by those different ncRNAs documented in the literature. As an ever-evolving topic, some works are still ongoing as well as there are several fields that need rigorous scientific ventures. We have proposed the areas which claim more explorations to better understand the roles played by the ncRNAs in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Debakreeta Ghosh
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
| | - Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India.
| |
Collapse
|
16
|
Zhan ZY, Zhang ZH, Yang HX, Wu YL, Nan JX, Lian LH. Potential skin health promoting benefits of costunolide: a therapeutic strategy to improve skin inflammation in imiquimod-induced psoriasis. Food Funct 2023; 14:2392-2403. [PMID: 36786020 DOI: 10.1039/d2fo02545k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Psoriasis is a recurrent inflammatory skin disease. IL-36-related cytokines are overexpressed in psoriasis, but the mechanism is not yet clear. Costunolide (Cos) is a sesquiterpenoid compound derived from the root of the traditional Chinese medicine Aucklandia lappa Decne. This study aimed to explore the mechanism of Cos on improving psoriasis-like skin inflammation. An in vivo model was established by applying imiquimod treatment to the back skin of mice, and an in vitro model was established by using polyinosinic-polycytidylic acid (Poly(I:C)) stimulated-mouse primary dermal fibroblasts to induce inflammation. The results showed that Cos improved the pathological changes of psoriasis-like skin inflammation. In addition, Cos could inhibit epidermal damage and inflammation-related expression and improve the occurrence of skin-related inflammation in both in vivo and in vitro experiments. The improvement of psoriasis-like skin inflammatory response might be through the P2X7R/IL-36 signaling pathway. Collectively, Cos has an inhibitory effect on the expression of psoriasis-like skin inflammation. This showed that Cos has potential skin health promoting benefits by preventing psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian, University, Yanji, Jilin Province 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
17
|
Liu N, Zhang C, Hua W. Dietary inflammatory potential and psoriasis: A cross-sectional study. J Dermatol 2023; 50:692-699. [PMID: 36700537 DOI: 10.1111/1346-8138.16731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Diet is an important source of inflammation, and diet-induced inflammation might be associated with the etiopathogenesis of psoriasis. This study aimed to explore the relationship between dietary inflammatory index (DII), a literature-derived dietary tool to measure individual dietary inflammatory potential, and incident psoriasis. This was a cross-sectional study based on the 2003-2006 and 2009-2014 National Health and Nutrition Examination Surveys. The calculation of DII was based on 24-h dietary recall. Psoriasis was defined by a self-reported medical questionnaire. Logistic regressions were introduced to calculate the odds ratio (OR) and 95% confidence interval (CI) of psoriasis relative to DII. Restricted cubic splines (RCS) were used to test the nonlinear relationship in the regression model. A total of 13 284 participants with an average age of 48.94 ± 17.71 years were enrolled. The prevalence rate psoriasis was 2.88% (95% CI 2.61, 3.18). Incident psoriasis was not associated with DII in a multivariable logistic regression model (OR = 1.00, 95% CI 0.89, 1.11). Compared to participants in the lowest DII tertile, OR for those in the highest was 0.81 (95% CI 0.51, 1.28, P for trend = 0.0974). Subgroup analysis indicated that DII was still not associated with psoriasis in participants with different population settings. RCS showed that DII was not associated with psoriasis in either an overall or a nonlinear manner. Although a proinflammatory diet could lead to several health risks, psoriasis occurrence might not be associated with dietary inflammatory potential in this cross-sectional study.
Collapse
Affiliation(s)
- Nuozhou Liu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Hua
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China.,Cosmetic Safety and Efficacy Evaluation Center of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Beranek M, Borsky P, Fiala Z, Andrys C, Hamakova K, Chmelarova M, Kovarikova H, Karas A, Kremlacek J, Palicka V, Borska L. Telomere length, oxidative and epigenetic changes in blood DNA of patients with exacerbated psoriasis vulgaris. An Bras Dermatol 2023; 98:68-74. [PMID: 36319514 PMCID: PMC9837651 DOI: 10.1016/j.abd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pathogenesis of psoriasis vulgaris involves changes in DNA molecules, genomic instability, telomere attrition, and epigenetic alterations among them. These changes are also considered important mechanisms of aging in cells and tissues. OBJECTIVE This study dealt with oxidation damage, telomere length and methylation status in DNA originating from peripheral blood of 41 psoriatic patients and 30 healthy controls. METHODS Oxidative damage of serum DNA/RNA was determined immunochemically. Real-time PCR was used for the analysis of the telomere length. ELISA technique determined levels of 5-methylcytosine in blood cells' DNA. RESULTS Oxidative damage of serum DNA/RNA was higher in patients than in controls (median, 3758 vs. 2286pg/mL, p<0.001). A higher length of telomeres per chromosome was found in patients whole-cell DNA than in controls (3.57 vs. 3.04 kilobases, p=0.011). A negative correlation of the length of telomeres with an age of the control subjects was revealed (Spearman's rho=-0.420, p=0.028). Insignificantly different levels of 5-methylcytosine in patients and controls were observed (33.20 vs. 23.35%, p=0.234). No influences of sex, smoking, BMI, PASI score, and metabolic syndrome on the methylation status were found. STUDY LIMITATIONS i) A relatively small number of the participants, particularly for reliable subgroup analyses, ii) the Caucasian origin of the participants possibly influencing the results of the parameters determined, and iii) Telomerase activity was not directly measured in serum or blood cells. CONCLUSION The study demonstrated increased levels of oxidized DNA/RNA molecules in the serum of patients with exacerbated psoriasis vulgaris. The results were minimally influenced by sex, the presence of metabolic syndrome, or cigarette smoking. In the psoriatic blood cells' DNA, the authors observed longer telomeres compared to healthy controls, particularly in females. Insignificantly higher global DNA methylation in psoriasis cases compared to the controls indicated marginal clinical importance of this epigenetic test performed in the blood cells' DNA.
Collapse
Affiliation(s)
- Martin Beranek
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic,Department of Biochemical Sciences, Faculty of Pharmacy, Hradec Kralove, Charles University, Czech Republic,Corresponding author.
| | - Pavel Borsky
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Adam Karas
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Department of Medical Biophysics, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Zhukov AS, Patrushev AV, Khairutdinov VR, Samtsov AV, Kryukov EV. New aspects of the pathogenesis of psoriasis. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Psoriasis is a chronic multi-factorial immune-mediated inflammatory disease of skin and joints. The variety of clinical forms of dermatosis is consistent with various pathogenetic features of the disease progress which have been significantly supplemented and reviewed recently. Knowledge of these mechanisms will improve and personalize the prescribed therapy.
