1
|
Barbeau LMO, Beelen NA, Savelkouls KG, Keulers TGH, Wieten L, Rouschop KMA. MAP1LC3C repression reduces CIITA- and HLA class II expression in non-small cell lung cancer. PLoS One 2025; 20:e0316716. [PMID: 39928678 PMCID: PMC11809862 DOI: 10.1371/journal.pone.0316716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 02/12/2025] Open
Abstract
In the last decade, advancements in understanding the genetic landscape of lung squamous cell carcinoma (LUSC) have significantly impacted therapy development. Immune checkpoint inhibitors (ICI) have shown great promise, improving overall and progression-free survival in approximately 25% of the patients. However, challenges remain, such as the lack of predictive biomarkers, difficulties in patient stratification, and identifying mechanisms that cancers use to become immune-resistant ("immune-cold"). Analysis of TCGA datasets reveals reduced MAP1LC3C expression in cancer. Further analysis indicates that low MAP1LC3C is associated with reduced CIITA and HLA expression and with decreased immune cell infiltration. In tumor cells, silencing MAP1LC3C inhibits CIITA expression and suppresses HLA class II production. These findings suggest that cancer cells are selected for low MAP1LC3C expression to evade efficient immune responses.
Collapse
Affiliation(s)
- Lydie M. O. Barbeau
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Nicky A. Beelen
- Department of Internal Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Transplantation Immunology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim G. Savelkouls
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Tom G. H. Keulers
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
2
|
James JL, Taylor BC, Axelrod ML, Sun X, Guerin LN, Gonzalez-Ericsson PI, Wang Y, Sanchez V, Fahey CC, Sanders ME, Xu Y, Hodges E, Johnson DB, Balko JM. Polycomb repressor complex 2 suppresses interferon-responsive MHC-II expression in melanoma cells and is associated with anti-PD-1 resistance. J Immunother Cancer 2023; 11:e007736. [PMID: 38315170 PMCID: PMC10660662 DOI: 10.1136/jitc-2023-007736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Despite the remarkable success of immunotherapy in treating melanoma, understanding of the underlying mechanisms of resistance remains limited. Emerging evidence suggests that upregulation of tumor-specific major histocompatibility complex-II (tsMHC-II) serves as a predictive marker for the response to anti-programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) therapy in various cancer types. The genetic and epigenetic pathways modulating tsMHC-II expression remain incompletely characterized. Here, we provide evidence that polycomb repressive complex 2 (PRC2)/EZH2 signaling and resulting H3K27 hypermethylation suppresses tsMHC-II. METHODS RNA sequencing data from tumor biopsies from patients with cutaneous melanoma treated with or without anti-PD-1, targeted inhibition assays, and assays for transposase-accessible chromatin with sequencing were used to observe the relationship between EZH2 inhibition and interferon (IFN)-γ inducibility within the MHC-II pathway. RESULTS We find that increased EZH2 pathway messenger RNA (mRNA) expression correlates with reduced mRNA expression of both presentation and T-cell genes. Notably, targeted inhibition assays revealed that inhibition of EZH2 influences the expression dynamics and inducibility of the MHC-II pathway following IFN-γ stimulation. Additionally, our analysis of patients with metastatic melanoma revealed a significant inverse association between PRC2-related gene expression and response to anti-PD-1 therapy. CONCLUSIONS Collectively, our findings demonstrate that EZH2 inhibition leads to enhanced MHC-II expression potentially resulting from improved chromatin accessibility at CIITA, the master regulator of MHC-II. These insights shed light on the molecular mechanisms involved in tsMHC-II suppression and highlight the potential of targeting EZH2 as a therapeutic strategy to improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Jamaal L James
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brandie C Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Margaret L Axelrod
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Xiaopeng Sun
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Paula I Gonzalez-Ericsson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Catherine C Fahey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melinda E Sanders
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Björk C, Subramanian N, Liu J, Acosta JR, Tavira B, Eriksson AB, Arner P, Laurencikiene J. An RNAi Screening of Clinically Relevant Transcription Factors Regulating Human Adipogenesis and Adipocyte Metabolism. Endocrinology 2021; 162:6272286. [PMID: 33963396 PMCID: PMC8197287 DOI: 10.1210/endocr/bqab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Healthy hyperplasic (many but smaller fat cells) white adipose tissue (WAT) expansion is mediated by recruitment, proliferation and/or differentiation of new fat cells. This process (adipogenesis) is controlled by transcriptional programs that have been mostly identified in rodents. OBJECTIVE A systemic investigation of adipogenic human transcription factors (TFs) that are relevant for metabolic conditions has not been revealed previously. METHODS TFs regulated in WAT by obesity, adipose morphology, cancer cachexia, and insulin resistance were selected from microarrays. Their role in differentiation of human adipose tissue-derived stem cells (hASC) was investigated by RNA interference (RNAi) screen. Lipid accumulation, cell number, and lipolysis were measured for all screened factors (148 TFs). RNA (RNAseq), protein (Western blot) expression, insulin, and catecholamine responsiveness were examined in hASC following siRNA treatment of selected target TFs. RESULTS Analysis of TFs regulated by metabolic conditions in human WAT revealed that many of them belong to adipogenesis-regulating pathways. The RNAi screen identified 39 genes that affected fat cell differentiation in vitro, where 11 genes were novel. Of the latter JARID2 stood out as being necessary for formation of healthy fat cell metabolic phenotype by regulating expression of multiple fat cell phenotype-specific genes. CONCLUSION This comprehensive RNAi screening in hASC suggests that a large proportion of WAT TFs that are impacted by metabolic conditions might be important for hyperplastic adipose tissue expansion. The screen also identified JARID2 as a novel TF essential for the development of functional adipocytes.
