1
|
Sarsarshahi S, Bhattacharya S, Zacharias ZR, Kamel ES, Houtman JCD, Nejadnik R. Highly variable aggregation and glycosylation profiles and their roles in immunogenicity to protein-based therapeutics. J Pharm Sci 2025; 114:103771. [PMID: 40139530 DOI: 10.1016/j.xphs.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Production of antibodies against protein-based therapeutics (e.g., monoclonal antibodies (mAbs)) by a recipient's immune system can vary from benign symptoms to chronic neutralization of the compound, and in rare cases, a lethal cytokine storm. One critical factor that can induce or contribute to an anti-drug antibody (ADA) response is believed to be the presence of aggregated proteins in protein-based therapeutics. There is a high level of variability in the aggregation of different proteins, which adds to the complexity in understanding the immune response to these drugs. Furthermore, the level of glycosylation of proteins, which increases drug stability, functionality, and serum half-life, is highly variable and may influence their immunogenicity. Considering the abundance of literature on the effect of aggregation and glycosylation on the immunogenicity of protein-based therapeutics, this review aims to summarize the current knowledge and clarify the immunogenic effects of different protein-based therapeutics such as mAbs. This review focuses on the properties of aggregated proteins and elucidates their relationship with immunogenicity. The contribution of different immune cell subsets and the mechanisms in aggregation-induced immunogenicity are also reviewed. Finally, the potential effects of each glycan, such as sialic acid, mannose, and fucose, on protein-based therapeutics' immunogenicity and stability is discussed.
Collapse
Affiliation(s)
- Sina Sarsarshahi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Sanghati Bhattacharya
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Zeb R Zacharias
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jon C D Houtman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Reza Nejadnik
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
2
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Chen L, Patil S, Barbon J, Waire J, Laroux S, McCarthy D, Pratibha M, Zhong S, Dong F, Orsi K, Nguyen G, Yang Y, Crosbie N, Dominguez E, Deora A, Veldman G, Westmoreland S, Jin L, Radstake T, White K, Wei HJ. Agonistic anti-DCIR antibody inhibits ITAM-mediated inflammatory signaling and promotes immune resolution. JCI Insight 2024; 9:e176064. [PMID: 38781017 PMCID: PMC11383175 DOI: 10.1172/jci.insight.176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren's syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR's immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR-knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Liang Chen
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suresh Patil
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Jeffrey Barbon
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - James Waire
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Stephen Laroux
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Donna McCarthy
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Mishra Pratibha
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suju Zhong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Feng Dong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Karin Orsi
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Gunarso Nguyen
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Yingli Yang
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Nancy Crosbie
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Eric Dominguez
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Arun Deora
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | | | | | - Liang Jin
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Timothy Radstake
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Kevin White
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Hsi-Ju Wei
- AbbVie Bay Area, South San Francisco, California, USA
| |
Collapse
|
4
|
Liao Y, Yan Q, Cheng T, Yao H, Zhao Y, Fu D, Ji Y, Shi B. Sulforaphene Inhibits Periodontitis through Regulating Macrophage Polarization via Upregulating Dendritic Cell Immunoreceptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15538-15552. [PMID: 37823224 DOI: 10.1021/acs.jafc.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases that may eventually lead to the loss of teeth. Macrophage polarization plays an important role in the development of periodontitis, and several naturally occurring food compounds have recently been reported to regulate macrophage polarization. In this study, we aimed to investigate the therapeutic potential of sulforaphene (SFE) in macrophage polarization and its impact on periodontitis. Through in vitro and in vivo experiments, our study demonstrated that SFE effectively inhibits M1 polarization while promoting M2 polarization, ultimately leading to the suppression of periodontitis. Transcriptome sequencing showed that SFE significantly upregulated the expression of dendritic cell immunoreceptor (DCIR, also known as CLEC4A2). We further validated the crucial role of DCIR in macrophage polarization through knockdown and overexpression experiments and demonstrated that SFE regulates macrophage polarization by upregulating DCIR expression. In summary, the results of this study suggest that SFE can regulate macrophage polarization and inhibit periodontitis. Moreover, this research identified DCIR (dendritic cell immunoreceptor) as a potential novel target for regulating macrophage polarization. These findings provide new insights into the treatment of periodontitis and other immune-related diseases.