This study places the emphasis on modern ideas about the formation of T cell memory, the role of melanocytes and innate lymphoid cells. Development mechanisms of guttate and paradoxical psoriasis with important distinguishing characteristics are described separately.
Today, knowledge of the molecular basis of the disease progression has led to the creation and introduction of a number of highly effective targeted drugs into clinical practice. Further developments related to the inhibition of resident memory cells, innate lymphoid cells, as well as the study of guttate psoriasis perpetuation and the occurrence of paradoxical psoriasis will significantly increase the effectiveness of the therapy.
Collapse
|
20
|
Salahuddin Z, Rafi A, Muhammad H, Aftab U, Akhtar T, Zafar MS, Shahzad M. Revolutionalizing the age old conventional treatment of psoriasis: An animal based comparative study between methylprednisolone and different doses of a novel anti-oxidant humanin analogue (HNG). Int Immunopharmacol 2022; 110:108990. [PMID: 35978518 DOI: 10.1016/j.intimp.2022.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Psoriasis is a chronic skin disease with 2-4% of prevalence worldwide conferring a major burden on health systems. It is assumed that the prevalence might increase due to climatic change and deterioration of protective ozone barrier. With the chances of increasing prevalence, newer and specific treatment options need to be explored. Skin is a constant target of oxidative stress owing to continuous exposure to ultraviolet radiations. Oxidative stress is considered to have a central role in dermatological diseases, including psoriasis. This study was designed to explore the role of Humanin analogue (S14-G HNG) as an important anti oxidant for psoriasis like condition in BALB/c mice as till date the commomly used drugs for this disease are corticosteroids which have a dissatisfactory adverse effect profile in terms of chronic use. METHODOLOGY Imiquimod 5% was used to induce Psoriasis like condition in mice, and the role of HNG was assessed through the histological examination, protein expressions and markers of oxidative stress. Two doses (low and high) of HNG were used and results were compared with an established drug methylprednisolone. KEY RESULT Significant improvement was seen on histology, PASI scoring, protein expression and oxidative stress by the use of intraperitoneal injections of S14-G HNG and the results were comparable to those obtained through peritoneal injections of methylprednisolone. CONCLUSION S14G-HNG can be considered as a suitable option for treatment of Psoriasis after clinical trials and it might prove to have lesser side effects as compared to other drugs employed for the treatment of psoriasis being an innate anti oxidant and anti apoptotic compound.
Collapse
Affiliation(s)
- Zari Salahuddin
- Pharmacology Department, University of Health Sciences, Lahore, Pakistan
| | - Ali Rafi
- Pharmacology Department, University of Health Sciences, Lahore, Pakistan
| | - Hafsa Muhammad
- Pharmacology Department, University of Health Sciences, Lahore, Pakistan
| | - Usman Aftab
- Pharmacology Department, University of Health Sciences, Lahore, Pakistan
| | - Tasleem Akhtar
- Pharmacology Department, University of Health Sciences, Lahore, Pakistan
| | | | - Muhammad Shahzad
- Pharmacology Department, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
21
|
SerpinB7 deficiency contributes to development of psoriasis via calcium-mediated keratinocyte differentiation dysfunction. Cell Death Dis 2022; 13:635. [PMID: 35864103 PMCID: PMC9304369 DOI: 10.1038/s41419-022-05045-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Defective execution of proteases and protease inhibitors that mediate abnormal signaling cascades is emerging as a key contributor to skin diseases, such as psoriasis. SerpinB7 is identified as a skin-specific endogenous protease inhibitor, but the role and underlying mechanism in psoriasis are poorly understood. Here we found that SerpinB7 is highly expressed in psoriatic keratinocytes of patients and imiquimod-induced psoriatic lesions in mice. SerpinB7-/- mice showed abnormal epidermal barrier integrity and skin architecture in homeostasis, and aggravated psoriatic lesion with inhibiting terminal differentiation and increasing inflammatory cells infiltration compared to SerpinB7+/+ mice after Imiquimod treatment. Mechanistically, SerpinB7 deficiency results in excessive proliferation and impaired differentiation, as well as increased chemokines and antimicrobial peptide expression in normal human epidermal keratinocyte and mouse primary keratinocyte. Transcriptomics and proteomics results showed that the SeprinB7 deficiency affected keratinocyte differentiation and proinflammatory cytokines, possibly by affecting the calcium ion channel-related proteins. Notably, we demonstrated that SerpinB7 deficiency prevented the increase in intracellular Ca2+ influx, which was partly eliminated by the intracellular Ca2+ chelator BAPTA-AM. Our findings first described the critical role of SerpinB7 in the regulation of keratinocyte differentiation and psoriatic microenvironment mediated via keratinocytes' intracellular calcium flux, proposing a new candidate for therapeutic targets in psoriasis.
Collapse
|
22
|
The lncRNA PRINS-miRNA-mRNA Axis Gene Expression Profile as a Circulating Biomarker Panel in Psoriasis. Mol Diagn Ther 2022; 26:451-465. [PMID: 35761165 PMCID: PMC9276574 DOI: 10.1007/s40291-022-00598-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/29/2022]
Abstract
BACKGROUND The interaction between genes and the environment in psoriasis is firmly coupled by epigenetic modification. Epigenetic modifications are inherited variations in gene expression devoid of DNA sequence alterations. Non-coding RNAs are regarded as one of the epigenetic modifications that lead eventually to enduring heritable variations in gene expression. In the present study, we chose the lncRNA, Psoriasis-susceptibility-Related RNA Gene Induced by Stress (PRINS) known to have a regulatory role in psoriasis and deduced its axis of lncRNA-miRNA-mRNA through an in silico data analysis. We aimed to assess the expression levels of this lncRNA-miRNA-mRNA in patients with psoriasis to elucidate their possible roles in psoriasis management. METHODS We investigated the lncRNA-PRINS and its target microRNAs (miRNA124-3p, miRNA203a-5p, miRNA129-5p, miRNA146a-5p, miRNA9-5p) and partner genes (NPM, G1P3) expression levels in the plasma of 120 patients with psoriasis compared to 120 healthy volunteers using quantitative real-time polymerase chain reaction and correlated the results with the patients' clinicopathological data. Finally, we performed a function, disease, and pathway enrichment analysis for the LncRNA-miRNA-mRNA axis under study. RESULTS The lncRNA PRINS, G1P3, and NPM genes showed significantly under-expressed levels while all miRNAs included in the study showed significant over-expression in patients with psoriasis relative to controls. The lncRNA PRINS, G1P3, and NPM genes showed a significant direct correlation with each other and inverse significant correlations with all miRNAs under study. All the study biomarkers showed significant results for discriminating between patients with psoriasis and controls using a receiver operating curve analysis with sensitivity over 90% except for PRINS, which was 74.2%. The G1P3 gene showed a direct significant correlation with body mass index in patients with psoriasis (p = 0.009) and an inverse significant correlation with age (p = 0.034). The NPM gene showed a significant correlation with body mass index in patients with psoriasis (p = 0.002). CONCLUSIONS Based on our results, we suggest that restoring the altered PRINS-miRNA-mRNA axis gene expression levels might represent a tool to prevent psoriasis worsening, along with standard therapy. Thus, on the clinical practice level, the PRINS-miRNA-mRNA axis expression profile can be utilized in designing specific targeted therapy aimed at applying a personalized medicine approach among patients with psoriasis.
