1
|
Örnek E, Alkan M, Erel S, Yığman Z, Dursun AD, Dağlı A, Sarıkaya B, Kip G, Polat Y, Arslan M. Effects of Sevoflurane and Fullerenol C60 on the Heart and Lung in Lower-Extremity Ischemia-Reperfusion Injury in Streptozotocin-Induced Diabetes Mice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1232. [PMID: 39202513 PMCID: PMC11356023 DOI: 10.3390/medicina60081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Lower-extremity ischemia-reperfusion injury can induce distant organ ischemia, and patients with diabetes are particularly susceptible to ischemia-reperfusion injury. Sevoflurane, a widely used halogenated inhalation anesthetic, and fullerenol C60, a potent antioxidant, were investigated for their effects on heart and lung tissues in lower-extremity ischemia-reperfusion injury in streptozotocin (STZ)-induced diabetic mice. Materials and Methods: A total of 41 mice were divided into six groups: control (n = 6), diabetes-control (n = 7), diabetes-ischemia (n = 7), diabetes-ischemia-fullerenol C60 (n = 7), diabetes-ischemia-sevoflurane (n = 7), and diabetes-ischemia-fullerenol C60-sevoflurane (n = 7). Diabetes was induced in mice using a single intraperitoneal dose of 55 mg/kg STZ in all groups except for the control group. Mice in the control and diabetes-control groups underwent midline laparotomy and were sacrificed after 120 min. The DIR group underwent 120 min of lower-extremity ischemia followed by 120 min of reperfusion. In the DIR-F group, mice received 100 μg/kg fullerenol C60 intraperitoneally 30 min before IR. In the DIR-S group, sevoflurane and oxygen were administered during the IR procedure. In the DIR-FS group, fullerenol C60 and sevoflurane were administered. Biochemical and histological evaluations were performed on collected heart and lung tissues. Results: Histological examination of heart tissues showed significantly higher necrosis, polymorphonuclear leukocyte infiltration, edema, and total damage scores in the DIR group compared to controls. These effects were attenuated in fullerenol-treated groups. Lung tissue examination revealed more alveolar wall edema, hemorrhage, vascular congestion, polymorphonuclear leukocyte infiltration, and higher total damage scores in the DIR group compared to controls, with reduced injury parameters in the fullerenol-treated groups. Biochemical analyses indicated significantly higher total oxidative stress, oxidative stress index, and paraoxonase-1 levels in the DIR group compared to the control and diabetic groups. These levels were lower in the fullerenol-treated groups. Conclusions: Distant organ damage in the lung and heart tissues due to lower-extremity ischemia-reperfusion injury can be significantly reduced by fullerenol C60.
Collapse
Affiliation(s)
- Ender Örnek
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Selin Erel
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (Z.Y.); (A.D.)
- Neuroscience and Neurotechnology Center of Excellence (NOROM), Gazi University, Ankara 06560, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey; (A.D.D.); (B.S.)
| | - Aslı Dağlı
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (Z.Y.); (A.D.)
- Medical Laboratory Techniques Program, Department of Medical Services and Techniques, Vocational School of Health Services, Atılım University, Ankara 06830, Turkey
| | - Badegül Sarıkaya
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey; (A.D.D.); (B.S.)
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
| | - Yücel Polat
- Tekirdağ Dr İsmail Fehmi Cumalıoğlu City Hospital, Department of Cardiovascular Surgery, Tekirdağ 59030, Turkey;
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06560, Turkey; (E.Ö.); (M.A.); (S.E.); (G.K.)