Collapse
Affiliation(s)
- Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tiange Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
5
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
6
|
Banjar S, Kadour E, Khoudja R, Ton-Leclerc S, Beauchamp C, Beltempo M, Dahan MH, Gold P, Jacques Kadoch I, Jamal W, Laskin C, Mahutte N, Reinblatt SL, Sylvestre C, Buckett W, Genest G. Intravenous immunoglobulin use in patients with unexplained recurrent pregnancy loss. Am J Reprod Immunol 2023; 90:e13737. [PMID: 37491929 DOI: 10.1111/aji.13737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) affects up to 4% of couples attempting to conceive. RPL is unexplained in over 50% of cases and no effective treatments exist. Due to the immune system's pivotal role during implantation and pregnancy, immune-mediated RPL may be suspected and immunomodulatory treatments like intravenous immunoglobulin (IVIg) have been administered but remain controversial. The goal of our study was to evaluate our center's 6 year-outcomes and to develop a framework for IVIg use in RPL. METHOD OF THE STUDY Retrospective, single-center cohort study. All patients having received IVIg for unexplained RPL at the McGill Reproductive Immunology Clinic (MRIC) from January 2014 to December 2020 were included if maternal age was <42 years, body mass index (BMI) < 35 kg/m2 , non-smoker and having had ≥3 consecutive RPL despite previous treatment with aspirin and progesterone. IVIg 0.6-0.8 g/kg was given prior to conception and monthly during pregnancy until 16-20 weeks' gestation. We compared IVIg treated patient's outcomes to a separate "natural history cohort". This cohort was composed of patients consulting at the McGill recurrent pregnancy loss clinic and the MRIC over a 2-year period (January 2020 to December 2021) with similar inclusion criteria as the treatment cohort but did not receive IVIg or other immunomodulatory treatments. The association of IVIg with outcomes (compared to no IVIg) was evaluated among the groups of patients with primary RPL and secondary RPL. The primary outcome was live birth rate (LBR), secondary outcomes included IVIg safety, obstetrical, and neonatal complications. RESULTS Among 169 patients with unexplained RPL that were included in the study, 111 had primary RPL (38 exposed to IVIg and 83 controls) and 58 had secondary RPL (nine exposed to IVIG and 49 controls). Among patients with primary RPL (n = 111), the LBR was 64.3% (18/28) among patient exposed to IVIg compared to 43.4% (36/83) in controls (p = 0.079); regression analysis adjusting for BMI and number of previous miscarriages showed benefit favoring the use of IVIg (OR = 3.27, CI 95% (1.15-10.2), p = 0.03) when evaluating for live birth. In the subgroup of patients with ≥5 previous RPL and primary RPL (n = 31), IVIg was associated with higher LBR compared to control (10/15 (66.7%) vs. 3/16 (18.8%); p = 0.0113) but not the in the sub-group of patients with <5 miscarriages and primary RPL (8/13 (61.5%) vs. 33/67 (49.3%); p = 0.548). IVIG treatment did not improve LBR in patients with secondary RPL in our study (3/9 (33.3%) vs. 23/49 (47%); p = 0.495). There were no serious adverse events in the IVIg treatment group, obstetrical/neonatal complications were similar between groups. CONCLUSION IVIg may be an effective treatment for patients with RPL if appropriately used in specific groups of patients. IVIg is a blood product and subject to shortages especially with unrestricted off-label use. We propose considering IVIg in well-selected patients with high order RPL who have failed standard medical therapy. Further mechanistic studies are needed to understand immune-mediated RPL and IVIg's mode of action. This will enable further refinement of treatment criteria and the development of standardized protocol for its use in RPL.