Collapse
|
23
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
24
|
Chrna5 is overexpressed in psoriasis patients and promotes psoriasis-like inflammation in mouse models. J Invest Dermatol 2022; 142:2978-2987.e6. [PMID: 35513071 DOI: 10.1016/j.jid.2022.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
Abstract
It is well known that psoriasis is closely related to smoking, and the cholinergic receptor nicotinic subunit alpha-5 (Chrna5) plays an important role in smoking-related diseases. However, studies on the relationship between Chrna5 and psoriasis are limited. This study aimed to examine the role of Chrna5 in psoriasis development and pathogenesis. Analysis in psoriatic tissues and imiquimod (IMQ)-induced mouse models showed that Chrna5 was highly expressed in psoriatic lesional skin. To further verify the function of Chrna5, we constructed Chrna5-knockout mice and induced the psoriasis model. We found that Chrna5 knockout significantly reduced the severity of psoriasis and could regulate inflammation via the mitogen-activated protein kinase kinase kinase 1 (MEKK1)/c-Jun NH(2)-terminal kinase (JNK)-MAPK/NF-κB pathway. The single-cell sequencing results revealed that after Chrna5 knockout, the keratinocyte subpopulation was significantly reduced and the related Janus kinase/signal transduction and activator of transcription (JAK/STAT) signaling pathway was downregulated, further indicating the importance of Chrna5 in psoriasis. Human keratinocytes were analyzed, and silencing Chrna5 inhibited keratinocyte proliferation and migration. In summary, Chrna5 played important roles in the development and pathogenesis of psoriasis, and targeting Chrna5 may be an effective strategy for the treatment of psoriasis.
Collapse
|
25
|
Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022; 10:biomedicines10051037. [PMID: 35625774 PMCID: PMC9138548 DOI: 10.3390/biomedicines10051037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut–skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut–skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.
Collapse
|
26
|
Epigenetic Mechanisms of Epidermal Differentiation. Int J Mol Sci 2022; 23:ijms23094874. [PMID: 35563264 PMCID: PMC9102508 DOI: 10.3390/ijms23094874] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Keratinocyte differentiation is an essential process for epidermal stratification and stratum corneum formation. Keratinocytes proliferate in the basal layer of the epidermis and start their differentiation by changing their functional or phenotypical type; this process is regulated via induction or repression of epidermal differentiation complex (EDC) genes that play a pivotal role in epidermal development. Epidermal development and the keratinocyte differentiation program are orchestrated by several transcription factors, signaling pathways, and epigenetic regulators. The latter exhibits both activating and repressive effects on chromatin in keratinocytes via the ATP-dependent chromatin remodelers, histone demethylases, and genome organizers that promote terminal keratinocyte differentiation, and the DNA methyltransferases, histone deacetylases, and Polycomb components that stimulate proliferation of progenitor cells and inhibit premature activation of terminal differentiation-associated genes. In addition, microRNAs are involved in different processes between proliferation and differentiation during the program of epidermal development. Here, we bring together current knowledge of the mechanisms controlling gene expression during keratinocyte differentiation. An awareness of epigenetic mechanisms and their alterations in health and disease will help to bridge the gap between our current knowledge and potential applications for epigenetic regulators in clinical practice to pave the way for promising target therapies.
Collapse
|
27
|
Alesci A, Lauriano ER, Fumia A, Irrera N, Mastrantonio E, Vaccaro M, Gangemi S, Santini A, Cicero N, Pergolizzi S. Relationship between Immune Cells, Depression, Stress, and Psoriasis: Could the Use of Natural Products Be Helpful? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061953. [PMID: 35335319 PMCID: PMC8954591 DOI: 10.3390/molecules27061953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%-3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine—Section of Pharmacology, University of Messina, 98125 Messina, Italy;
| | | | - Mario Vaccaro
- Department of Clinical and Experimental Medicine—Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| |
Collapse
|
28
|
Kiratikanon S, Chattipakorn SC, Chattipakorn N, Kumfu S. The regulatory effects of PTPN6 on inflammatory process: Reports from mice to men. Arch Biochem Biophys 2022; 721:109189. [DOI: 10.1016/j.abb.2022.109189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
|
29
|
De Francesco MA, Caruso A. The Gut Microbiome in Psoriasis and Crohn’s Disease: Is Its Perturbation a Common Denominator for Their Pathogenesis? Vaccines (Basel) 2022; 10:vaccines10020244. [PMID: 35214702 PMCID: PMC8877283 DOI: 10.3390/vaccines10020244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Psoriasis and inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), are interlinked. In fact, the prevalence of IBD is higher in patients with psoriasis, with a risk of ulcerative colitis of 1.6-times higher than in the general population. Analogously, patients with psoriasis have a greater risk of developing IBD. Furthermore, they share some clinical features and pathogenic mechanisms. Both are chronic inflammatory diseases with a relapsing-remitting condition that persists for the patient’s whole life and exhibit increased permeability of the mucosal barrier of skin and gut, allowing an increased interaction of pathogens with inflammatory receptors of the immune cells. A key element in the pathogenesis of these diseases is represented by the microbiota; in particular, the gut microbiota is an important driver of CD pathogenesis, while in psoriasis changes in gut and skin microbiota have been described without a defined pathogenic function. Furthermore, genetic predispositions or environmental factors contribute to disease manifestation, with a central role attributed to the immune responses and, in particular, to a dysregulated role played by T helper 17 cells both in psoriasis and IBD. The purpose of this review was to summarize present information about the links between psoriasis, inflammatory bowel disease, in particular Crohn’s disease, and changes in gut and/or skin microbiome.