- Life Sciences Application and Research Center, Gazi University, Ankara 06560, Turkey
- Laboratory Animal Breeding and Experimental Research Center (GUDAM), Gazi University, Ankara 06560, Turkey
| |
Collapse
|
2
|
Qian D, Wen J, Yuan Y, Wang L, Feng X. Sevoflurane preconditioning attenuates myocardial cell damage caused by hypoxia and reoxygenation via regulating the NORAD/miR-144-3p axis. Hum Exp Toxicol 2024; 43:9603271241297883. [PMID: 39586668 DOI: 10.1177/09603271241297883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the function and mechanism of lncRNA NORAD in Sevoflurane (Sev) protection against myocardial hypoxia-reoxygenation (H/R). METHODS Preprocess rat cardiomyocytes H9c2 cells with Sev at concentrations of 0.5%, 1.0%, and 1.5%, and subjected them to H/R treatment. qRT-PCR was used to detect levels of NORAD and miR-144-3p. Measure concentrations of the inflammatory cytokines IL-6, TNF-α, and IL-10, as well as cardiac injury markers cTnI, CK-MB, and LDH using ELISA. Assess cell proliferation and apoptosis using CCK-8 and flow cytometry. Perform dual-luciferase reporter assay and RIP assay to validate the targeting relationship between NORAD and miR-144-3p. RESULTS H/R induced inhibition of cell proliferation, increase in apoptosis, and production of IL-6, TNF-α, CK-MB, LDH, and cTnI were significantly attenuated by Sev. As hypoxic treatment time lengthened, the NORAD levels in myocardial cells showed an increase, with Sev pretreatment being able to suppress the NORAD levels elevation. The overexpression of NORAD notably weakened the cardioprotective effect of Sev. NORAD targetedly binds to miR-144-3p and negatively regulates miR-144-3p. Increased miR-144-3p levels inhibited the antagonistic effect of NORAD on the cardioprotective effects of Sev. CONCLUSION The current study confirmed that sevoflurane attenuated H/R-induced cardiomyocyte injury via the NORAD/miR-144-3p axis.
Collapse
Affiliation(s)
- Duo Qian
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Wen
- Cardiology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yawei Yuan
- Department of Anesthesiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaona Feng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
3
|
Benoit L, Dieu A, Foguenne M, Bonaccorsi-Riani E. Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review. Int J Mol Sci 2023; 24:2340. [PMID: 36768670 PMCID: PMC9916998 DOI: 10.3390/ijms24032340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inflammatory process inherent in organ transplantation procedures. It is associated with tissue damage and, depending on its intensity, can impact early graft function. In liver transplantation (LT), strategies to alleviate IRI are essential in order to increase the use of extended criteria donor (ECD) grafts, which are more susceptible to IRI, as well as to improve postoperative graft and patient outcomes. Sevoflurane, a commonly used volatile anesthetic, has been shown to reduce IRI. This scoping review aims to give a comprehensive overview of the existing experimental and clinical data regarding the potential benefits of sevoflurane for hepatic IRI (HIRI) and to identify any gaps in knowledge to guide further research. We searched Medline and Embase for relevant articles. A total of 380 articles were identified, 45 of which were included in this review. In most experimental studies, the use of sevoflurane was associated with a significant decrease in biomarkers of acute liver damage and oxidative stress. Administration of sevoflurane before hepatic ischemia (preconditioning) or after reperfusion (postconditioning) appears to be protective. However, in the clinical setting, results are conflicting. While some studies showed a reduction of postoperative markers of liver injury, the benefit of sevoflurane on clinical outcomes and graft survival remains unclear. Further prospective clinical trials remain necessary to assess the clinical relevance of the use of sevoflurane as a protective factor against HIRI.