Collapse
Affiliation(s)
- Shorooq Banjar
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Clinical Immunology and Allergy, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | - Einav Kadour
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Bnai-Zion Medical Center, Rishon-Le-Zion, Israel
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rabea Khoudja
- Division of Clinical Immunology and Allergy, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | | | - Coralie Beauchamp
- Ovo Clinic, Montréal, Québec, Canada
- Obstetrics and Gynaecology Department, University of Montreal, Montreal, Quebec
| | - Marc Beltempo
- Division of Neonatology, Montreal Children's Hospital - McGill University Health Centre, Montreal, Québec, Canada
| | - Michael H Dahan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, McGill University, McGill University Health Centre, Montréal, Québec, Canada
| | - Phil Gold
- Department of Allergy and Immunology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Isaac Jacques Kadoch
- Ovo Clinic, Montréal, Québec, Canada
- Obstetrics and Gynaecology Department, University of Montreal, Montreal, Quebec
| | - Wael Jamal
- Clinique OVO, Montréal, Québec, Canada
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Faculty of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Carl Laskin
- TRIO Fertility, Toronto, Ontario, Canada
- Deptartments of Medicine and Obstetrics & Gynecology, University of Toronto, Toronto, Canada
| | - Neal Mahutte
- The Montreal Fertility Centre, Montreal, Quebec, Canada
| | - Shauna Leigh Reinblatt
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, McGill University, McGill University Health Centre, Montréal, Québec, Canada
| | - Camille Sylvestre
- Ovo Clinic, Montréal, Québec, Canada
- Division of Reproductive Endocrinology and Infertility, University of Montreal, Montreal, Quebec, Canada
| | - William Buckett
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, McGill University, McGill University Health Centre, Montréal, Québec, Canada
- McGill University Health Care Reproductive Center, Montreal, Quebec, Canada
| | - Genevieve Genest
- Division of Clinical Immunology and Allergy, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
7
|
Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol 2023; 14:1126043. [PMID: 36923398 PMCID: PMC10008955 DOI: 10.3389/fimmu.2023.1126043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Our understanding of the C-type lectin-like receptors (CTLRs) and their functions in immunity have continued to expand from their initial roles in pathogen recognition. There are now clear examples of CTLRs acting as scavenger receptors, sensors of cell death and cell transformation, and regulators of immune responses and homeostasis. This range of function reflects an extensive diversity in the expression and signaling activity between individual CTLR members of otherwise highly conserved families. Adding to this diversity is the constant discovery of new receptor binding capabilities and receptor-ligand interactions, distinct cellular expression profiles, and receptor structures and signaling mechanisms which have expanded the defining roles of CTLRs in immunity. The natural killer cell receptors exemplify this functional diversity with growing evidence of their activity in other immune populations and tissues. Here, we broadly review select families of CTLRs encoded in the natural killer cell gene complex (NKC) highlighting key receptors that demonstrate the complex multifunctional capabilities of these proteins. We focus on recent evidence from research on the NKRP1 family of CTLRs and their interaction with the related C-type lectin (CLEC) ligands which together exhibit essential immune functions beyond their defined activity in natural killer (NK) cells. The ever-expanding evidence for the requirement of CTLR in numerous biological processes emphasizes the need to better understand the functional potential of these receptor families in immune defense and pathological conditions.
Collapse
Affiliation(s)
- Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sayanti Dey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
9
|
Sun H, Tang C, Chung SH, Ye XQ, Makusheva Y, Han W, Kubo M, Shichino S, Ueha S, Matsushima K, Ikeo K, Asano M, Iwakura Y. Blocking DCIR mitigates colitis and prevents colorectal tumors by enhancing the GM-CSF-STAT5 pathway. Cell Rep 2022; 40:111158. [PMID: 35926458 DOI: 10.1016/j.celrep.2022.111158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic cell immunoreceptor (DCIR; Clec4a2), a member of the C-type lectin receptor family, plays important roles in homeostasis of the immune and bone systems. However, the intestinal role of this molecule is unclear. Here, we show that dextran sodium sulfate (DSS)-induced colitis and azoxymethane-DSS-induced intestinal tumors are reduced in Clec4a2-/- mice independently of intestinal microbiota. STAT5 phosphorylation and expression of Csf2 and tight junction genes are enhanced, while Il17a and Cxcl2 are suppressed in the Clec4a2-/- mouse colon, which exhibits reduced infiltration of neutrophils and myeloid-derived suppressor cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) administration ameliorates DSS colitis associated with reduced Il17a and enhanced tight junction gene expression, whereas anti-GM-CSF exacerbates symptoms. Furthermore, anti-NA2, a ligand for DCIR, ameliorates colitis and prevents colorectal tumors. These observations indicate that blocking DCIR signaling ameliorates colitis and suppresses colonic tumors, suggesting DCIR as a possible target for the treatment of these diseases.
