1
|
Hallam TM, Andreadi A, Sharp SJ, Brocklebank V, Gardenal E, Dreismann A, Lotery AJ, Marchbank KJ, Harris CL, Jones AV, Kavanagh D. Comprehensive functional characterization of complement factor I rare variant genotypes identified in the SCOPE geographic atrophy cohort. J Biol Chem 2024; 300:107452. [PMID: 38852887 PMCID: PMC11277764 DOI: 10.1016/j.jbc.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Rare variants (RVs) in the gene encoding the regulatory enzyme complement factor I (CFI; FI) that reduce protein function or levels increase age-related macular degeneration risk. A total of 3357 subjects underwent screening in the SCOPE natural history study for geographic atrophy secondary to age-related macular degeneration, including CFI sequencing and serum FI measurement. Eleven CFI RV genotypes that were challenging to categorize as type I (low serum level) or type II (normal serum level, reduced enzymatic function) were characterized in the context of pure FI protein in C3b and C4b fluid phase cleavage assays and a novel bead-based functional assay (BBFA) of C3b cleavage. Four variants predicted or previously characterized as benign were analyzed by BBFA for comparison. In all, three variants (W51S, C67R, and I370T) resulted in low expression. Furthermore, four variants (P64L, R339Q, G527V, and P528T) were identified as being highly deleterious with IC50s for C3b breakdown >1 log increased versus the WT protein, while two variants (K476E and R474Q) were ∼1 log reduced in function. Meanwhile, six variants (P50A, T203I, K441R, E548Q, P553S, and S570T) had IC50s similar to WT. Odds ratios and BBFA IC50s were positively correlated (r = 0.76, p < 0.01), while odds ratios versus combined annotation dependent depletion (CADD) scores were not (r = 0.43, p = 0.16). Overall, 15 CFI RVs were functionally characterized which may aid future patient stratification for complement-targeted therapies. Pure protein in vitro analysis remains the gold standard for determining the functional consequence of CFI RVs.
Collapse
Affiliation(s)
- Thomas M Hallam
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK.
| | - Anneliza Andreadi
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Scott J Sharp
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK
| | - Vicky Brocklebank
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | - Anna Dreismann
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, University of Southampton, Southampton, UK
| | - Kevin J Marchbank
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Claire L Harris
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy V Jones
- Gyroscope Therapeutics Limited, A Novartis Company, London, UK
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Kelen K, Horváth O, Kis É, Mikes B, Sallay P, Prohászka Z, Szabó AJ, Reusz GS. Immunosuppressive Therapy of Antibody-Mediated aHUS and TTP. Int J Mol Sci 2023; 24:14389. [PMID: 37762692 PMCID: PMC10531618 DOI: 10.3390/ijms241814389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The recent classification of pediatric thrombotic microangiopathies (TMA) takes into consideration mechanisms of disease for guidance to targeted therapies. We present our experience with seven patients with antibody mediated atypical hemolytic uremic syndrome (aHUS) and thrombotic thrombocytopenic purpura (TTP). Five children had aHUS with antibodies against complement factor H (CFH-ab) and two with TTP with antibodies against metalloproteinase ADAMTS13. In the aHUS cases diagnosed and treated before the eculizumab era, CFH-ab was detected using the ELISA assay. Mutational analysis of selected complement genes was performed. TTP was diagnosed if, in addition to microangiopathic hemolytic anemia and thrombocytopenia, ischemic organ involvement and severe deficiency in ADAMTS13 activity were present. Treatment protocol consisted of plasma exchanges (PE) and steroid pulses, followed by the combination of cyclophosphamide and rituximab to achieve long-term immunosuppression. Four patients with CFH-ab and the TTP patients with ADAMTS13 antibodies came into sustained remission. After a median follow-up of 11.7 (range 7.7-12.9) years without maintenance therapy, no disease recurrence was observed; nevertheless, six patients, two had hypertension and two had proteinuria as a late consequence. One patient, with late diagnosis of CFH-ab and additional genetic risk factors who was treated only with PE and plasma substitution, reached end-stage renal disease and was later successfully transplanted using eculizumab prophylaxis. In the cases of antibody-mediated TMAs, PE and early immunosuppressive treatment may result in sustained remission with preserved kidney function. Further data are needed to establish optimal treatment of anti-FH antibody-associated HUS.
Collapse
Affiliation(s)
- Kata Kelen
- Bókay Street Unit, Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (K.K.); (O.H.); (B.M.); (P.S.); (A.J.S.)
| | - Orsolya Horváth
- Bókay Street Unit, Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (K.K.); (O.H.); (B.M.); (P.S.); (A.J.S.)
| | - Éva Kis
- Department of Pediatric Cardiology, Gottsegen György Hungarian Institute of Cardiology, 1096 Budapest, Hungary;
| | - Bálint Mikes
- Bókay Street Unit, Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (K.K.); (O.H.); (B.M.); (P.S.); (A.J.S.)
| | - Péter Sallay
- Bókay Street Unit, Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (K.K.); (O.H.); (B.M.); (P.S.); (A.J.S.)
| | - Zoltán Prohászka
- Research Laboratory, Department of Medicine and Hematology, Semmelweis University, 1083 Budapest, Hungary;
| | - Attila József Szabó
- Bókay Street Unit, Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (K.K.); (O.H.); (B.M.); (P.S.); (A.J.S.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - György S. Reusz
- Bókay Street Unit, Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (K.K.); (O.H.); (B.M.); (P.S.); (A.J.S.)