Collapse
Affiliation(s)
- Loïc Benoit
- Department of Anesthesiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Audrey Dieu
- Department of Anesthesiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Maxime Foguenne
- Abdominal Transplant Unit, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Pôle de Chirurgie Expérimentale et Transplantation-Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Eliano Bonaccorsi-Riani
- Abdominal Transplant Unit, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Pôle de Chirurgie Expérimentale et Transplantation-Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
4
|
Yu H, Chen L, Yue CJ, Xu H, Cheng J, Cornett EM, Kaye AD, Urits I, Viswanath O, Liu H. Effects of propofol and sevoflurane on T-cell immune function and Th cell differentiation in children with SMPP undergoing fibreoptic bronchoscopy. Ann Med 2022; 54:2574-2580. [PMID: 36370066 PMCID: PMC9665898 DOI: 10.1080/07853890.2022.2121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The potentially different effects of commonly used anaesthetic agents propofol and sevoflurane on T-cell immune function and Th cell differentiation were investigated in patients with severe mycoplasmal pneumonia (SMPP) undergoing fibreoptic bronchoscopy. METHODS Sixty children (2-12 years of age) with SMPP were randomized into the sevoflurane group and the propofol group. Patients in the sevoflurane group were anaesthetised with inhalational sevoflurane and intravenous remifentanil. Patients in the propofol group were anaesthetised with intravenous propofol and remifentanil. Patients in both groups underwent fibreoptic bronchoscopy and lavage therapy. We compared the clinical outcomes, cellular immunity function, and Th cell differentiation into Th1 and Th2 levels in both groups. RESULTS There was no significant difference in clinical outcomes and hospital stay between the two groups (7.94 vs 7.36, p > .05). However, the CD3+ T cells, CD4+ T cells, and CD4+/CD8+ in the propofol group were significantly higher than those in the sevoflurane group (T1 51.96 vs 48.33, T2 58.08 vs 55.31, p < .05). The ratio of Th1/Th2 in the two groups was significantly increased postoperatively in both groups (Sevoflurane 8.53 vs 7.23, Propofol 9.35 vs 7.18), and the propofol group was significantly higher than the sevoflurane group (9.35 vs 8.53, p < .05). CONCLUSIONS Propofol might have a less inhibitory effect on T lymphocytes in children with SMPP than sevoflurane. And propofol may have less impact on the differentiation of Th cells into Th1 cells and better preserving the Th1/Th2 ratio than sevoflurane. KEY MESSAGESThe pathogenesis of SMPP is still unclear, likely through alveolar infiltration with neutrophils and lymphocytes, lymphocyte/plasma cell infiltrates in the peri-bronchovascular area, and immune dysfunction.Recent experimental and clinical studies showed that sevoflurane might have immunosuppressive effects, and multiple studies confirmed that the immune function of children with SMPP had been reduced.This study found that propofol administered in children with SMPP had a less inhibitory effect on T lymphocytes than inhalational sevoflurane, had little inhibitory effect on the differentiation of Th cells into Th1 cells, and better preserve Th1/Th2 ratio and maintain the balanced immune function.
Collapse
Affiliation(s)
- Hui Yu
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Lin Chen
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Cheng-Jin Yue
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Heng Xu
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Anesthesiology, Hubei Women and Children's Hospital, Tongji Medical College, Huazhong University Science & Technology, Wuhan, Hubei, China
| | - Elyse M Cornett
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA
| | - Ivan Urits
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA.,Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA, USA
| | - Omar Viswanath
- Departments of Anesthesiology and Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, Shreveport, LA, USA.,University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.,Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA.,Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ, USA
| | - Henry Liu
- Department of Anesthesiology & Perioperative Medicine, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
5
|
Wang YL, Zhang Y, Cai DS. Hepatoprotective effects of sevoflurane against hepatic ischemia-reperfusion injury by regulating microRNA-124-3p-mediated TRAF3/CREB axis. Cell Death Dis 2022; 8:105. [PMID: 35260558 PMCID: PMC8904859 DOI: 10.1038/s41420-021-00784-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
The purpose of the present study is to define the role of sevoflurane (SEV) in hepatic ischemia-reperfusion (I/R) injury as well as its underlying mechanism. Initially, hepatic I/R animal models and I/R hepatocyte models were established in C57BL/6 mice and normal mouse hepatocytes (BNL CL.2) after SEV preconditioning, respectively, followed by detection of microRNA-124-3p (miR-124-3p), TRAF3, and CREB expression by RT-qPCR and Western blot analysis. In addition, miR-124-3p, TRAF3 and CREB expression in hepatocytes was altered to identify their roles in modulating the levels of glutathione transferase (GST), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and inflammation-related factors and hepatocyte apoptosis by ELISA and flow cytometry respectively. The effects of SEV on the miR-124-3p/TRAF3/CREB axis were also verified in vitro and in vivo. IP assay was performed to verify the effect of TRAF3 on CREB ubiquitination in BNL CL.2 cells, and the cycloheximide (CHX) intervention experiment to detect the stability of CREB protein. SEV augmented the miR-124-3p expression in I/R animal and cell models. Moreover, SEV was observed to suppress I/R-induced liver damage, GST, ALT, and AST levels, hepatocyte apoptosis and inflammation. Overexpression of miR-124-3p resulted in alleviation of hepatic I/R injury, which was countered by TRAF3 overexpression. miR-124-3p targeted TRAF3, while TRAF3 promoted CREB ubiquitination and reduced protein stability of CREB. SEV could impede I/R-induced liver damage, GST, ALT, and AST levels, hepatocyte apoptosis and inflammation via mediation of the miR-124-3p/TRAF3/CREB axis in vitro and in vivo. Collectively, SEV may upregulate miR-124-3p to inhibit TRAF3 expression, thereby reducing the ubiquitination and degradation of CREB, alleviating hepatic I/R injury.