Collapse
Affiliation(s)
- Haiyang Sun
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Ce Tang
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, Guangzhou, Guangdong Province 510080, China
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Xiao-Qi Ye
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Yulia Makusheva
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Wei Han
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Koji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan.
| |
Collapse
|
10
|
New Targets for Antiviral Therapy: Inhibitory Receptors and Immune Checkpoints on Myeloid Cells. Viruses 2022; 14:v14061144. [PMID: 35746616 PMCID: PMC9230063 DOI: 10.3390/v14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Immune homeostasis is achieved by balancing the activating and inhibitory signal transduction pathways mediated via cell surface receptors. Activation allows the host to mount an immune response to endogenous and exogenous antigens; suppressive modulation via inhibitory signaling protects the host from excessive inflammatory damage. The checkpoint regulation of myeloid cells during immune homeostasis raised their profile as important cellular targets for treating allergy, cancer and infectious disease. This review focuses on the structure and signaling of inhibitory receptors on myeloid cells, with particular attention placed on how the interplay between viruses and these receptors regulates antiviral immunity. The status of targeting inhibitory receptors on myeloid cells as a new therapeutic approach for antiviral treatment will be analyzed.
Collapse
|
11
|
Luo X, Chen J, Yang H, Hu X, Alphonse MP, Shen Y, Kawakami Y, Zhou X, Tu W, Kawakami T, Wan M, Archer NK, Wang H, Gao P. Dendritic cell immunoreceptor drives atopic dermatitis by modulating oxidized CaMKII-involved mast cell activation. JCI Insight 2022; 7:152559. [PMID: 35113811 PMCID: PMC8983143 DOI: 10.1172/jci.insight.152559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Allergens have been identified as potential triggers in patients with atopic dermatitis (AD). AD patients are highly sensitive to cockroach allergen. The underlying mechanism, however, remains undetermined. Here, we established a cockroach allergen-induced AD-like mouse model and demonstrated that repeated exposure to cockroach allergen led to aggravated mouse skin inflammation, characterized by increased type 2 immunity, type 2 innate lymphoid cells (ILC2s), and mast cells. Increased skin mast cells were also observed in AD patients. AD mice with mast cell-deficient mice (kitW-sh/W-sh) showed diminished skin inflammation, suggesting that mast cells are required in allergen-induced skin inflammation. Furthermore, dendritic cell immuno-receptor (DCIR) is up-regulated in skin mast cells of AD patients and mediates allergen binding and uptake. DCIR-/- mice or reconstituted kitW-sh/W-sh mice with DCIR-/- mast cells showed a significant reduction in AD-like inflammation. Both in vitro and in vivo analyses demonstrated that DCIR-/- mast cells had reduced IgE-mediated mast cell activation and passive cutaneous anaphylaxis. Mechanistically, DCIR regulates allergen-induced IgE-mediated mast cell ROS generation and oxidation of calmodulin kinase II (ox-CaMKII). ROS-resistant CaMKII (MM-VVδ) prevents allergen-induced mast cell activation and inflammatory mediator release. Our study reveals a previously unrecognized DCIR-ROS-CaMKII axis that controls allergen-induced mast cell activation and AD-like inflammation.