Collapse
Affiliation(s)
- Christel Björk
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Narmadha Subramanian
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jianping Liu
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Juan Ramon Acosta
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Beatriz Tavira
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Anders B Eriksson
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Peter Arner
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jurga Laurencikiene
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
- Correspondence: Jurga Laurencikiene, PhD, Karolinska Institutet, Lipid laboratory, Dept. of Medicine Huddinge (MedH), NEO, Hälsovägen 9/Blickagången 16, 14183 Huddinge, Sweden.
| |
Collapse
|
4
|
Mola S, Foisy S, Boucher G, Major F, Beauchamp C, Karaky M, Goyette P, Lesage S, Rioux JD. A transcriptome-based approach to identify functional modules within and across primary human immune cells. PLoS One 2020; 15:e0233543. [PMID: 32469933 PMCID: PMC7259617 DOI: 10.1371/journal.pone.0233543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression, co-regulation, and gene function on a broader scale. Given the unique characteristics of immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineage-specific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance.
Collapse
Affiliation(s)
- Saraï Mola
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvain Foisy
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Gabrielle Boucher
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - François Major
- Unité de recherche en ingénierie des ARN, Institut de recherche en immunologie et en cancérologie, Montréal, Québec, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Claudine Beauchamp
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Mohamad Karaky
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Philippe Goyette
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - John D. Rioux
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
5
|
Yotsumoto K, Sanui T, Tanaka U, Yamato H, Alshargabi R, Shinjo T, Nakao Y, Watanabe Y, Hayashi C, Taketomi T, Fukuda T, Nishimura F. Amelogenin Downregulates Interferon Gamma-Induced Major Histocompatibility Complex Class II Expression Through Suppression of Euchromatin Formation in the Class II Transactivator Promoter IV Region in Macrophages. Front Immunol 2020; 11:709. [PMID: 32373130 PMCID: PMC7186442 DOI: 10.3389/fimmu.2020.00709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
Enamel matrix derivatives (EMDs)-based periodontal tissue regenerative therapy is known to promote healing with minimal inflammatory response after periodontal surgery, i. e., it promotes wound healing with reduced pain and swelling. It has also been reported that macrophages stimulated with amelogenin, a major component of EMD, produce various anti-inflammatory cytokines and growth factors. We previously found that stimulation of monocytes with murine recombinant M180 (rM180) amelogenin suppresses major histocompatibility complex class II (MHC II) gene expression using microarray analysis. However, the detailed molecular mechanisms for this process remain unclear. In the present study, we demonstrated that rM180 amelogenin selectively downmodulates the interferon gamma (IFNγ)-induced cell surface expression of MHC II molecules in macrophages and this mechanism mediated by rM180 appeared to be widely conserved across species. Furthermore, rM180 accumulated in the nucleus of macrophages at 15 min after stimulation and inhibited the protein expression of class II transactivator (CIITA) which controls the transcription of MHC II by IFNγ. In addition, reduced MHC II expression on macrophages pretreated with rM180 impaired the expression of T cell activation markers CD25 and CD69, T cell proliferation ability, and IL-2 production by allogenic CD4+ T lymphocytes in mixed lymphocyte reaction assay. The chromatin immunoprecipitation assay showed that IFNγ stimulation increased the acetylation of histone H3 lysine 27, which is important for conversion to euchromatin, as well as the trimethylation of histone H3 lysine 4 levels in the CIITA promoter IV (p-IV) region, but both were suppressed in the group stimulated with IFNγ after rM180 treatment. In conclusion, the present study shows that amelogenin suppresses MHC II expression by altering chromatin structure and inhibiting CIITA p-IV transcription activity, and attenuates subsequent T cell activation. Clinically observed acceleration of wound healing after periodontal surgery by amelogenin may be partially mediated by the mechanism elucidated in this study. In addition, the use of recombinant amelogenin is safe because it is biologically derived protein. Therefore, amelogenin may also be used in future as an immunosuppressant with minimal side effects for organ transplantation or MHC II-linked autoimmune diseases such as type I diabetes, multiple sclerosis, and rheumatoid arthritis, among others.