Collapse
|
30
|
Ali F, Neha K, Sharma K, Khasimbi S, Chauhan G. Nanotechnology-based medicinal products and patents: a promising way to treat psoriasis. Curr Drug Deliv 2022; 19:587-599. [PMID: 35081890 DOI: 10.2174/1567201819666220126163943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Psoriasis is an autoimmune skin disorder that is characterised by chronic inflammation and erythematous scaly patches. It has a significant impact on the patient's quality of life and can cause psychological stress. There are several aspects which cause psoriasis for instance, environmental issues, immune disorders, bacterial infections, and genetic issues. Plentiful therapeutic means or treatments are accessible, but not any of them can completely and effectively cure psoriasis without hindering patient compliance. Hence, it becomes challenging to discover a new drug moiety or any drug delivery method to cure psoriasis. Conventional treatment of psoriasis involves anti-inflammatory agents, immune suppressants, phototherapy, and biologic treatment, those were given in different forms such as topical, oral, or systemic formulations, but these all were unsuccessful to accomplish complete reduction of psoriasis as well as causing adverse side effects. In terms of dose frequency, doses, efficacy, and side effects, nanotechnology-based new formulations are the most promising prospects for addressing the challenges and limits associated with present psoriasis formulations. Hence, our major goal of this review is to present various advanced nanotechnological approaches for effective topical treatment of psoriasis. In short, nano-formulations continue to be formed as very promising modality in the treatment of psoriasis as they suggest improved penetration, targeted delivery, increased safety, and efficacy.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority, Plot 112, International Finance Park, Gaborone, Botswana
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Kamna Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| |
Collapse
|
31
|
INDICATORS OF THE LEVEL OF SUBJECTIVE CONTROL IN MALE PATIENTS WITH MILD OR SEVERE PSORIASIS WITHOUT TAKING INTO ACCOUNT SOMATOTYPE AND WITH TAKING INTO ACCOUNT SOMATOTYPE. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-126-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
A. Anani H, Khalifa W, Althoqapy A, Maklad S, Kamal H, Sabry D, Samir M. Frequency of genotypes and allelic polymorphisms of Vitamin D receptor in egyptian psoriatic patients and their association with disease severity, immune modulation of IL-22 levels and the response to topical calcipotriol treatment: A case control study. Indian J Dermatol 2022; 67:37-44. [PMID: 35656282 PMCID: PMC9154157 DOI: 10.4103/ijd.ijd_799_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective: This study was performed to determine the genotype and allelic frequencies (polymorphisms) of the four genes of vitamin D receptor (VDR) among Egyptian psoriatic patients and healthy controls to explore their association with disease severity (PASI) score and immune modulation of IL-22 cytokine and to predict the response to topical calcipotriol treatment. Patients and Methods: The frequencies of the four VDR gene polymorphisms (FokI, ApaI, TaqI, and BsmI) in blood samples of 51 adult Egyptian patients with psoriasis vulgaris and 50 healthy controls were evaluated using restriction fragment length polymorphism (RFLP)-PCR. Serum levels of IL-22 were measured by ELISA. Results: The most frequent genotype (wild) in the studied patients was Apa1; AA (88.2%) followed by Fok1; FF (47.1%) and Taq1; TT (47%), while Bsm1; BB genotype was (27.7%). The most frequent allele polymorphisms either in one allele (Bb) or both alleles (bb) in psoriatic patients were 72.5%, followed by Ff, ff (52.9%) and Tt, tt (52.9%). The less frequent allelic polymorphism was Aa, aa (27.7%). Insignificant differences in the frequency of genotype (wild) and allelic polymorphisms were detected between patients and controls (P > 0.05). A significantly higher serum concentration of IL-22 (ng/mL) was detected in patients than controls (P = 0.001). Further, 66.6% of patients displayed a clinical response, while 33.4% were non-responders. A significantly higher expression of TaqI polymorphism was detected in (100%) of non-responders (P < 0.001), which was also correlated with disease severity (r = 0.515, P < 0.01). Conclusion: These results suggest that the VDR TaqI polymorphism is the only gene correlated to psoriasis susceptibility in the Egyptian population, and affects the response to topical calcipotriol treatment but does not affect IL-22 immune modulation.
Collapse
|
33
|
Kutwin M, Migdalska-Sęk M, Brzeziańska-Lasota E, Zelga P, Woźniacka A. An Analysis of IL-10, IL-17A, IL-17RA, IL-23A and IL-23R Expression and Their Correlation with Clinical Course in Patients with Psoriasis. J Clin Med 2021; 10:5834. [PMID: 34945130 PMCID: PMC8704681 DOI: 10.3390/jcm10245834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Being one of the most common dermatological inflammatory disorders, psoriasis is a frequent subject of research. It is considered to be a T cell-dependent immune disease whose pathogenesis is influenced by cytokines, such as IL-10, IL-17A, IL-17RA, IL-23A and IL-23R. The present study examines whether the expression of selected genes is correlated with the clinical course of psoriasis, assessed by the PASI, BSA and DLQI scales. Skin biopsies and blood from 60 patients with psoriasis and 24 healthy controls were obtained for RNA isolation. These were subjected to RT-PCR for IL-10, IL-17A, IL-17RA, IL-23A and IL-23R genes. The results were presented as an RQ value. IL-17A and IL-23R expression levels were higher in psoriatic skin compared to controls, while IL-10 expression was lower. A positive correlation was also found between RQ for IL-23A and PASI index. Psoriatic skin is characterised by elevated expression of IL-17A and IL-23R and decreased expression of IL-10. This indicates that the selected cytokines may be one of the factors involved in the pathogenesis and pathomechanism of psoriasis, but more studies need to be made before we can elucidate the exact reason for the unbalance in cytokine expression levels.