Collapse
Affiliation(s)
- Xiaoyan Luo
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Jingsi Chen
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Huan Yang
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States of America
| | - Xiaoying Zhou
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States of America
| | - Mei Wan
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Hua Wang
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
12
|
De Dios R, Nguyen L, Ghosh S, McKenna S, Wright CJ. CpG-ODN-mediated TLR9 innate immune signalling and calcium dyshomeostasis converge on the NFκB inhibitory protein IκBβ to drive IL1α and IL1β expression. Immunology 2020; 160:64-77. [PMID: 32064589 DOI: 10.1111/imm.13182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Sterile inflammation contributes to many pathological states associated with mitochondrial injury. Mitochondrial injury disrupts calcium homeostasis and results in the release of CpG-rich mitochondrial DNA. The role of CpG-stimulated TLR9 innate immune signalling and sterile inflammation is well studied; however, how calcium dyshomeostasis affects this signalling is unknown. Therefore, we interrogated the relationship beτween intracellular calcium and CpG-induced TLR9 signalling in murine macrophages. We found that CpG-ODN-induced NFκB-dependent IL1α and IL1β expression was significantly attenuated by both calcium chelation and calcineurin inhibition, a finding mediated by inhibition of degradation of the NFκB inhibitory protein IκBβ. In contrast, calcium ionophore exposure increased CpG-induced IκBβ degradation and IL1α and IL1β expression. These results demonstrate that through its effect on IκBβ degradation, increased intracellular Ca2+ drives a pro-inflammatory TLR9-mediated innate immune response. These results have implications for the study of innate immune signalling downstream of mitochondrial stress and injury.
Collapse
Affiliation(s)
- Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
13
|
The role of ocular dendritic cells in uveitis. Immunol Lett 2019; 209:4-10. [PMID: 30926373 DOI: 10.1016/j.imlet.2019.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) act as a bridge between innate and adoptive immunity. They are widely distributed in various tissues and organs. Resident ocular DCs are found in the peripheral margins and juxtapapillary areas of the retina, usually in an immature state. During inflammation, DCs are activated and participate in the development of uveitis, an ocular inflammatory disease. Herein, the characteristics and status of DCs in uveitis, the possible factors affecting the status of DCs, and the clinical methods for detecting the DCs in patients are described.
Collapse
|
14
|
Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front Microbiol 2018; 9:2426. [PMID: 30364185 PMCID: PMC6193118 DOI: 10.3389/fmicb.2018.02426] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
Exopolysaccharides (EPS) are surface carbohydrate polymers present in most bacteria acting as a protective surface layer but also interacting with the surrounding environment. This review discusses the roles of EPS synthesized by strains of Lactobacillus and Bifidobacterium, many of them with probiotic characteristics, in the intestinal environment. Current knowledge on genetics and biosynthesis pathways of EPS in lactic acid bacteria and bifidobacteria, as well as the development of genetic tools, has created possibilities to elucidate the interplay between EPS and host intestinal mucosa. These include the microbiota that inhabits this ecological niche and the host cells. Several carbohydrate recognition receptors located in the intestinal epithelium could be involved in the interaction with bacterial EPS and modulation of immune response; however, little is known about the receptors recognizing EPS from lactobacilli or bifidobacteria and the triggered response. On the contrary, it has been clearly demonstrated that EPS play a relevant role in the persistence of the producing bacteria in the intestinal tract. Indeed, some authors postulate that some of the beneficial actions of EPS-producing probiotics could be related to the formation of a biofilm layer protecting the host against injury, for example by