Collapse
Affiliation(s)
- Yi-Liang Wang
- Department of Anaesthesiology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ying Zhang
- Department of Thyroid and Breast Surgery, Liaoning Provincial People's Hospital, Shenyang, 110001, PR China
| | - Da-Sheng Cai
- Department of Anaesthesiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| |
Collapse
|
6
|
Ji H, Li H, Zhang H, Cheng Z. Role of microRNA‑218‑5p in sevoflurane‑induced protective effects in hepatic ischemia/reperfusion injury mice by regulating GAB2/PI3K/AKT pathway. Mol Med Rep 2021; 25:1. [PMID: 34726254 PMCID: PMC8600399 DOI: 10.3892/mmr.2021.12517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury (HIRI) often occurs following tissue resection, hemorrhagic shock or transplantation surgery. Previous investigations showed that sevoflurane (Sevo), an inhalation anesthetic, had protective properties against different organ damage in animal models including HIRI. This study is aimed to investigate the underlying mechanisms involved in the protective effects of Sevo on HIRI. The present study results showed that treatment with Sevo improved histologic damage, inflammatory response, oxidative stress and apoptosis after hepatic I/R, indicating the protective role of Sevo against liver I/R injury. Importantly, in order to determine the molecular mechanism of Sevo in HIRI, the focus of the study was on microRNA (miR) regulation. By retrieving the microarray data in the Gene Expression Omnibus dataset (GSE72315), miR-218-5p was found to be significantly downregulated by Sevo. Moreover, miR-218-5p overexpression using agomiR-218-5p reversed the protective roles of Sevo against HIRI. Furthermore, GAB2, a positive regulator of PI3K/AKT signaling pathway, was found as a target gene of miR-218-5p. It was also found that the Sevo-mediated protective effects may be dependent on the activation of GAB2/PI3K/AKT. Collectively, these data revealed that Sevo alleviated HIRI in mice by restraining apoptosis, relieving oxidative stress and inflammatory response through the miR-218-5p/GAB2/PI3K/AKT pathway, which helps in understanding the novel mechanism of the hepatic-protection of Sevo.
Collapse
Affiliation(s)
- Hui Ji
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Hui Li
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Haixia Zhang
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Zhijun Cheng
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| |
Collapse
|
7
|
Oshima Y, Otsuki A, Endo R, Nakasone M, Harada T, Takahashi S, Inagaki Y. The Effects of Volatile Anesthetics on Lung Ischemia-Reperfusion Injury: Basic to Clinical Studies. J Surg Res 2020; 260:325-344. [PMID: 33373852 DOI: 10.1016/j.jss.2020.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023]
Abstract
Case reports from as early as the 1970s have shown that intravenous injection of even a small dose of volatile anesthetics result in fatal lung injury. Direct contact between volatile anesthetics and pulmonary vasculature triggers chemical damage in the vessel walls. A wide variety of factors are involved in lung ischemia-reperfusion injury (LIRI), such as pulmonary endothelial cells, alveolar epithelial cells, alveolar macrophages, neutrophils, mast cells, platelets, proinflammatory cytokines, and surfactant. With a constellation of factors involved, the assessment of the protective effect of volatile anesthetics in LIRI is difficult. Multiple animal studies have reported that with regards to LIRI, sevoflurane demonstrates an anti-inflammatory effect in immunocompetent cells and an anti-apoptotic effect on lung tissue. Scattered studies have dismissed a protective effect of desflurane against LIRI. While a single-center randomized controlled trial (RCT) found that volatile anesthetics including desflurane demonstrated a lung-protective effect in thoracic surgery, a multicenter RCT did not demonstrate a lung-protective effect of desflurane. LIRI is common in lung transplantation. One study, although limited due to its small sample size, found that the use of volatile anesthetics in organ procurement surgery involving "death by neurologic criteria" donors did not improve lung graft survival. Future studies on the protective effect of volatile anesthetics against LIRI must examine not only the mechanism of the protective effect but also differences in the effects of different types of volatile anesthetics, their optimal dosage, and the appropriateness of their use in the event of marked alveolar capillary barrier damage.