| |
Collapse
|
3
|
Rydberg V, Aradottir SS, Kristoffersson AC, Svitacheva N, Karpman D. Genetic investigation of Nordic patients with complement-mediated kidney diseases. Front Immunol 2023; 14:1254759. [PMID: 37744338 PMCID: PMC10513385 DOI: 10.3389/fimmu.2023.1254759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Complement activation in atypical hemolytic uremic syndrome (aHUS), C3 glomerulonephropathy (C3G) and immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) may be associated with rare genetic variants. Here we describe gene variants in the Swedish and Norwegian populations. Methods Patients with these diagnoses (N=141) were referred for genetic screening. Sanger or next-generation sequencing were performed to identify genetic variants in 16 genes associated with these conditions. Nonsynonymous genetic variants are described when they have a minor allele frequency of <1% or were previously reported as being disease-associated. Results In patients with aHUS (n=94, one also had IC-MPGN) 68 different genetic variants or deletions were identified in 60 patients, of which 18 were novel. Thirty-two patients had more than one genetic variant. In patients with C3G (n=40) 29 genetic variants, deletions or duplications were identified in 15 patients, of which 9 were novel. Eight patients had more than one variant. In patients with IC-MPGN (n=7) five genetic variants were identified in five patients. Factor H variants were the most frequent in aHUS and C3 variants in C3G. Seventeen variants occurred in more than one condition. Conclusion Genetic screening of patients with aHUS, C3G and IC-MPGN is of paramount importance for diagnostics and treatment. In this study, we describe genetic assessment of Nordic patients in which 26 novel variants were found.
Collapse
Affiliation(s)
| | | | | | | | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Hallam TM, Sharp SJ, Andreadi A, Kavanagh D. Complement factor I: Regulatory nexus, driver of immunopathology, and therapeutic. Immunobiology 2023; 228:152410. [PMID: 37478687 DOI: 10.1016/j.imbio.2023.152410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
Complement factor I (FI) is the nexus for classical, lectin and alternative pathway complement regulation. FI is an 88 kDa plasma protein that circulates in an inactive configuration until it forms a trimolecular complex with its cofactor and substrate whereupon a structural reorganization allows the catalytic triad to cleave its substrates, C3b and C4b. In keeping with its role as the master complement regulatory enzyme, deficiency has been linked to immunopathology. In the setting of complete FI deficiency, a consumptive C3 deficiency results in recurrent infections with encapsulated microorganisms. Aseptic cerebral inflammation and vasculitic presentations are also less commonly observed. Heterozygous mutations in the factor I gene (CFI) have been demonstrated to be enriched in atypical haemolytic uraemic syndrome, albeit with a very low penetrance. Haploinsufficiency of CFI has also been associated with decreased retinal thickness and is a strong risk factor for the development of age-related macular degeneration. Supplementation of FI using plasma purified or recombinant protein has long been postulated, however, technical difficulties prevented progression into clinical trials. It is only using gene therapy that CFI supplementation has reached the clinic with GT005 in phase I/II clinical trials for geographic atrophy.
Collapse
Affiliation(s)
- T M Hallam
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - S J Sharp
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK
| | - A Andreadi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - D Kavanagh
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK; NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
5
|
Rysava R, Peiskerova M, Tesar V, Benes J, Kment M, Szilágyi Á, Csuka D, Prohászka Z. Atypical hemolytic uremic syndrome triggered by mRNA vaccination against SARS-CoV-2: Case report. Front Immunol 2022; 13:1001366. [PMID: 36275662 PMCID: PMC9580272 DOI: 10.3389/fimmu.2022.1001366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS), also called complement-mediated hemolytic uremic syndrome (CM-HUS), is a rare disease caused by dysregulation in the alternative complement activation pathway. It is a life-threatening condition causing ischemia of a number of organs, and it typically causes acute kidney injury. This disorder may be triggered by various factors including viral or bacterial infections, pregnancy, surgery, and injuries. In about 60% of cases, the genetic origin of the disease can be identified—commonly mutations affecting complementary factor H and MCP protein. Eculizumab, a monoclonal antibody to the C5 component of the complement, represents the current effective treatment.We describe a case of a young woman with a previous history of polyvalent allergies, who developed atypical hemolytic uremic syndrome after vaccination with mRNA vaccine against SARS-CoV-2. The disease manifested by scleral bleeding, acute renal insufficiency, anemia, and thrombocytopenia. The patient was treated with plasma exchanges without sufficient effect; remission occurred only after starting treatment with eculizumab. Genetic examination showed that the patient is a carrier of multiple inherited risk factors (a rare pathogenic variant in CFH, MCPggaac haplotype of the CD46 gene, and the risk haplotype CFH H3). The patient is currently in hematological remission with persistent mild renal insufficiency, continuing treatment with eculizumab/ravulizumab. By this case report, we meant to point out the need for careful monitoring of people after vaccination, as it may trigger immune-mediated diseases, especially in those with predisposing factors.