pathogens or their toxins. Nevertheless, the in vivo formation of biofilms by probiotics has not been proved to date. Finally, EPS produced by probiotic strains are also able to interact with the intestinal microbiota that populates the gut. In fact, some of these polymers can be used as carbohydrate fermentable source by some gut commensals thus being putatively involved in the release of bacterial metabolites that exert positive benefits for the host. In spite of the increasing knowledge about the role that these surface molecules play in the interaction of probiotic bacteria with the gut mucosal actors, both intestinal receptors and microbiota, the challenging issue is to demonstrate the functionality of EPS in vivo, which will open an avenue of opportunities for the application of EPS-producing probiotics to improve health.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
15
|
Bermejo-Jambrina M, Eder J, Helgers LC, Hertoghs N, Nijmeijer BM, Stunnenberg M, Geijtenbeek TBH. C-Type Lectin Receptors in Antiviral Immunity and Viral Escape. Front Immunol 2018; 9:590. [PMID: 29632536 PMCID: PMC5879224 DOI: 10.3389/fimmu.2018.00590] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/09/2018] [Indexed: 02/01/2023] Open
Abstract
C-type lectin receptors (CLRs) are important pattern recognition receptors involved in recognition and induction of adaptive immunity to pathogens. Certain CLRs play an important role in viral infections as they efficiently interact with viruses. However, it has become clear that deadly viruses subvert the function of CLRs to escape antiviral immunity and promote infection. In particular, viruses target CLRs to suppress or modulate type I interferons that play a central role in the innate and adaptive defense against viruses. In this review, we discuss the function of CLRs in binding to enveloped viruses like HIV-1 and Dengue virus, and how uptake and signaling cascades have decisive effects on the outcome of infection.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Eder
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leanne C Helgers
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nina Hertoghs
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bernadien M Nijmeijer
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Stunnenberg
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Affandi AJ, Carvalheiro T, Radstake TRDJ, Marut W. Dendritic cells in systemic sclerosis: Advances from human and mice studies. Immunol Lett 2017; 195:18-29. [PMID: 29126878 DOI: 10.1016/j.imlet.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex heterogeneous fibrotic autoimmune disease with an unknown exact etiology, and characterized by three hallmarks: fibrosis, vasculopathy, and immune dysfunction. Dendritic cells (DCs) are specialized cells in pathogen sensing with high potency of antigen presentation and capable of releasing mediators to shape the immune response. Altered DCs distributions and their impaired functions may account for their role in breaking the immune tolerance and driving inflammation in SSc, and the direct contribution of DCs in promoting endothelial dysfunction and fibrotic process has only begun to be understood. Plasmacytoid dendritic cells in particular have been implicated due to their high production of type I interferon as well as other cytokines and chemokines, including the pro-inflammatory and anti-angiogenic CXCL4. Furthermore, a deeper understanding of human and mouse DC biology has clarified their identification and function in different tissues, and novel DC subsets have only recently been discovered. In this review, we highlight key findings and recent advances exploring DC role in the pathogenesis of SSc and other related autoimmune diseases, and consideration of their potential use as targeted therapy in SSc.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Zhao X, Pu D, Zhao Z, Zhu H, Li H, Shen Y, Zhang X, Zhang R, Shen J, Xiao W, Chen W. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination. Front Pharmacol 2017; 8:565. [PMID: 28878677 PMCID: PMC5572209 DOI: 10.3389/fphar.2017.00565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 01/27/2023] Open
Abstract
Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases.