Collapse
Affiliation(s)
- Yoshiaki Oshima
- Department of Anesthesiology, Yonago Medical Center, Yonago, Tottori, Japan.
| | - Akihiro Otsuki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Ryo Endo
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masato Nakasone
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tomomi Harada
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shunsaku Takahashi
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yoshimi Inagaki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
8
|
Zhang Z, Yao W, Yuan D, Huang F, Liu Y, Luo G, Hei Z. Effects of Connexin 32-Mediated Lung Inflammation Resolution During Liver Ischemia Reperfusion. Dig Dis Sci 2020; 65:2914-2924. [PMID: 31900713 DOI: 10.1007/s10620-019-06020-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia reperfusion (HIR) leads to a lung inflammatory response and subsequent pulmonary barrier dysfunction. The gap junction communication protein connexin 32 (Cx32), which is widely expressed in the lungs, participates in intercellular signaling. This study determined whether the communication protein Cx32 could affect pulmonary inflammation caused by HIR. METHODS Mice were randomly allocated into four groups (n = 8/group): (i) Cx32+/+ sham group; (ii) Cx32+/+ HIR model group; (iii) Cx32-/- sham group; and (iv) Cx32-/- HIR model group. Twenty-four hours after surgery, lung tissues were collected for bright field microscopy, western blot (Cx32, JAK2, p-JAK2, STAT3, p-STAT3), and immunofluorescence (ZO-1, 8-OHDG) analyses. The collected bronchoalveolar fluid was tested for levels of interleukin-6 (IL-6), matrix metalloproteinase 12 (MMP-12), and antitrypsin (α1-AT). Lung mmu-miR-26a/b expression was detected using a PCR assay. RESULTS Increased expression of Cx32 mRNA and protein was noted in the lungs after HIR. Cx32 deletion significantly aggravated pulmonary function from acute lung injury induced by HIR. In addition, Cx32 deletion decreased the protein level of ZO-1 (pulmonary function) and increased the level of the oxidative stress marker 8-OHDG in the lungs. Moreover, in the Cx32-/- HIR model group, the levels of IL-6 and MMP-12 in bronchoalveolar lavage fluid were significantly increased leading to activation of the JAK2/STAT3 pathway, and decreased α1-AT levels. Furthermore, we found mmu-miR-26a/b was significantly downregulated in the Cx32-/- HIR model group. CONCLUSION HIR leads to acute lung inflammatory injury. Cx32 deletion aggravates hepatic-derived lung inflammation, partly through blocking the transferring of mmu-miR-26a/b and leading to IL-6-related JAK2/STAT3 pathway activation.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yue Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Xu G, Wang X, Xiong Y, Ma X, Qu L. Effect of sevoflurane pretreatment in relieving liver ischemia/reperfusion-induced pulmonary and hepatic injury. Acta Cir Bras 2019; 34:e201900805. [PMID: 31618405 PMCID: PMC6799973 DOI: 10.1590/s0102-865020190080000005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/18/2019] [Indexed: 02/18/2023] Open
Abstract
Purpose To investigate the effect of sevoflurane preconditioning on
ischemia/reperfusion (I/R)-induced pulmonary/hepatic injury Methods Fifty-one Wistar rats were randomly grouped into sham, I/R, and sevoflurane
groups. After reperfusion, the structural change of the lung was measured by
Smith score, the wet and dry weights (W/D) were determined, malondialdehyde
(MDA) myeloperoxidase (MPO) content was determined colorimetrically and by
fluorescence, respectively, and matrix metalloprotein-9 (MMP-9) mRNA was
quantified by RT-PCR. Biopsy and morphological analyses were performed on
liver tissue, activities of aspartate aminotransferase (AST) and alanine
aminotransferase (ALT) were determined, and tumor necrosis factor-alpha