Collapse
Affiliation(s)
- Romana Rysava
- Department of Nephrology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czechia
- *Correspondence: Romana Rysava, ; Zoltán Prohászka,
| | - Martina Peiskerova
- Department of Nephrology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czechia
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czechia
| | - Jan Benes
- University Hospital, Charles University – Faculty of Medicine, Hradec Králové, Czechia
- Department of Anesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, Jana Evangelisty (JE) Purkinje University, Ústi nad Labem, Czechia
| | - Martin Kment
- Department of Clinical and Transplant Pathology, Institute of Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Ágnes Szilágyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Eotvos Lorand Research Network (Office for Supported Research Groups), Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Eotvos Lorand Research Network (Office for Supported Research Groups), Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Eotvos Lorand Research Network (Office for Supported Research Groups), Semmelweis University, Budapest, Hungary
- *Correspondence: Romana Rysava, ; Zoltán Prohászka,
| |
Collapse
|
6
|
Zhang Y, Goodfellow RX, Ghiringhelli Borsa N, Dunlop HC, Presti SA, Meyer NC, Shao D, Roberts SM, Jones MB, Pitcher GR, Taylor AO, Nester CM, Smith RJH. Complement Factor I Variants in Complement-Mediated Renal Diseases. Front Immunol 2022; 13:866330. [PMID: 35619721 PMCID: PMC9127439 DOI: 10.3389/fimmu.2022.866330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
C3 glomerulopathy (C3G) and atypical hemolytic uremic syndrome (aHUS) are two rare diseases caused by dysregulated activity of the alternative pathway of complement secondary to the presence of genetic and/or acquired factors. Complement factor I (FI) is a serine protease that downregulates complement activity in the fluid phase and/or on cell surfaces in conjunction with one of its cofactors, factor H (FH), complement receptor 1 (CR1/CD35), C4 binding protein (C4BP) or membrane cofactor protein (MCP/CD46). Because altered FI activity is causally related to the pathogenesis of C3G and aHUS, we sought to test functional activity of select CFI missense variants in these two patient cohorts. We identified 65 patients (16, C3G; 48, aHUS; 1 with both) with at least one rare variant in CFI (defined as a MAF < 0.1%). Eight C3G and eleven aHUS patients also carried rare variants in either another complement gene, ADAMTS13 or THBD. We performed comprehensive complement analyses including biomarker profiling, pathway activity and autoantibody testing, and developed a novel FI functional assay, which we completed on 40 patients. Seventy-eight percent of rare CFI variants (31/40) were associated with FI protein levels below the 25th percentile; in 22 cases, FI levels were below the lower limit of normal (type 1 variants). Of the remaining nine variants, which associated with normal FI levels, two variants reduced FI activity (type 2 variants). No patients carried currently known autoantibodies (including FH autoantibodies and nephritic factors). We noted that while rare variants in CFI predispose to complement-mediated diseases, phenotypes are strongly contingent on the associated genetic background. As a general rule, in isolation, a rare CFI variant most frequently leads to aHUS, with the co-inheritance of a CD46 loss-of-function variant driving the onset of aHUS to the younger age group. In comparison, co-inheritance of a gain-of-function variant in C3 alters the phenotype to C3G. Defects in CFH (variants or fusion genes) are seen with both C3G and aHUS. This variability underscores the complexity and multifactorial nature of these two complement-mediated renal diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
7
|
de Jong S, de Breuk A, Bakker B, Katti S, Hoyng CB, Nilsson SC, Blom AM, van den Heuvel LP, den Hollander AI, Volokhina EB. Functional Analysis of Variants in Complement Factor I Identified in Age-Related Macular Degeneration and Atypical Hemolytic Uremic Syndrome. Front Immunol 2022; 12:789897. [PMID: 35069568 PMCID: PMC8766660 DOI: 10.3389/fimmu.2021.789897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Complement factor I (FI) is a central inhibitor of the complement system, and impaired FI function increases complement activation, contributing to diseases such as age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (aHUS). Genetic variation in complement factor I (CFI) has been identified in both AMD and aHUS, with more than half of these variants leading to reduced FI secretion levels. For many of the variants with normal FI secretion, however, functional implications are not yet known. Here we studied 11 rare missense variants, with FI secretion levels comparable to wildtype, but a predicted damaging effects based on the Combined Annotation Dependent Depletion (CADD) score. Three variants (p.Pro50Ala, p.Arg339Gln, and p.Ser570Thr) were analyzed in plasma and serum samples of carriers affected by AMD. All 11 variants (nine for the first time in this study) were recombinantly expressed and the ability to degrade C3b was studied with the C3b degradation assay. The amount of degradation was determined by measuring the degradation product iC3b with ELISA. Eight of 11 (73%) mutant proteins (p.Pro50Ala, p.Arg339Gln, p.Ile340Thr, p.Gly342Glu, p.Gly349Arg, p.Arg474Gln, p.Gly487Cys, and p.Gly512Ser) showed significantly impaired C3b degradation, and were therefore classified as likely pathogenic. Our data indicate that genetic variants in CFI with a CADD score >20 are likely to affect FI function, and that monitoring iC3b in a degradation assay is a useful tool to establish the pathogenicity of CFI variants in functional studies.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Suresh Katti
- Gemini Therapeutics Inc., Cambridge, MA, United States
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sara C Nilsson
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lambert P van den Heuvel
- Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena B Volokhina
- Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Garam N, Cserhalmi M, Prohászka Z, Szilágyi Á, Veszeli N, Szabó E, Uzonyi B, Iliás A, Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G, Bajcsi D, Brunner J, Dumfarth A, Cejka D, Flaschberger S, Flögelova H, Haris Á, Hartmann Á, Heilos A, Mueller T, Rusai K, Arbeiter K, Hofer J, Jakab D, Sinkó M, Szigeti E, Bereczki C, Janko V, Kelen K, Reusz GS, Szabó AJ, Klenk N, Kóbor K, Kojc N, Knechtelsdorfer M, Laganovic M, Lungu AC, Meglic A, Rus R, Kersnik Levart T, Macioniene E, Miglinas M, Pawłowska A, Stompór T, Podracka L, Rudnicki M, Mayer G, Rysava R, Reiterova J, Saraga M, Seeman T, Zieg J, Sládková E, Stajic N, Szabó T, Capitanescu A, Stancu S, Tisljar M, Galesic K, Tislér A, Vainumäe I, Windpessl M, Zaoral T, Zlatanova G, Józsi M, Csuka D. FHR-5 Serum Levels and CFHR5 Genetic Variations in Patients With Immune Complex-Mediated Membranoproliferative Glomerulonephritis and C3-Glomerulopathy. Front Immunol 2021; 12:720183. [PMID: 34566977 PMCID: PMC8461307 DOI: 10.3389/fimmu.2021.720183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Factor H-related protein 5 (FHR-5) is a member of the complement Factor H protein family. Due to the homology to Factor H, the main complement regulator of the alternative pathway, it may also be implicated in the pathomechanism of kidney diseases where Factor H and alternative pathway dysregulation play a role. Here, we report the first observational study on CFHR5 variations along with serum FHR-5 levels in immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) and C3 glomerulopathy (C3G) patients together with the clinical, genetic, complement, and follow-up data. Methods A total of 120 patients with a histologically proven diagnosis of IC-MPGN/C3G were enrolled in the study. FHR-5 serum levels were measured in ELISA, the CFHR5 gene was analyzed by Sanger sequencing, and selected variants were studied as recombinant proteins in ELISA and surface plasmon resonance (SPR). Results Eight exonic CFHR5 variations in 14 patients (12.6%) were observed. Serum FHR-5 levels were lower in patients compared to controls. Low serum FHR-5 concentration at presentation associated with better renal survival during the follow-up period; furthermore, it showed clear association with signs of complement overactivation and clinically meaningful clusters. Conclusions Our observations raise the possibility that the FHR-5 protein plays a fine-tuning role in the pathogenesis of IC-MPGN/C3G.