Collapse
Affiliation(s)
- Xibao Zhao
- Department of Immunology, School of Medicine, Shenzhen UniversityShenzhen, China.,Institute of Immunology, Department of Basic Medicine, Zhejiang University School of MedicineHangzhou, China
| | - Debing Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan UniversityKunming, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Zizhao Zhao
- Institute of Immunology, Department of Basic Medicine, Zhejiang University School of MedicineHangzhou, China
| | - Huihui Zhu
- Institute of Immunology, Department of Basic Medicine, Zhejiang University School of MedicineHangzhou, China
| | - Hongrui Li
- Department of Immunology, School of Medicine, Shenzhen UniversityShenzhen, China.,Institute of Immunology, Department of Basic Medicine, Zhejiang University School of MedicineHangzhou, China
| | - Yaping Shen
- Institute of Immunology, Department of Basic Medicine, Zhejiang University School of MedicineHangzhou, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan UniversityKunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan UniversityKunming, China
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn UniversityAuburn, AL, United States
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan UniversityKunming, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Weilin Chen
- Department of Immunology, School of Medicine, Shenzhen UniversityShenzhen, China.,Institute of Immunology, Department of Basic Medicine, Zhejiang University School of MedicineHangzhou, China
| |
Collapse
|
18
|
C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A 2017; 114:E540-E549. [PMID: 28069953 DOI: 10.1073/pnas.1613254114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immune response against pathogens is a tightly regulated process that must ensure microbial control while preserving integrity of the infected organs. Tuberculosis (TB) is a paramount example of a chronic infection in which antimicrobial immunity is protective in the vast majority of infected individuals but can become detrimental if not finely tuned. Here, we report that C-type lectin dendritic cell (DC) immunoreceptor (DCIR), a key component in DC homeostasis, is required to modulate lung inflammation and bacterial burden in TB. DCIR is abundantly expressed in pulmonary lesions in Mycobacterium tuberculosis-infected nonhuman primates during both latent and active disease. In mice, we found that DCIR deficiency impairs STAT1-mediated type I IFN signaling in DCs, leading to increased production of IL-12 and increased differentiation of T lymphocytes toward Th1 during infection. As a consequence, DCIR-deficient mice control M. tuberculosis better than WT animals but also develop more inflammation characterized by an increased production of TNF and inducible NOS (iNOS) in the lungs. Altogether, our results reveal a pathway by which a C-type lectin modulates the equilibrium between infection-driven inflammation and pathogen's control through sustaining type I IFN signaling in DCs.
Collapse
|
19
|
Samancı B, Samancı Y, Tüzün E, Altıokka-Uzun G, Ekizoğlu E, İçöz S, Şahin E, Küçükali Cİ, Baykan B. Evidence for potential involvement of pro-inflammatory adipokines in the pathogenesis of idiopathic intracranial hypertension. Cephalalgia 2016; 37:525-531. [PMID: 27193133 DOI: 10.1177/0333102416650705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Although specific role players are currently unknown, contribution of inflammatory mediators has been suggested in the pathophysiology of idiopathic intracranial hypertension (IIH), which is a disease more prevalent in obese female individuals of childbearing age. We aimed to investigate the levels of adipokines and cytokines to demonstrate possible markers for inflammation that participate in IIH pathophysiology and their association with clinical features of IIH. Methods IIH patients, diagnosed according to the revised criteria, and age-, gender- and body mass index (BMI)-matched healthy controls were enrolled in this study. Serum samples were evaluated for insulin-like growth factor 1, insulin, nesfatin, adiponectin, interleukin (IL)-1β, IL-6, IL-8, leptin, plasminogen activator inhibitor type-1, resistin, tumour necrosis factor-alpha (TNF-α) and monocyte chemotactic protein 1 via enzyme-linked immunosorbent assay or multiplex immunoassays. Results IL-1β level was significantly higher ( p = 0.012), and IL-8 and TNF-α levels were significantly lower in the IIH group ( p < 0.001 and p = 0.008, respectively) compared to the control group. There were no correlations between the cytokine/adipokine levels and age, BMI, disease duration, and cerebrospinal fluid oligoclonal bands. There were also no significant differences in cytokine and adipokine levels between IIH patients regarding visual impairment. However, statistically significant differences were found between IIH patients with relapse versus healthy controls regarding IL-1β ( p = 0.007), IL-8 ( p = 0.001) and TNF-α ( p = 0.017) levels. Other investigated cytokines and adipokines showed no significant alterations in IIH patients investigated in the remission period. Conclusion Altered serum levels of IL-1β, IL-8 and TNF-α seem to be associated with IIH pathogenesis, and these cytokines may be used as prognostic markers in IIH to predict relapse.
Collapse
Affiliation(s)
- Bedia Samancı
- 1 Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yavuz Samancı
- 2 Neurosurgery Clinic, Istanbul Training and Research Hospital, Istanbul, Turkey.,3 Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- 3 Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Güneş Altıokka-Uzun
- 1 Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Esme Ekizoğlu
- 1 Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sema İçöz
- 1 Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdi Şahin
- 1 Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cem İsmail Küçükali
- 3 Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- 1 Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|