(TNF-α) level was determined. Results The sham group showed no changes in tissue structure. Structural lesions in
the sevoflurane and I/R groups were mild and severe, respectively. Smith
score, W/D, MDA, MPO, and MMP mRNA showed the same trend, and were increased
in the I/R group and recovered in the sevoflurane group, compared with the
sham group (both P<0.05). AST and ALT were significantly increased
compared to the sham group (AST: 655±52.06 vs . 29±9.30
U/L; ALT: 693±75.56 vs . 37±6.71 U/L; P<0.05). In the
sevoflurane group, AST and ALT levels were significantly decreased
(464±47.71 and 516±78.84 U/L; P<0.001). TNF-α presented similar
results. Conclusion The protection of lung and liver by sevoflurane may be mediated by inhibited
leukocyte recruitment and MMP-9 secretion.
Collapse
Affiliation(s)
- Guiping Xu
- Professor, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Conception, design, intellectual and scientific content of the study; manuscript writing; critical revision; final approval
| | - Xiaoli Wang
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data, manuscript writing
| | - Yuxiang Xiong
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| | - Xueping Ma
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| | - Li Qu
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| |
Collapse
|
10
|
Irisin pretreatment ameliorates intestinal ischemia/reperfusion injury in mice through activation of the Nrf2 pathway. Int Immunopharmacol 2019; 73:225-235. [DOI: 10.1016/j.intimp.2019.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
11
|
Du X, Jiang S, Zeng X, Zhang J, Pan K, Song L, Zhou J, Kan H, Sun Q, Zhao J, Xie Y. Fine particulate matter-induced cardiovascular injury is associated with NLRP3 inflammasome activation in Apo E -/- mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:92-99. [PMID: 30822672 DOI: 10.1016/j.ecoenv.2019.02.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 05/05/2023]
Abstract
Epidemiological evidences have indicated that fine particulate matter (PM2.5) is associated with the increased risk of cardiovascular morbidity and mortality. Although several mechanisms linking PM2.5 and inflammatory responses have been widely implicated, the detailed mechanisms involving the occurrence of inflammation in PM2.5-induced adverse effects are lacking. This study aims to investigate whether PM2.5 exposure-induced cardiovascular injury is associated with NLRP3 inflammasome activation in apolipoprotein E-/- (Apo E-/-) mice. Thirty-two Apo E-/- mice were randomly divided into four groups. The mice were fed with normal chow (NC) or high-fat chow (HFC) for 10 weeks, respectively. From week 11, the mice were exposed to concentrated PM2.5 (PM) or filter air (FA) using Shanghai Meteorological and Environmental Animal Exposure System for 16 weeks. The cardiac function and myocardial injury were evaluated by echocardiography and histopathological examination. Meanwhile, the expression of NLRP3-related signaling pathway in myocardium was detected. Compared with the FA mice, the PM mice showed the underlying cardiac dysfunction and injury in both NC and HFC groups. Mononuclear macrophages (CD11c+) were significant higher in bone marrow of the PM mice than that in the FA mice, whilst CD206+ macrophages were lower. Accordingly, PM2.5 exposure induced the increase of circulating inflammatory cytokine TNF-α and decrease of anti-inflammatory cytokine IL-10. PM2.5 exposure was also associated with the activation of NLRP3 inflammasome, which characterized by elevated protein expression of NLRP3, ASC, caspase-1, IL-1β and IL-18 in myocardium. All these results demonstrated PM2.5-related cardiac injury is mediated by macrophages polarization and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Liying Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai, China.