Collapse
Affiliation(s)
- Nóra Garam
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Marcell Cserhalmi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Nóra Veszeli
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Edina Szabó
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Iliás
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dóra Bajcsi
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Jürgen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Dumfarth
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | | | - Hana Flögelova
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Palacky University and Faculty Hospital in Olomouc, Olomouc, Czechia
| | - Ágnes Haris
- Department of Nephrology, Péterfy Hospital, Budapest, Hungary
| | - Ágnes Hartmann
- Department of Pediatrics, University of Pécs, Pécs, Hungary
| | - Andreas Heilos
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mueller
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Neurology of Senses and Language, Hospital of St John of God, Linz, Austria.,Research Institute for Developmental Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Dániel Jakab
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Mária Sinkó
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Erika Szigeti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | | | - Kata Kelen
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György S Reusz
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Klenk
- Fresenius Medical Care (FMC) Center of Dialysis, Miskolc, Hungary
| | - Krisztina Kóbor
- Fresenius Medical Care (FMC) Center of Dialysis, Miskolc, Hungary
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Anamarija Meglic
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik Levart
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ernesta Macioniene
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Anna Pawłowska
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Ludmila Podracka
- Department of Pediatrics, Comenius University, Bratislava, Slovakia
| | - Michael Rudnicki
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Romana Rysava
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Reiterova
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Marijan Saraga
- Department of Pediatrics, University Hospital Split, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Pragu, Czechia
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Pragu, Czechia
| | - Eva Sládková
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Natasa Stajic
- Institute of Mother and Childhealth Care of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, Debrecen University, Debrecen, Hungary
| | | | - Simona Stancu
- Carol Davila Nephrology Hospital, Bucharest, Romania
| | - Miroslav Tisljar
- Department of Nephrology, University Hospital Dubrava Zagreb, Zagreb, Croatia
| | - Kresimir Galesic
- Department of Nephrology, University Hospital Dubrava Zagreb, Zagreb, Croatia
| | - András Tislér
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Inga Vainumäe
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Martin Windpessl
- Internal Medicine IV, Section of Nephrology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Tomas Zaoral
- Department of Pediatrics, University Hospital and Faculty of Medicine, Ostrava, Czechia
| | - Galia Zlatanova
- University Children's Hospital, Medical University, Sofia, Bulgaria
| | - Mihály Józsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| |
Collapse
|
9
|
de Jong S, Volokhina EB, de Breuk A, Nilsson SC, de Jong EK, van der Kar NCAJ, Bakker B, Hoyng CB, van den Heuvel LP, Blom AM, den Hollander AI. Effect of rare coding variants in the CFI gene on Factor I expression levels. Hum Mol Genet 2021; 29:2313-2324. [PMID: 32510551 PMCID: PMC7424754 DOI: 10.1093/hmg/ddaa114] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Factor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI. FI levels were measured in 177 plasma samples of 155 individuals, carrying 24 different rare coding variants in CFI. In carriers of the variants p.Gly119Arg, p.Leu131Arg, p.Gly188Ala and c.772G>A (r.685_773del), significantly reduced FI plasma levels were detected. Furthermore, recombinant FI expression levels were determined for 126 rare coding variants. Of these variants 68 (54%) resulted in significantly reduced FI expression in supernatant compared to wildtype (WT). The recombinant protein expression levels correlated significantly with the FI level in plasma of carriers of CFI variants. In this study, we performed the most comprehensive FI expression level analysis of rare coding variants in CFI to date. More than half of CFI variants lead to reduced FI expression, which might impair complement regulation in vivo. Our study will aid the interpretation of rare coding CFI variants identified in clinical practice, which is in particular important in light of patient inclusion in ongoing clinical trials for CFI gene supplementation in AMD.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sara C Nilsson
- Department of Translational Medicine, Lund University, 21428 Malmö, Sweden
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicole C A J van der Kar
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lambert P van den Heuvel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna M Blom
- Department of Translational Medicine, Lund University, 21428 Malmö, Sweden
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
10
|
Functional characterization of 105 Factor H variants associated with atypical HUS: lessons for variant classification. Blood 2021; 138:2185-2201. [PMID: 34189567 PMCID: PMC8641096 DOI: 10.1182/blood.2021012037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a life-threatening thrombotic microangiopathy that can progress, when untreated, to end-stage renal disease. Most frequently, aHUS is caused by complement dysregulation due to pathogenic variants in genes that encode complement components and regulators. Amongst these genes, the Factor H (FH) gene, CFH, presents with the highest frequency (15-20%) of variants and is associated with the poorest prognosis. Correct classification of CFH variants as pathogenic or benign is essential to clinical care but remains challenging owing to the dearth of functional studies. As a result, significant numbers of variants are reported as variants of uncertain significance. To address this knowledge gap, we expressed and functionally characterized 105 aHUS-associated FH variants. All FH variants were categorized as pathogenic or benign, and for each, we fully documented the nature of the pathogenicity. Twenty-six previously characterized FH variants were used as controls to validate and confirm the robustness of the functional assays used. Of the remaining 79 uncharacterized variants, only 29 (36.7%) alter FH in vitro expression or function and are therefore proposed to be pathogenic. We show that rarity in control databases is not informative for variant classification, and we identify important limitations in applying prediction algorithms to FH variants. Based on structural and functional data, we suggest ways to circumvent these difficulties and thereby improve variant classification. Our work highlights the need for functional assays to interpret FH variants accurately if clinical care of patients with aHUS is to be individualized and optimized.