Collapse
Affiliation(s)
- Karen Yotsumoto
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Yamato
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Rehab Alshargabi
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Shivram H, Le SV, Iyer VR. PRC2 activates interferon-stimulated genes indirectly by repressing miRNAs in glioblastoma. PLoS One 2019; 14:e0222435. [PMID: 31513636 PMCID: PMC6742368 DOI: 10.1371/journal.pone.0222435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a chromatin binding complex that represses gene expression by methylating histone H3 at K27 to establish repressed chromatin domains. PRC2 can either regulate genes directly through the methyltransferase activity of its component EZH2 or indirectly by regulating other gene regulators. Gene expression analysis of glioblastoma (GBM) cells lacking EZH2 showed that PRC2 regulates hundreds of interferon-stimulated genes (ISGs). We found that PRC2 directly represses several ISGs and also indirectly activates a distinct set of ISGs. Assessment of EZH2 binding proximal to miRNAs showed that PRC2 directly represses miRNAs encoded in the chromosome 14 imprinted DLK1-DIO3 locus. We found that repression of this locus by PRC2 occurs in immortalized GBM-derived cell lines as well as in primary bulk tumors from GBM and anaplastic astrocytoma patients. Through repression of these miRNAs and several other miRNAs, PRC2 activates a set of ISGs that are targeted by these miRNAs. This PRC2-miRNA-ISG network is likely to be important in regulating gene expression programs in GBM.
Collapse
Affiliation(s)
- Haridha Shivram
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, University of Texas at Austin, Austin, Texas, United States of America
| | - Steven V. Le
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, University of Texas at Austin, Austin, Texas, United States of America
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Souri Z, Wierenga APA, Mulder A, Jochemsen AG, Jager MJ. HLA Expression in Uveal Melanoma: An Indicator of Malignancy and a Modifiable Immunological Target. Cancers (Basel) 2019; 11:cancers11081132. [PMID: 31394860 PMCID: PMC6721545 DOI: 10.3390/cancers11081132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, and gives rise to metastases in 50% of cases. The presence of an inflammatory phenotype is a well-known risk factor for the development of metastases. This inflammatory phenotype is characterized by the presence of high numbers of lymphocytes and macrophages, and a high expression of the HLA Class I and II antigens. An abnormal expression of HLA Class I may influence cytotoxic T lymphocyte (CTL) as well as Natural Killer (NK) cell responses. We provide a comprehensive review regarding the inflammatory phenotype in UM and the expression of locus- and allele-specific HLA Class I and of Class II antigens in primary UM and its metastases. Furthermore, we describe the known regulators and the role of genetics (especially chromosome 3 and BRCA-Associated Protein 1 (BAP1 status)), and, last but not least, the effect of putative therapeutic treatments on HLA expression.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Annemijn P A Wierenga
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Aart G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
8
|
EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation. Leukemia 2019; 33:2047-2060. [PMID: 30755708 PMCID: PMC6756037 DOI: 10.1038/s41375-019-0392-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
Plasma cells (PCs) play a major role in the defense of the host organism against pathogens. We have shown that PC generation can be modeled using multi-step culture systems that reproduce the sequential cell differentiation occurring in vivo. Using this unique model, we investigated the role of EZH2 during PC differentiation (PCD) using H3K27me3 and EZH2 ChIP-binding profiles. We then studied the effect of the inhibition of EZH2 enzymatic activity to understand how EZH2 regulates the key functions involved in PCD. EZH2 expression significantly increases in preplasmablasts with H3K27me3 mediated repression of genes involved in B cell and plasma cell identity. EZH2 was also found to be recruited to H3K27me3-free promoters of transcriptionally active genes known to regulate cell proliferation. Inhibition the catalytic activity of EZH2 resulted in B to PC transcriptional changes associated with PC maturation induction, as well as higher immunoglobulin secretion. Altogether, our data suggest that EZH2 is involved in the maintenance of preplasmablast transitory immature proliferative state that supports their amplification.