Collapse
Affiliation(s)
- Magdalena Kutwin
- Department of Dermatology and Venereology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Piotr Zelga
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, 90-647 Lodz, Poland;
| |
Collapse
|
34
|
Sharma K, Choudhary S, Silakari O. Portraying molecular modulation and therapeutic aspects of psoriasis: Retrospection and current status. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Jang S, Jang S, Kim SY, Ko J, Kim E, Park JY, Hyung H, Lee JH, Lim SG, Park S, Yi J, Lee HJ, Kim MO, Lee HS, Ryoo ZY. Overexpression of Lin28a Aggravates Psoriasis-Like Phenotype by Regulating the Proliferation and Differentiation of Keratinocytes. J Inflamm Res 2021; 14:4299-4312. [PMID: 34511969 PMCID: PMC8415766 DOI: 10.2147/jir.s312963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/06/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose Psoriasis is a common and well-studied autoimmune skin disease, which is characterized by plaques. The formation of psoriasis plaques occurs through the hyperproliferation and abnormal differentiation of keratinocytes, infiltration of numerous immune cells into the dermis, increased subepidermal angiogenesis, and various autoimmune-associated cytokines and chemokines. According to previous research, Lin28 regulates the let-7 family, and let-7b is associated with psoriasis. However, the link between Lin28 and psoriasis is unclear. In this study, an association was identified between Lin28a and psoriasis progression, which promoted the pathological characteristic of psoriasis in epidermal keratinocytes. Patients and Methods This study aims to investigate the role of Lin28a and its underlying mechanism in psoriasis through in vivo and in vitro models, which include the Lin28a-overexpressing transgenic (TG) mice and Lin28a-overexpressing human keratinocyte (HaCaT) cell lines, respectively. Results In vivo and in vitro results revealed that overexpression of Lin28a downregulated microRNA let-7 expression levels and caused hyperproliferation and abnormal differentiation in keratinocytes. In imiquimod (IMQ)-induced psoriasis-like inflammation, Lin28a overexpressing transgenic (TG) mice exhibited more severe symptoms of psoriasis. Conclusion Mechanistically, Lin28a exacerbated psoriasis-like inflammation through the activation of the extracellular-signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 signaling (STAT 3) by targeting proinflammatory cytokine interleukin-6 (IL-6).
Collapse
Affiliation(s)
- Soyeon Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Jiwon Ko
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Ji Yeong Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Jin Hong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Su-Geun Lim
- School of Life Science, Kyungpook National University, Daegu, Korea
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu, Korea
| | - Junkoo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
36
|
Membrive Jiménez C, Pérez Ramírez C, Sánchez Martín A, Vieira Maroun S, Arias Santiago S, Ramírez Tortosa MC, Jiménez Morales A. Clinical Application of Pharmacogenetic Markers in the Treatment of Dermatologic Pathologies. Pharmaceuticals (Basel) 2021; 14:ph14090905. [PMID: 34577605 PMCID: PMC8471650 DOI: 10.3390/ph14090905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Dermatologic pathologies are the fourth most common cause of non-fatal disease worldwide; however, they produce a psychosocial, economic, and occupational impact equal to or greater than other chronic conditions. The most prevalent are actinic keratosis, followed by basal-cell carcinoma, in a lesser proportion acne vulgaris, psoriasis, and hidradenitis suppurativa, among others, and more rarely dermatitis herpetiformis. To treat actinic keratosis and basal-cell carcinoma, 5-fluorouracil (5-FU) 0.5% is administered topically with good results, although in certain patients it produces severe toxicity. On the other hand, dapsone is a drug commonly used in inflammatory skin conditions such as dermatitis herpetiformis; however, it occasionally causes hemolytic anemia. Additionally, biologic drugs indicated for the treatment of moderate-to-severe psoriasis and hidradenitis suppurativa have proved to be effective and safe; nevertheless, a small percentage of patients do not respond to treatment with biologics in the long term or they are ineffective. This interindividual variability in response may be due to alterations in genes that encode proteins involved in the pathologic environment of the disease or the mechanism of action of the medication. Pharmacogenetics studies the relationship between genetic variations and drug response, which is useful for the early identification of non-responsive patients and those with a higher risk of developing toxicity upon treatment. This review describes the pharmacogenetic recommendations with the strongest evidence at present for the treatments used in dermatology, highlighting those included in clinical practice guides. Currently, we could only find pharmacogenetic clinical guidelines for 5-FU. However, the summary of product characteristics for dapsone contains a pharmacogenetic recommendation from the United States Food and Drug Administration. Finally, there is an enormous amount of information from pharmacogenetic studies in patients with dermatologic pathologies (mainly psoriasis) treated with biologic therapies, but they need to be validated in order to be included in clinical practice guides.
Collapse
Affiliation(s)
- Cristina Membrive Jiménez
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| | - Cristina Pérez Ramírez
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Correspondence:
| | - Almudena Sánchez Martín
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| | - Sayleth Vieira Maroun
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| | | | - María Carmen Ramírez Tortosa
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Alberto Jiménez Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| |
Collapse
|
37
|
Maronese CA, Zelin E, Moltrasio C, Genovese G, Marzano AV. Genetic screening in new onset inflammatory bowel disease during anti-interleukin 17 therapy: unmet needs and call for action. Expert Opin Biol Ther 2021; 21:1543-1546. [PMID: 34448662 DOI: 10.1080/14712598.2021.1974395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Enrico Zelin
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
The Role of Epigenetic Factors in Psoriasis. Int J Mol Sci 2021; 22:ijms22179294. [PMID: 34502197 PMCID: PMC8431057 DOI: 10.3390/ijms22179294] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic, systemic, immune-mediated disease with an incidence of approximately 2%. The pathogenesis of the disease is complex and not yet fully understood. Genetic factors play a significant role in the pathogenesis of the disease. In predisposed individuals, multiple trigger factors may contribute to disease onset and exacerbations of symptoms. Environmental factors (stress, infections, certain medications, nicotinism, alcohol, obesity) play a significant role in the pathogenesis of psoriasis. In addition, epigenetic mechanisms are considered result in modulation of individual gene expression and an increased likelihood of the disease. Studies highlight the significant role of epigenetic factors in the etiology and pathogenesis of psoriasis. Epigenetic mechanisms in psoriasis include DNA methylation, histone modifications and non-coding RNAs. Epigenetic mechanisms induce gene expression changes under the influence of chemical modifications of DNA and histones, which alter chromatin structure and activate transcription factors of selected genes, thus leading to translation of new mRNA without affecting the DNA sequence. Epigenetic factors can regulate gene expression at the transcriptional (via histone modification, DNA methylation) and posttranscriptional levels (via microRNAs and long non-coding RNAs). This study aims to present and discuss the different epigenetic mechanisms in psoriasis based on a review of the available literature.