Collapse
|
11
|
de Jong S, Gagliardi G, Garanto A, de Breuk A, Lechanteur YTE, Katti S, van den Heuvel LP, Volokhina EB, den Hollander AI. Implications of genetic variation in the complement system in age-related macular degeneration. Prog Retin Eye Res 2021; 84:100952. [PMID: 33610747 DOI: 10.1016/j.preteyeres.2021.100952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Giuliana Gagliardi
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Suresh Katti
- Gemini Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Lambert P van den Heuvel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Palma LMP, Sridharan M, Sethi S. Complement in Secondary Thrombotic Microangiopathy. Kidney Int Rep 2020; 6:11-23. [PMID: 33102952 PMCID: PMC7575444 DOI: 10.1016/j.ekir.2020.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Thrombotic microangiopathy (TMA) is a condition characterized by thrombocytopenia and microangiopathic hemolytic anemia (MAHA) with varying degrees of organ damage in the setting of normal international normalized ratio and activated partial thromboplastin time. Complement has been implicated in the etiology of TMA, which are classified as primary TMA when genetic and acquired defects in complement proteins are the primary drivers of TMA (complement-mediated TMA or atypical hemolytic uremic syndrome, aHUS) or secondary TMA, when complement activation occurs in the context of other disease processes, such as infection, malignant hypertension, autoimmune disease, malignancy, transplantation, pregnancy, and drugs. It is important to recognize that this classification is not absolute because genetic variants in complement genes have been identified in patients with secondary TMA, and distinguishing complement/genetic-mediated TMA from secondary causes of TMA can be challenging and lead to potentially harmful delays in treatment. In this review, we focus on data supporting the involvement of complement in aHUS and in secondary forms of TMA associated with malignant hypertension, drugs, autoimmune diseases, pregnancy, and infections. In aHUS, genetic variants in complement genes are found in up to 60% of patients, whereas in the secondary forms, the finding of genetic defects is variable, ranging from almost 60% in TMA associated with malignant hypertension to less than 10% in drug-induced TMA. On the basis of these findings, a new approach to management of TMA is proposed.
Collapse
Affiliation(s)
| | - Meera Sridharan
- Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Ugrinovic S, Firth H, Kavanagh D, Gouliouris T, Gurugama P, Baxendale H, Lachmann PJ, Kumararatne D, Gkrania-Klotsas E. Primary pneumococcal peritonitis can be the first presentation of a familial complement factor I deficiency 1. Clin Exp Immunol 2020; 202:379-383. [PMID: 32640035 PMCID: PMC7670128 DOI: 10.1111/cei.13490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022] Open
Abstract
Primary pneumococcal peritonitis is a rare infection that has been described in women but has not been previously linked with immunodeficiency. The complement system plays a central role in immune defence against Streptococcus pneumoniae and, in order to evade complement attack, pneumococci have evolved a large number of mechanisms that limit complement‐mediated opsonization and subsequent phagocytosis. We investigated an apparently immunocompetent woman with primary pneumococcal peritonitis and identified a family with deficiency for complement factor I. Primary pneumococcal peritonitis should be considered a possible primary immunodeficiency presentation.
Collapse
Affiliation(s)
- S Ugrinovic
- Department of Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - H Firth
- Department of Clinical Genetics, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - D Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - T Gouliouris
- Department of Infectious Diseases, Cambridge University Hospital NHS Trust, Cambridge, UK.,Department of Microbiology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - P Gurugama
- Department of Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - H Baxendale
- Department of Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - P J Lachmann
- Centre for Veterinary Science, University of Cambridge, Cambridge, UK
| | - D Kumararatne
- Department of Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - E Gkrania-Klotsas
- Department of Infectious Diseases, Cambridge University Hospital NHS Trust, Cambridge, UK
| |
Collapse
|
14
|
Palma LMP, Eick RG, Dantas GC, Tino MKDS, de Holanda MI. Atypical hemolytic uremic syndrome in Brazil: clinical presentation, genetic findings and outcomes of a case series in adults and children treated with eculizumab. Clin Kidney J 2020; 14:1126-1135. [PMID: 33841858 PMCID: PMC8023178 DOI: 10.1093/ckj/sfaa062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Atypical hemolytic uremic syndrome (aHUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia and kidney injury caused by a dysregulation of the alternative complement pathway. Methods We conducted a multicenter nonregistry study aimed at collecting clinical, laboratory and genetic information of patients with aHUS in Brazil. Demographic data, genetic findings, treatments and outcomes are presented. Results Thirty-four patients were included, 62% were female and 67% were Caucasian. Half of the patients had the first manifestation of aHUS before the age of 18 years (pediatric group). Among the 17 patients who had the first manifestation after the age of 18 years (adult group), 6 were kidney transplant patients. Overall, 22 patients (65%) received plasma exchange/plasma infusion (PE/PI) and 31 patients (91%) received eculizumab. Eculizumab was started later in the adult group compared with the pediatric group. Two patients stopped dialysis after PE/PI and 19 patients stopped dialysis after eculizumab despite a late start. A pathogenic/likely pathogenic variant was found in 24.3% of patients. A coexisting condition or trigger was present in 59% of patients (infections, pregnancy, hypertension, autoimmune disease and transplant), especially in the adult group. There was a 30% relapse rate after stopping eculizumab, irrespective of genetic status. Conclusion This is the largest case series of aHUS in Brazil involving a wide range of patients for which eculizumab was the main treatment. Although eculizumab was started later than advised in the guidelines, most patients were able to stop dialysis at variable intervals. Discontinuation of eculizumab was associated with a 30% relapse of aHUS.