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092 China.
| |
Collapse
|
12
|
Lian YH, Fang J, Zhou HD, Jiang HF, Xie KJ. Sufentanil Preconditioning Protects Against Hepatic Ischemia-Reperfusion Injury by Suppressing Inflammation. Med Sci Monit 2019; 25:2265-2273. [PMID: 30918241 PMCID: PMC6450177 DOI: 10.12659/msm.913145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Inflammation is one of the most significant mechanisms of hepatic ischemia-reperfusion injury (IRI). Sufentanil has a protective effect against liver injury by reducing inflammatory response. In this study, we used a cellular hepatic ischemic/reoxygenated (IR) model to determine whether sufentanil preconditioning protects against hepatic IRI. MATERIAL AND METHODS The human normal liver cells line L-O2 was studied. The levels of glutamic oxaloacetic transaminase (AST), lactate dehydrogenase (LDH), malonaldehyde (MDA), and superoxide dismutase (SOD) were measured using corresponding assay kits. The protein levels of total and phosphorylated ERK1/2, JNK, and p38, and the expression of p65 and COX2 genes, were measured by Western blotting. The levels of inflammatory factors were examined by ELISA. The Cell Counting Kit-8 (CCK-8) was used to determine if the viability of L-O2 cells was affected by sufentanil. The effects of sufentanil on IR-induced cell apoptosis were examined by flow cytometry. RESULTS IR-induced caused L-O2 cells to become rounded and to have a lower adhesive rate than normal cells. The levels of AST, LDH, and MDA were higher but the level of SOD was lower in the IR group than in the control group. The phosphorylated protein levels of ERK1/2, JNK, and p38, along with the expression of p65 and COX2, were upregulated in the IR group compared to the normal group. In addition, a variety of inflammatory factors were secreted in L-O2 cells after IR. The viability of L-O2 cells decreased and cell apoptosis increased significantly after IR treatment. All indexes of cell injury were reversed by sufentanil in a concentration-dependent manner. CONCLUSIONS Sufentanil stimulation triggers downregulation of inflammatory factors such as HIF-1alpha, TNF-alpha, IL-1ß, and IL-6, possibly through suppressing the p38/ERK/JNK/NF-kappaB-p65/COX2 pathways, and thereby reduces the damage to IR hepatic cells.
Collapse
Affiliation(s)
- Yan-Hong Lian
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jun Fang
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hui-Dan Zhou
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hui-Fang Jiang
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Kang-Jie Xie
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
13
|
Garutti I, Gonzalez-Moraga F, Sanchez-Pedrosa G, Casanova J, Martin-Piñeiro B, Rancan L, Simón C, Vara E. The effect of anesthetic preconditioning with sevoflurane on intracellular signal-transduction pathways and apoptosis, in a lung autotransplant experimental model. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2019. [PMID: 30459087 PMCID: PMC9391783 DOI: 10.1016/j.bjane.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Anesthetic pre-conditioning attenuates inflammatory response during ischemia-reperfusion lung injury. The molecular mechanisms to explain it are not fully understood. The aim of our investigation was to analyze the molecular mechanism that explain the anti-inflammatory effects of anesthetic pre-conditioning with sevoflurane focusing on its effects on MAPKs (mitogen-activated protein kinases), NF-κB (nuclear factor kappa beta) pathways, and apoptosis in an experimental lung autotransplant model. Methods Twenty large white pigs undergoing pneumonectomy plus lung autotransplant were divided into two 10-member groups on the basis of the anesthetic received (propofol or sevoflurane). Anesthetic pre-conditioning group received sevoflurane 3% after anesthesia induction and it stopped when one-lung ventilation get started. Control group did not receive sevoflurane in any moment during the whole study period. Intracellular signal-transduction pathways (MAPK family), transcription factor (NF-κB), and apoptosis (caspases 3 and 9) were analyzed during experiment. Results Pigs that received anesthetic pre-conditioning with sevoflurane have shown significant lower values of MAPK-p38, MAPK-P-p38, JNK (c-Jun N-terminal kinases), NF-κB p50 intranuclear, and caspases (p < 0.05) than pigs anesthetized with intravenous propofol. Conclusions Lung protection of anesthetic pre-conditioning with sevoflurane during experimental lung autotransplant is, at least, partially associated with MAPKs and NF κB pathways attenuation, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ignacio Garutti
- Hospital General Universitario Gregorio Marañon, Departamento de Anestesiologia, Madri, Espanha; Universidad Complutense de Madrid, Departamento de Farmacologia, Madri, Espanha.