Collapse
|
39
|
Lu J, Xu X, Li Y, Yu N, Ding Y, Shi Y. CircRAB3B suppresses proliferation, motility, cell cycle progression and promotes the apoptosis of IL-22-induced keratinocytes depending on the regulation of miR-1228-3p/PTEN axis in psoriasis. Autoimmunity 2021; 54:303-312. [PMID: 34096408 DOI: 10.1080/08916934.2021.1934825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Psoriasis is an immune-related chronic skin disease, and interleukin-22 (IL-22) is involved in psoriasis pathogenesis through promoting proliferation and migration abilities of keratinocytes. Here, we analysed the role of circular RNA (circRNA) RAB3B, member RAS oncogene family (circRAB3B) in regulating the phenotypes of IL-22-induced HaCaT cells. METHODS RT-qPCR was implemented to assess RNA abundance. Western blot assay was adopted to assess protein abundance. Cell proliferation capacity was examined by cell counting kit-8 (CCK8) assay and 5-ethynyl-2'-deoxyuridine (Edu) assay. Cell motility was assessed by transwell assays and wound healing assay. Flow cytometric analysis was utilized to evaluate cell cycle progression and apoptosis. The intermolecular binding relations were tested via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. CircRAB3B expression was reduced in psoriatic cutaneous specimens and IL-22-treated HaCaT cells. RESULTS CircRAB3B overexpression hampered the proliferation, motility, and cell cycle progression and elevated the apoptotic rate of IL-22-treated HaCaT cells, and circRAB3B silencing exhibited opposite effects in IL-22-induced HaCaT cells. CircRAB3B acted as microRNA-1228-3p (miR-1228-3p) sponge in HaCaT cells, and miR-1228-3p overexpression largely overturned circRAB3B overexpression-induced effects in HaCaT cells. MiR-1228-3p interacted with phosphatase and tensin homolog (PTEN), and circRAB3B sponged miR-1228-3p to induce PTEN level. MiR-1228-3p accumulation-mediated effects were partly alleviated by PTEN overexpression in HaCaT cells upon IL-22 treatment. CONCLUSIONS CircRAB3B suppressed psoriasis progression partly through down-regulating miR-1228-3p and up-regulating PTEN.
Collapse
Affiliation(s)
- Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xin Xu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Ying Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Ning Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Tang L, Wang M, Shen C, Wen L, Li M, Wang D, Zheng X, Sheng Y, Wu W, Zhang C, Zhang X, Zhou F. Assay for Transposase-Accessible Chromatin Using Sequencing Analysis Reveals a Widespread Increase in Chromatin Accessibility in Psoriasis. J Invest Dermatol 2021; 141:1745-1753. [DOI: 10.1016/j.jid.2020.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
|
41
|
Contardi M, Lenzuni M, Fiorentini F, Summa M, Bertorelli R, Suarato G, Athanassiou A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics 2021; 13:999. [PMID: 34371691 PMCID: PMC8309026 DOI: 10.3390/pharmaceutics13070999] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations of skin homeostasis are widely diffused in our everyday life both due to accidental injuries, such as wounds and burns, and physiological conditions, such as late-stage diabetes, dermatitis, or psoriasis. These events are locally characterized by an intense inflammatory response, a high generation of harmful free radicals, or an impairment in the immune response regulation, which can profoundly change the skin tissue' repair process, vulnerability, and functionality. Moreover, diabetes diffusion, antibiotic resistance, and abuse of aggressive soaps and disinfectants following the COVID-19 emergency could be causes for the future spreading of skin disorders. In the last years, hydroxycinnamic acids and derivatives have been investigated and applied in several research fields for their anti-oxidant, anti-inflammatory, and anti-bacterial activities. First, in this study, we give an overview of these natural molecules' current source and applications. Afterwards, we review their potential role as valid alternatives to the current therapies, supporting the management and rebalancing of skin disorders and diseases at different levels. Also, we will introduce the recent advances in the design of biomaterials loaded with these phenolic compounds, specifically suitable for skin disorders treatments. Lastly, we will suggest future perspectives for introducing hydroxycinnamic acids and derivatives in treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| | - Martina Lenzuni
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Fabrizio Fiorentini
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Maria Summa
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Rosalia Bertorelli
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Giulia Suarato
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Athanassia Athanassiou
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| |
Collapse
|
42
|
The role of LncRNA MALAT-1 and MiRNA-9 in Psoriasis. Biochem Biophys Rep 2021; 26:101030. [PMID: 34095555 PMCID: PMC8167237 DOI: 10.1016/j.bbrep.2021.101030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Psoriasis is a chronic skin disorder manifested by recurrent episodes of scaly, red, itchy skin patches that occur within apparently normal skin. Objectives This study was performed to detect the expression of serum and tissue (lesion and non-lesion) LncRNA MALAT-1 and MiRNA-9 that might be used as biomarkers for psoriasis. Methods Blood samples were obtained from 60 psoriasis patients and 40 controls, as well as 4 mm punch biopsy from lesional and non lesional skin of psoriatic patient and normal skin of healthy controls. Expression of LncRNA MALAT-1 and miRNNA-9 in serum and tissues was detected by real time qRT-PCR. Results a statistically significant increase in the expression of MALAT-1 in lesional and non-lesional skin and serum of psoriatic patients in comparison to controls were detected. Moreover, there was statistically significant increase in serum MiRNA-9 in patients in comparison to controls, while its tissue level was significantly lower in patients. Conclusion This study highlights the dysregulation of LncRNA MALAT-1 and miRNA-9 in psoriasis. Elevated expression of MALAT-1 in lesional skin of psoriatic patients compared to non-lesional skin may possibly contribute to the development of psoriatic plaques.