Collapse
Affiliation(s)
| | - Renato George Eick
- Department of Nephrology, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Complement system dysfunction in terms of upregulation, downregulation, or dysregulation can create an imbalance of both host defense and inflammatory response leading to autoimmunity. In this review, we aimed at describing the role of complement system in host defense to inflection and in autoimmunity starting from the evidence from primary and secondary complement system deficiencies. RECENT FINDINGS Complement system has a determinant role in defense against infections: deficiencies of complement components are associated with increased susceptibility to infections. Primary complement system deficiencies are rare disorders that predispose to both infections and autoimmune diseases. Secondary complement system deficiencies are the result of the complement system activation with consumption. Complement system role in enhancing risk of infective diseases in secondary deficiencies has been demonstrated in patients affected by systemic autoimmune disorders, mainly systemic lupus erythematosus and vasculitis. SUMMARY The relationship between the complement system and autoimmunity appears paradoxical as both the deficiency and the activation contribute to inducing autoimmune diseases. In these conditions, the presence of complement deposition in affected tissues, decreased levels of complement proteins, and high levels of complement activation fragments in the blood and vessels have been documented.
Collapse
|
16
|
Hou L, Du Y. Atypical hemolytic uremic syndrome precipitated by thyrotoxicosis: a case report. BMC Pediatr 2020; 20:169. [PMID: 32303208 PMCID: PMC7164337 DOI: 10.1186/s12887-020-02082-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Autoimmune thyroid disease (AITD) has a complex pathogenesis and is associated with the development of autoimmunity against the thyroid. Graves’ disease and Hashimoto’s thyroiditis are the two main types of AITD, and they are characterized by thyrotoxicosis and hypothyroidism, respectively. Atypical hemolytic uremic syndrome (aHUS) is a rare disease, presenting with microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. aHUS is caused by dysregulation of the alternative complement pathway, and its co-existence with AITD is rare. Case presentation We report the case of a 12-year-old girl with recent onset thyrotoxicosis. She was first treated with propylthiouracil for 2 months and then developed AITD presenting as abrupt-onset thrombocytopenia, acute kidney injury, and microangiopathic hemolytic anemia. Thyroid function tests favored hyperthyroidism, with increased free T4 and free T3 levels and a very low level of thyroid-stimulating hormone (TSH). We suspected aHUS, and the patient’s condition responded dramatically to therapeutic plasma exchange (TPE) with disease remission. She experienced recurrent aHUS after subsequently receiving methimazole for 1 month, and in the recurrent episode, her condition responded again to TPE and concomitant glucocorticoids. She achieved euthyroidism with thiamazole ointment treatment, without aHUS recurrence during the 6-month follow-up. Mycophenolate mofetil was administered to manage proteinuria after 3 months of treatment with the steroid and angiotensin-converting enzyme inhibitor. Conclusions The coexistence of aHUS and AITD in this case is likely more than coincidence, because both are autoimmune in origin. aHUS is associated with a high mortality without appropriate therapy, and treatment with TPE and adjunct immunosuppressants can be helpful.
Collapse
Affiliation(s)
- Ling Hou
- Pediatric Nephrology Department, Shengjing Hospital of China Medical University, No.36 Sanhao Street Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Yue Du
- Pediatric Nephrology Department, Shengjing Hospital of China Medical University, No.36 Sanhao Street Heping District, Shenyang City, 110004, Liaoning Province, China.
| |
Collapse
|
17
|
Aigner C, Gaggl M, Kain R, Prohászka Z, Garam N, Csuka D, Sunder-Plassmann R, Piggott LC, Haninger-Vacariu N, Schmidt A, Sunder-Plassmann G. Sex Differences in Clinical Presentation and Outcomes among Patients with Complement-Gene-Variant-Mediated Thrombotic Microangiopathy. J Clin Med 2020; 9:E964. [PMID: 32244370 PMCID: PMC7230736 DOI: 10.3390/jcm9040964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Sex differences among patients with complement-gene-variant-mediated thrombotic microangiopathy (cTMA) are not well established. We examined demographic and clinical data from female and male patients with a history of cTMA enrolled in the Vienna thrombotic microangiopathy (TMA) cohort. Follow-up was three years after first presentation with cTMA. In this single-center study, we identified 51 patients with a first manifestation of cTMA between 1981 and 2019; 63% were female (p = 0.09). The median age at diagnosis did not differ between females and males. There was also no disparity between the sexes with regard to renal function or the need for renal replacement therapy at presentation. Furthermore, we observed similar use of plasma or eculizumab therapy and a comparable evolution of renal function of female and male patients. More females showed risk haplotypes of complement factor H (CFH) and CD46 (97% vs. 68%, p = 0.01), but there was no difference in the prevalence of rare pathogenic variants in complement-associated genes with regard to sex. In conclusion, the majority of cTMA patients enrolled in the Vienna TMA cohort were female. Clinical presentation and renal function did not differ between the sexes, but females more frequently presented with cTMA risk haplotypes.
Collapse
Affiliation(s)
- Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, 1090 Vienna, Austria; (M.G.); (L.C.P.); (N.H.-V.); (A.S.); (G.S.-P.)
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, 1090 Vienna, Austria; (M.G.); (L.C.P.); (N.H.-V.); (A.S.); (G.S.-P.)
| | - Renate Kain
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria;
| | - Zoltán Prohászka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary; (Z.P.); (N.G.); (D.C.)
| | - Nóra Garam
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary; (Z.P.); (N.G.); (D.C.)
| | - Dorottya Csuka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary; (Z.P.); (N.G.); (D.C.)
| | - Raute Sunder-Plassmann
- Genetics Laboratory, Department of Laboratory Medicine, Medical University Vienna, 1090 Vienna, Austria;
| | - Leah Charlotte Piggott
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, 1090 Vienna, Austria; (M.G.); (L.C.P.); (N.H.-V.); (A.S.); (G.S.-P.)
| | - Natalja Haninger-Vacariu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, 1090 Vienna, Austria; (M.G.); (L.C.P.); (N.H.-V.); (A.S.); (G.S.-P.)