Collapse
|
9
|
Hmeljak J, Sanchez-Vega F, Hoadley KA, Shih J, Stewart C, Heiman D, Tarpey P, Danilova L, Drill E, Gibb EA, Bowlby R, Kanchi R, Osmanbeyoglu HU, Sekido Y, Takeshita J, Newton Y, Graim K, Gupta M, Gay CM, Diao L, Gibbs DL, Thorsson V, Iype L, Kantheti H, Severson DT, Ravegnini G, Desmeules P, Jungbluth AA, Travis WD, Dacic S, Chirieac LR, Galateau-Sallé F, Fujimoto J, Husain AN, Silveira HC, Rusch VW, Rintoul RC, Pass H, Kindler H, Zauderer MG, Kwiatkowski DJ, Bueno R, Tsao AS, Creaney J, Lichtenberg T, Leraas K, Bowen J, Felau I, Zenklusen JC, Akbani R, Cherniack AD, Byers LA, Noble MS, Fletcher JA, Robertson AG, Shen R, Aburatani H, Robinson BW, Campbell P, Ladanyi M. Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov 2018; 8:1548-1565. [PMID: 30322867 PMCID: PMC6310008 DOI: 10.1158/2159-8290.cd-18-0804] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 01/26/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal cancer of the lining of the chest cavity. To expand our understanding of MPM, we conducted a comprehensive integrated genomic study, including the most detailed analysis of BAP1 alterations to date. We identified histology-independent molecular prognostic subsets, and defined a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity. We also report strong expression of the immune-checkpoint gene VISTA in epithelioid MPM, strikingly higher than in other solid cancers, with implications for the immune response to MPM and for its immunotherapy. Our findings highlight new avenues for further investigation of MPM biology and novel therapeutic options. SIGNIFICANCE: Through a comprehensive integrated genomic study of 74 MPMs, we provide a deeper understanding of histology-independent determinants of aggressive behavior, define a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity, and discovered strong expression of the immune-checkpoint gene VISTA in epithelioid MPM.See related commentary by Aggarwal and Albelda, p. 1508.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
Affiliation(s)
- Julija Hmeljak
- Department of Pathology and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francisco Sanchez-Vega
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juliann Shih
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Chip Stewart
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Heiman
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Patrick Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Ludmila Danilova
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Esther Drill
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ewan A Gibb
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Rupa Kanchi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hatice U Osmanbeyoglu
- Computational Systems Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | | - Yulia Newton
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, California
| | - Kiley Graim
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, California
| | - Manaswi Gupta
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Carl M Gay
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Lisa Iype
- Institute for Systems Biology, Seattle, Washington
| | | | - David T Severson
- Division of Thoracic Surgery, The Lung Center and International Mesothelioma Program, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrice Desmeules
- Department of Pathology, Quebec Heart and Lung Institute, Quebec, Canada
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sanja Dacic
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Henrique C Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Harvey Pass
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York
| | - Hedy Kindler
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David J Kwiatkowski
- Division of Pulmonary Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raphael Bueno
- Division of Thoracic Surgery, The Lung Center and International Mesothelioma Program, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anne S Tsao
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jenette Creaney
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Tara Lichtenberg
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kristen Leraas
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jay Bowen
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ina Felau
- National Cancer Institute, Bethesda, Maryland
| | | | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Lauren A Byers
- Division of Thoracic Surgery, The Lung Center and International Mesothelioma Program, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael S Noble
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Jonathan A Fletcher
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Bruce W Robinson
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Marc Ladanyi
- Department of Pathology and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
10
|
Wang H, Bender A, Wang P, Karakose E, Inabnet WB, Libutti SK, Arnold A, Lambertini L, Stang M, Chen H, Kasai Y, Mahajan M, Kinoshita Y, Fernandez-Ranvier G, Becker TC, Takane KK, Walker LA, Saul S, Chen R, Scott DK, Ferrer J, Antipin Y, Donovan M, Uzilov AV, Reva B, Schadt EE, Losic B, Argmann C, Stewart AF. Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nat Commun 2017; 8:767. [PMID: 28974674 PMCID: PMC5626682 DOI: 10.1038/s41467-017-00992-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Although diabetes results in part from a deficiency of normal pancreatic beta cells, inducing human beta cells to regenerate is difficult. Reasoning that insulinomas hold the “genomic recipe” for beta cell expansion, we surveyed 38 human insulinomas to obtain insights into therapeutic pathways for beta cell regeneration. An integrative analysis of whole-exome and RNA-sequencing data was employed to extensively characterize the genomic and molecular landscape of insulinomas relative to normal beta cells. Here, we show at the pathway level that the majority of the insulinomas display mutations, copy number variants and/or dysregulation of epigenetic modifying genes, most prominently in the polycomb and trithorax families. Importantly, these processes are coupled to co-expression network modules associated with cell proliferation, revealing candidates for inducing beta cell regeneration. Validation of key computational predictions supports the concept that understanding the molecular complexity of insulinoma may be a valuable approach to diabetes drug discovery. Diabetes results in part from a deficiency of functional pancreatic beta cells. Here, the authors study the genomic and epigenetic landscapes of human insulinomas to gain insight into possible pathways for therapeutic beta cell regeneration, highlighting epigenetic genes and pathways.