Collapse
|
43
|
Chandra A, Das S, Mazumder S, Senapati S, Chatterjee G, Chatterjee R. Functional Mapping of Genetic Interactions between HLA-Cw6 and LCE3A in Psoriasis. J Invest Dermatol 2021; 141:2630-2638.e7. [PMID: 34029573 DOI: 10.1016/j.jid.2021.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
Functional studies to delineate the molecular mechanisms of causal genetic variants are the main focus in the post-GWAS era. Previous GWASs have identified >50 susceptibility loci associated with psoriasis. Functional understanding of the biology underlying the disease risk of most of these associated loci is unclear. In this study, we identified a regulatory SNP at the putative enhancer of the LCE3A gene within the epidermal differentiation complex that showed epistatic interaction with HLA-Cw6. The variant allele disrupted signal transducer and activator of transcription 3 binding to the region, thereby regulating the expression of the downstream LCE3A gene. Electrophoretic mobility shift and pulldown assay confirmed the preferential binding of signal transducer and activator of transcription 3 to the DNA with a wild-type allele compared with the DNA with a variant allele. The reporter assay further validated the IL-6‒stimulated phosphorylated signal transducer and activator of transcription 3‒mediated LCE3A activation in the presence of the wild-type allele. Interestingly, the presence of the HLA-Cw6 allele leads to IL-6‒mediated phosphorylation of signal transducer and activator of transcription 3, followed by its nuclear localization in the epidermal keratinocytes of psoriatic skin, suggesting indirect interaction of the HLA-Cw6 allele and a regulatory SNP upstream of the LCE3A gene. This study reflects an interesting approach to dissecting the molecular mechanism underlying the genetic interaction observed between HLA-Cw6 and LCE3A in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Aditi Chandra
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Shantanab Das
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Sayani Mazumder
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Swapan Senapati
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Gobinda Chatterjee
- Department of Dermatology, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
44
|
El-Komy M, Amin I, El-Hawary MS, Saadi D, Shaker O. Upregulation of the miRNA-155, miRNA-210, and miRNA-20b in psoriasis patients and their relation to IL-17. Int J Immunopathol Pharmacol 2021; 34:2058738420933742. [PMID: 32602388 PMCID: PMC7328219 DOI: 10.1177/2058738420933742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is an immune-mediated disease, with genetic background and triggering
environmental factors; however, several gaps are still present in understanding
the intertwined relationship between these elements. Epigenetic mechanisms,
including microRNAs (miRNAs), play an important role in the pathogenesis of
psoriasis. The relationship between interleukin (IL)-17, a key cytokine in
psoriasis, and these epigenetic mechanisms still needs to be elucidated. This
study aimed at assessing the expression of miRNA-155, miRNA-210, and miRNA-20b
in skin and sera of psoriasis patients in relation to IL-17 levels. For 20
psoriasis patients and 20 matching controls, the expression of miRNA-155,
miRNA-210, and miRNA-20b was assessed using real-time polymerase chain reaction
(RT-PCR), whereas IL-17/IL-17A levels were measured using quantitative
enzyme-linked immunosorbent assay (ELISA) technique. MiRNA-155 expression was
significantly higher in lesional skin compared to controls
(P = 0.001). MiRNA-210 expression was significantly higher in
both, lesional skin (P = 0.010) and sera of patients
(P = 0.001) in comparison with controls. A statistically
significant positive correlation was found between serum miRNA-210 expression
and serum levels of IL-17/IL-17A (P = 0.010, rs = 0.562).
MiRNA-20b lesional and non-lesional expression was significantly higher than
controls (P < 0.001; P = 0.018). In
conclusion, the expression of miRNA-155, miRNA-210, and miRNA-20b is exaggerated
in psoriasis and they may be involved in disease pathogenesis. A possible
relationship between miRNA-210 and IL-17 may be suggested; however, further
studies are still needed to verify this relation.
Collapse
Affiliation(s)
- Mohamed El-Komy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman Amin
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Dina Saadi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
45
|
Membrive Jiménez C, Pérez Ramírez C, Sánchez Martín A, Vieira Maroun S, Arias Santiago SA, Ramírez Tortosa MDC, Jiménez Morales A. Influence of Genetic Polymorphisms on Response to Biologics in Moderate-to-Severe Psoriasis. J Pers Med 2021; 11:293. [PMID: 33921427 PMCID: PMC8069496 DOI: 10.3390/jpm11040293] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin pathology of autoimmune origin and unknown etiology. There are various therapies for treating it, including a wide range of biopharmaceuticals indicated in moderate-to-severe psoriasis. Depending on their therapeutic target, they are classified as tumor necrosis factor inhibitors (anti-TNF) or cytokine inhibitors (interleukin-12, 23, and 17 antagonists). Although they have proved effective and safe, in clinical practice, many patients show a short- and long-term suboptimal response and even varying degrees of toxicity. This variability in response may be influenced by genetic factors, such as polymorphisms in the genes involved in the pathological environment, metabolism or mechanism of action of the drug that could affect the effectiveness and toxicity of biological therapies. This review assesses pharmacogenetic studies of the impact of genetic factors on response to biopharmaceuticals and toxicity in patients diagnosed with moderate-to-severe psoriasis. The results suggest that polymorphisms detected in the HLA genes, in genes that encode cytokines (TNF, IL genes, TNFAIP3), transporters (PDE3A-SLCO1C1, SLC12A8), receptors (TNFRSF1B, CD84, FCGR2A and FCGR3A, IL17RA, IL23R, TLR genes, PGLYRP4) and associated proteins (TNFAIP3, LY96, TIRAP, FBXL19), as well as other genes implicated in the pathogenesis of psoriasis (CDKAL1, CARD14, PTTG1, MAP3K1, ZNF816A, GBP6, CTNNA2, HTR2A, CTLA4, TAP1) can be used in the future as predictive markers of treatment response and/or toxicity with biological therapies in patients diagnosed with moderate-to-severe psoriasis, tailoring treatment to the individual patient.