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, 1090 Vienna, Austria; (M.G.); (L.C.P.); (N.H.-V.); (A.S.); (G.S.-P.)
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, 1090 Vienna, Austria; (M.G.); (L.C.P.); (N.H.-V.); (A.S.); (G.S.-P.)
| |
Collapse
|
18
|
Aigner C, Böhmig GA, Eskandary F, Herkner H, Prohászka Z, Csuka D, Kain R, Gaggl M, Sunder-Plassmann R, Müller-Sacherer T, Oszwald A, Fischer G, Schmidt A, Sunder-Plassmann G. Preemptive plasma therapy prevents atypical hemolytic uremic syndrome relapse in kidney transplant recipients. Eur J Intern Med 2020; 73:51-58. [PMID: 31791575 DOI: 10.1016/j.ejim.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) frequently leads to renal failure, and kidney transplantation bears a high risk of disease recurrence and graft loss. METHODS Patients who received a kidney graft in our center were retrospectively identified using our Vienna Thrombotic Microangiopathy Cohort. Since 2005, the majority of aHUS patients received perioperative plasma exchange (PE) followed by plasma infusions (PI). Patients were switched to eculizumab in case of plasma intolerance or failure. Those with no preemptive therapy served as controls. We used proportional Cox regression and logistic regression to examine predictors of graft survival. RESULTS 19 aHUS patients received 32 grafts and had a follow-up > 1 year. Eight patients received preventive plasma therapy for eight transplants and 13 patients (including 2 patients who received plasma therapy for their last transplant) had no preventive therapy for 24 grafts. The median graft survival was 2.372 days in patients, that received preemptive therapy and 411 days in patients, that did not receive preemptive treatment (hazard ratio: 0.11; p= 0.03). Four patients were switched to eculizumab because of plasma intolerance or failure. Additionally, one patient, that was not transplanted according to the above-mentioned protocol, received eculizumab for aHUS relapse. Additionally, relapse of aHUS (p = 0.01) and year of transplantation (p<0.01) had an effect on graft failure. CONCLUSIONS This study shows that preemptive plasma therapy and eculizumab rescue in selected cases improve graft survival among kidney transplant recipients with aHUS.
Collapse
Affiliation(s)
- Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria.
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University Vienna, Vienna, Austria
| | - Zoltán Prohászka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Renate Kain
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Raute Sunder-Plassmann
- Genetics Laboratory, Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Thomas Müller-Sacherer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - André Oszwald
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| |
Collapse
|
19
|
Regulation of regulators: Role of the complement factor H-related proteins. Semin Immunol 2019; 45:101341. [PMID: 31757608 DOI: 10.1016/j.smim.2019.101341] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 01/15/2023]
Abstract
The complement system, while being an essential and very efficient effector component of innate immunity, may cause damage to the host and result in various inflammatory, autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. Factor H is a serum glycoprotein and the main regulator of the activity of the alternative complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-1), inhibits complement activation at the level of the central complement component C3 and beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-1, namely, they enhance complement activation directly and also by competing with the regulators FH and FHL-1. This review summarizes the current stand and recent data on the roles of factor H family proteins in health and disease, with focus on the function of FHR proteins.
Collapse
|
20
|
Complement and Coagulation: Cross Talk Through Time. Transfus Med Rev 2019; 33:199-206. [PMID: 31672340 DOI: 10.1016/j.tmrv.2019.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 12/29/2022]
Abstract
Two complex protein defense systems-complement and coagulation-are based on amplifying enzyme cascades triggered by specific local stimuli. Excess systemic activation of either system is pathologic and is normally prevented by a family of regulatory proteins. The 2 systems are ancient biological processes which share a common origin that predates vertebrate evolution. Recent research has uncovered multiple opportunities for cross talk between complement and coagulation including proteins traditionally viewed as coagulation factors that activate and regulate complement, and proteins traditionally seen as part of the complement system that participate in coagulation. Ten examples of cross talk between the 2 systems are described. The mutual engagement of both systems is increasingly recognized to occur in human diseases. Three conditions-paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and the antiphospholipid syndrome-provide examples of the importance of interactions between complement and coagulation in human biology. A better understanding of the mutual engagement of these 2 ancient defense systems is expected to result in improved diagnostics and new treatments for systemic diseases.
Collapse
|
21
|
Cserhalmi M, Uzonyi B, Merle NS, Csuka D, Meusburger E, Lhotta K, Prohászka Z, Józsi M. Functional Characterization of the Disease-Associated N-Terminal Complement Factor H Mutation W198R. Front Immunol 2017; 8:1800. [PMID: 29321782 PMCID: PMC5733548 DOI: 10.3389/fimmu.2017.01800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of the complement alternative pathway is involved in the pathogenesis of several diseases, including the kidney diseases atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). In a patient, initially diagnosed with chronic glomerulonephritis, possibly C3G, and who 6 years later had an episode of aHUS, a heterozygous missense mutation leading to a tryptophan to arginine exchange (W198R) in the factor H (FH) complement control protein (CCP) 3 domain has previously been identified. The aim of this study was to clarify the functional relevance of this mutation. To this end, wild-type (FH1-4WT) and mutant (FH1-4W198R) CCPs 1-4 of FH were expressed as recombinant proteins. The FH1-4W198R mutant showed decreased C3b binding compared with FH1-4WT. FH1-4W198R had reduced cofactor and decay accelerating activity compared with the wild-type protein. Hemolysis assays demonstrated impaired capacity of FH1-4W198R to protect rabbit erythrocytes from human complement-mediated lysis, and also to prevent lysis of sheep erythrocytes in human serum induced by a monoclonal antibody binding in FH CCP5 domain, compared with that of FH1-4WT. Thus, the FH W198R exchange results in impaired complement alternative pathway regulation. The heterozygous nature of this mutation in the index patient may explain the manifestation of two diseases, likely due to different triggers leading to complement dysregulation in plasma or on cell surfaces.