Collapse
Affiliation(s)
- Huan Wang
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Graduate School, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Aaron Bender
- The Graduate School, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peng Wang
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esra Karakose
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William B Inabnet
- The Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven K Libutti
- The Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Andrew Arnold
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Luca Lambertini
- The Departments of Environmental Medicine and Public Health and Obstetrics, Gynecology, and Reproductive Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Micheal Stang
- The Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Herbert Chen
- The Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Yumi Kasai
- The New York Genome Center, New York, NY, 10013, USA
| | - Milind Mahajan
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yayoi Kinoshita
- The Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Thomas C Becker
- The Sarah W. Stedman Center for Nutrition and Metabolism, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karen K Takane
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laura A Walker
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shira Saul
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rong Chen
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Donald K Scott
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jorge Ferrer
- The Department of Genetics in Medicine, Imperial College, London, W12 0NN, UK
| | - Yevgeniy Antipin
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Michael Donovan
- The Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew V Uzilov
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Boris Reva
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Bojan Losic
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carmen Argmann
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew F Stewart
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Niehaus EM, Studt L, von Bargen KW, Kummer W, Humpf HU, Reuter G, Tudzynski B. Sound of silence: the beauvericin cluster in Fusarium fujikuroi is controlled by cluster-specific and global regulators mediated by H3K27 modification. Environ Microbiol 2017; 18:4282-4302. [PMID: 27750383 DOI: 10.1111/1462-2920.13576] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 01/25/2023]
Abstract
In this study, we compared the secondary metabolite profile of Fusarium fujikuroi and the histone deacetylase mutant ΔHDA1. We identified a novel peak in ΔHDA1, which was identified as beauvericin (BEA). Going in line with a 1000-fold increased BEA production, the respective non-ribosomal peptide synthetase (NRPS)-encoding gene (BEA1), as well as two adjacent genes (BEA2-BEA3), were significantly up-regulated in ΔHDA1 compared to the wild type. A special role was revealed for the ABC transporter Bea3: deletion of the encoding gene resulted in significant up-regulation of BEA1 and BEA2 and drastically elevated product yields. Furthermore, mutation of a conserved sequence motif in the promoter of BEA1 released BEA repression and resulted in elevated product levels. Candidate transcription factors (TFs) that could bind to this motif are the cluster-specific TF Bea4 as well as a homolog of the global mammalian Kruppel-like TF Yin Yang 1 (Yy1), both acting as repressors of BEA biosynthesis. In addition to Hda1, BEA biosynthesis is repressed by the activity of the H3K27 methyltransferase Kmt6. Consistently, Western blot analyses revealed a genome-wide enrichment of H3K27 acetylation (H3K27ac) in the ΔHDA1 and KMT6 knock-down mutants. Subsequent chromatin immunoprecipitation (ChIP) experiments showed elevated H3K27ac modification levels at the BEA cluster.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, Münster, D-48143
| | - Lena Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, Münster, D-48143
| | - Katharina W von Bargen
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, Münster, D-48149
| | - Wiebke Kummer
- Institut für Genetik, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, Halle (Saale), D-06120
| | - Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, Münster, D-48149
| | - Gunter Reuter
- Institut für Genetik, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, Halle (Saale), D-06120
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, Münster, D-48143
| |
Collapse
|