Collapse
Affiliation(s)
- Cristina Membrive Jiménez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| | - Cristina Pérez Ramírez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
- Department of Biochemistry, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain;
| | - Almudena Sánchez Martín
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| | - Sayleth Vieira Maroun
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| | | | | | - Alberto Jiménez Morales
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (C.M.J.); (A.S.M.); (S.V.M.); (A.J.M.)
| |
Collapse
|
46
|
Liu T, Feng X, Liao Y. miR-617 Promotes the Growth of IL-22-Stimulated Keratinocytes Through Regulating FOXO4 Expression. Biochem Genet 2021; 59:547-559. [PMID: 33211221 DOI: 10.1007/s10528-020-09997-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
Psoriasis is considered as a common chronic and relapsing inflammatory skin disease. MicroRNAs (miRNAs) were found to be related with psoriasis pathogenesis. Nevertheless, the function of miR-617 in psoriasis is still unclear. The miR-617 RNA level was detected using quantitative reverse transcription-PCR (qRT-PCR). Western blot analysis examined the protein level. Cell proliferation was analyzed via cell counting kit-8 (CCK-8) assay. Flow cytometry analysis detected cell cycle and apoptosis. The relationship between miR-617 and forkhead box protein O4 (FOXO4) was confirmed through dual luciferase assay. The miR-617 was up-regulated in psoriatic skin tissues and interleukin-22 (IL-22)-stimulated immortalized human keratinocyte HaCaT cells. Moreover, miR-617 mimics promoted proliferation, cell cycle, and suppressed apoptosis in IL-22-stimulated HaCaT cells. However, miR-617 inhibitor showed opposite effects. Additionally, FOXO4 was a target of miR-617. FOXO4 was down-regulated in psoriatic skin tissues and IL-22-stimulated HaCaT cells. Negative correlation between miR-617 and FOXO4 was identified. FOXO4 overexpression alleviated the effects of miR-617 proliferation, cell cycle and apoptosis in the IL-22-stimulated HaCaT cells. These results demonstrate that miR-617 increases the growth of IL-22-stimulated keratinocytes through targeting FOXO4, which provides a new therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Road, Luzhou, 646000, Sichuan, China.
| | - Xiaomei Feng
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yongmei Liao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Road, Luzhou, 646000, Sichuan, China
| |
Collapse
|
47
|
DIOTALLEVI F, CAMPANATI A, RADI G, MOLINELLI E, OFFIDANI A. Ixekizumab for treatment of moderate to severe plaque psoriasis: real world clinical experience. GIORN ITAL DERMAT V 2021; 155:739-743. [DOI: 10.23736/s0392-0488.18.06094-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Azzouz B, Laugier-Castellan D, Sanchez-Pena P, Rouault M, Kanagaratnam L, Morel A, Trenque T. Calcium channel blocker exposure and psoriasis risk: Pharmacovigilance investigation and literature data. Therapie 2021; 76:5-11. [DOI: 10.1016/j.therap.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
|
49
|
Ovejero‐Benito MC, Muñoz‐Aceituno E, Sabador D, Almoguera B, Prieto‐Pérez R, Hakonarson H, Coto‐Segura P, Carretero G, Reolid A, Llamas‐Velasco M, Abad‐Santos F, Daudén E. Genome‐wide association analysis of psoriasis patients treated with anti‐TNF drugs. Exp Dermatol 2020; 29:1225-1232. [DOI: 10.1111/exd.14215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- María C. Ovejero‐Benito
- Clinical Pharmacology Department Hospital Universitario de la Princesa Instituto Teófilo Hernando Universidad Autónoma de Madrid (UAM) Instituto de Investigación Sanitaria la Princesa (IIS‐IP) Madrid Spain
| | - Ester Muñoz‐Aceituno
- Dermatology Department Hospital Universitario de la Princesa Instituto de Investigación Sanitaria La Princesa (IIS‐IP) Madrid Spain
| | - David Sabador
- Clinical Pharmacology Department Hospital Universitario de la Princesa Instituto Teófilo Hernando Universidad Autónoma de Madrid (UAM) Instituto de Investigación Sanitaria la Princesa (IIS‐IP) Madrid Spain
| | - Berta Almoguera
- Hospital Universitario Fundación Jiménez Díaz (HUFJD). CIBERER Madrid Spain
- Center for Applied Genomics The Children's Hospital of Philadelphia Philadelphia PA USA
| | - Rocío Prieto‐Pérez
- Clinical Pharmacology Department Hospital Universitario de la Princesa Instituto Teófilo Hernando Universidad Autónoma de Madrid (UAM) Instituto de Investigación Sanitaria la Princesa (IIS‐IP) Madrid Spain
| | - Hakon Hakonarson
- Center for Applied Genomics The Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pediatrics The Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | | | - Gregorio Carretero
- Dermatology Department Hospital Universitario de Gran Canaria Dr. Negrín Las Palmas de Gran Canaria Spain
| | - Alejandra Reolid
- Dermatology Department Hospital Universitario de la Princesa Instituto de Investigación Sanitaria La Princesa (IIS‐IP) Madrid Spain
| | - Mar Llamas‐Velasco
- Dermatology Department Hospital Universitario de la Princesa Instituto de Investigación Sanitaria La Princesa (IIS‐IP) Madrid Spain
| | - Francisco Abad‐Santos
- Clinical Pharmacology Department Hospital Universitario de la Princesa Instituto Teófilo Hernando Universidad Autónoma de Madrid (UAM) Instituto de Investigación Sanitaria la Princesa (IIS‐IP) Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - Esteban Daudén
- Dermatology Department Hospital Universitario de la Princesa Instituto de Investigación Sanitaria La Princesa (IIS‐IP) Madrid Spain
| |
Collapse
|
50
|
The HLA-Cw6 Dilemma: Is It Really an Outcome Predictor in Psoriasis Patients under Biologic Therapy? A Monocentric Retrospective Analysis. J Clin Med 2020; 9:jcm9103140. [PMID: 32998429 PMCID: PMC7600180 DOI: 10.3390/jcm9103140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
HLA-Cw6 is one of the most strongly associated psoriasis susceptibility alleles. Data regarding correlation between HLA-Cw6 status and biologic treatment outcomes are divergent. The aim of our study in our cohort of psoriatic patients was to explore if the HLA-Cw6 status influences the response rate to biologic therapies at 16 and 48 weeks. One hundred and one psoriatic patients eligible for biologic therapies were enrolled. HLA-C*06 alleles were detected from their blood samples. The effectiveness of antipsoriatic treatments was reported as 90% Psoriasis Area and Severity Index reduction (PASI90). All biologics showed efficacy at week 16, without significant differences between one another. HLA-Cw6 status did not seem to affect baseline characteristics, or treatment response at week 16. At week 48, IL-12/23 and IL-17 targeting drugs were more effective on Cw6-positive patients than on Cw6-negative patients. Conversely, TNF-targeting drugs seemed to be more effective on Cw6- negative patients than on Cw6-positive patients. The HLA-Cw6 test could well deserve to be integrated into the clinical laboratory work-up supporting the choice of the correct biologic.
Collapse
|