Collapse
Affiliation(s)
- Marcell Cserhalmi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Nicolas S Merle
- UMRS 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM, Paris, France
| | - Dorottya Csuka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Edgar Meusburger
- Department of Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Karl Lhotta
- Department of Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Zoltán Prohászka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.,MTA-SE Immunology and Hematology Research Group, Semmelweis University, Budapest, Hungary
| | - Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
22
|
Duineveld C, Verhave JC, Berger SP, van de Kar NC, Wetzels JF. Living Donor Kidney Transplantation in Atypical Hemolytic Uremic Syndrome: A Case Series. Am J Kidney Dis 2017; 70:770-777. [DOI: 10.1053/j.ajkd.2017.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/26/2017] [Indexed: 11/11/2022]
|
23
|
Thergaonkar RW, Narang A, Gurjar BS, Tiwari P, Puraswani M, Saini H, Sinha A, Varma B, Mukerji M, Hari P, Bagga A. Targeted exome sequencing in anti-factor H antibody negative HUS reveals multiple variations. Clin Exp Nephrol 2017; 22:653-660. [PMID: 28939980 DOI: 10.1007/s10157-017-1478-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/03/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Genetic susceptibility to atypical hemolytic uremic syndrome (aHUS) may lie within genes regulating or activating the alternate complement and related pathways converging on endothelial cell activation. METHODS We tested 32 Indian patients of aHUS negative for antibodies to complement factor H for genetic variations in a panel of 15 genes, i.e., CFH, CFHR1-5, CFI, CFB, C3, CD46, MASP2, DGKE, ADAMTS13, THBD and PLG using next-generation DNA sequencing and for copy number variation in CFHR1-3. RESULTS Despite absence of a public database of exome variations in the Indian population and limited functional studies, we could establish a genetic diagnosis in 6 (18.8%) patients using a stringent scheme of prioritization. One patient carried a likely pathogenic variation. The number of patients carrying possibly pathogenic variation was as follows: 1 variation: 5 patients, 2 variations: 9 patients, 3 variations: 5 patients, 4 variations: 9 patients, 5 variations: 2 patients and 6 variations: 2 patients. Homozygous deletion of CFHR1-3 was present in five patients; none of these carried a diagnostic genetic variation. Patients with or without diagnostic variation did not differ significantly in terms of enrichment of genetic variations that were rare/novel or predicted deleterious, or for possible environmental triggers. CONCLUSION We conclude that genetic testing for multiple genes in patients with aHUS negative for anti-FH antibodies reveals multiple candidate variations that require prioritization. Population data on variation frequency of the Indian population and supportive functional studies are likely to improve diagnostic yield.
Collapse
Affiliation(s)
- R W Thergaonkar
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ankita Narang
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Pradeep Tiwari
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Mamta Puraswani
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Himanshi Saini
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Binuja Varma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Mitali Mukerji
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pankaj Hari
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
24
|
Geerlings MJ, de Jong EK, den Hollander AI. The complement system in age-related macular degeneration: A review of rare genetic variants and implications for personalized treatment. Mol Immunol 2016; 84:65-76. [PMID: 27939104 PMCID: PMC5380947 DOI: 10.1016/j.molimm.2016.11.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 01/18/2023]
Abstract
The complement system plays a central role in age-related macular degeneration (AMD). Common and rare genetic variants in complement genes have been identified in AMD. Several of the rare variants affect the functioning of the complement system. However, a genetic association with AMD cannot always be proven. Functional assays can help identify patients for complement inhibiting therapies.
Age-related macular degeneration (AMD) is a progressive retinal disease and the major cause of irreversible vision loss in the elderly. Numerous studies have found both common and rare genetic variants in the complement pathway to play a role in the pathogenesis of AMD. In this review we provide an overview of rare variants identified in AMD patients, and summarize the functional consequences of rare genetic variation in complement genes on the complement system. Finally, we discuss the relevance of this work in light of ongoing clinical trials that study the effectiveness of complement inhibitors against AMD.
Collapse
Affiliation(s)
- Maartje J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274:33-58. [PMID: 27782325 PMCID: PMC5427221 DOI: 10.1111/imr.12500] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Piet Gros
- Utrecht University, Utrecht, The Netherlands
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Leffler J, Prohászka Z, Mikes B, Sinkovits G, Ciacma K, Farkas P, Réti M, Kelen K, Reusz GS, Szabó AJ, Martin M, Blom AM. Decreased Neutrophil Extracellular Trap Degradation in Shiga Toxin-Associated Haemolytic Uraemic Syndrome. J Innate Immun 2016; 9:12-21. [PMID: 27784011 DOI: 10.1159/000450609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/06/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) can stimulate thrombosis, and their degradation is decreased in several autoimmune disorders. It was recently reported that some patients with haemolytic uraemic syndrome (HUS) also fail to degrade NETs and that neutrophils from Shiga toxin-associated HUS are primed to form NETs. METHOD We used a well-characterized cohort of 74 thrombotic microangiopathy (TMA) patients, with a subset also providing follow-up samples, and 112 age-matched controls to investigate NET degradation and serum nuclease activity in TMA before, during and after treatment. RESULTS We identified that in the cohort of TMA patients, 50% of patients with Shiga toxin-associated HUS displayed a decreased ability to degrade NETs. NET degradation correlated with serum nuclease activity, but not with autoantibodies against double-stranded DNA, which has been previously observed in some autoimmune disorders. Further, NET degradation negatively correlated with serum creatinine levels, suggesting that kidney function was negatively impacted by the low NET degradation ability. CONCLUSIONS We revealed that decreased NET degradation is a common feature of Shiga toxin-associated HUS and that it is associated with decreased kidney function in these patients. It remains to be clarified whether improving NET degradation would be beneficial for the patient.
Collapse
Affiliation(s)
- Jonatan Leffler
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|