| | | | | | - Javier Casanova
- Hospital General Universitario Gregorio Marañon, Departamento de Anestesiologia, Madri, Espanha
| | | | - Lisa Rancan
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica, Madri, Espanha
| | - Carlos Simón
- Hospital General Universitario Gregorio Marañon, Departamento de Cirugía Torácica, Madri, Espanha; Universidad Complutense de Madrid, Departamento de Cirugía, Madri, Espanha
| | - Elena Vara
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica, Madri, Espanha
| |
Collapse
|
14
|
Garutti I, Gonzalez-Moraga F, Sanchez-Pedrosa G, Casanova J, Martin-Piñeiro B, Rancan L, Simón C, Vara E. [The effect of anesthetic preconditioning with sevoflurane on intracellular signal-transduction pathways and apoptosis, in a lung autotransplant experimental model]. Rev Bras Anestesiol 2018; 69:48-57. [PMID: 30459087 DOI: 10.1016/j.bjan.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Anesthetic pre-conditioning attenuates inflammatory response during ischemia-reperfusion lung injury. The molecular mechanisms to explain it are not fully understood. The aim of our investigation was to analyze the molecular mechanism that explain the anti-inflammatory effects of anesthetic pre-conditioning with sevoflurane focusing on its effects on MAPKs (mitogen-activated protein kinases), NF-κB (nuclear factor kappa beta) pathways, and apoptosis in an experimental lung autotransplant model. METHODS Twenty large white pigs undergoing pneumonectomy plus lung autotransplant were divided into two 10-member groups on the basis of the anesthetic received (propofol or sevoflurane). Anesthetic pre-conditioning group received sevoflurane 3% after anesthesia induction and it stopped when one-lung ventilation get started. Control group did not receive sevoflurane in any moment during the whole study period. Intracellular signal-transduction pathways (MAPK family), transcription factor (NF-κB), and apoptosis (caspases 3 and 9) were analyzed during experiment. RESULTS Pigs that received anesthetic pre-conditioning with sevoflurane have shown significant lower values of MAPK-p38, MAPK-P-p38, JNK (c-Jun N-terminal kinases), NF-κB p50 intranuclear, and caspases (p<0.05) than pigs anesthetized with intravenous propofol. CONCLUSIONS Lung protection of anesthetic pre-conditioning with sevoflurane during experimental lung autotransplant is, at least, partially associated with MAPKs and NF κB pathways attenuation, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ignacio Garutti
- Hospital General Universitario Gregorio Marañon, Departamento de Anestesiologia, Madri, Espanha; Universidad Complutense de Madrid, Departamento de Farmacologia, Madri, Espanha.
| | | | | | - Javier Casanova
- Hospital General Universitario Gregorio Marañon, Departamento de Anestesiologia, Madri, Espanha
| | | | - Lisa Rancan
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica, Madri, Espanha
| | - Carlos Simón
- Hospital General Universitario Gregorio Marañon, Departamento de Cirugía Torácica, Madri, Espanha; Universidad Complutense de Madrid, Departamento de Cirugía, Madri, Espanha
| | - Elena Vara
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica, Madri, Espanha
| |
Collapse
|
15
|
Jiang S, Zhou J, Zhang J, Du X, Zeng X, Pan K, Xie Y, Kan H, Sun Q, Cai J, Zhao J. The severity of lung injury and metabolic disorders induced by ambient PM 2.5 exposure is associated with cumulative dose. Inhal Toxicol 2018; 30:239-246. [PMID: 30249144 DOI: 10.1080/08958378.2018.1508258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lots of epidemiological and experimental studies have found that ambient fine particulate matter (PM2.5) exposure is associated with the development of cardiopulmonary diseases, obesity and diabetes. This study focused on the effects of cumulative PM2.5 exposure on pulmonary and systemic inflammation and insulin resistance. Thirty-two 6-week-old male Balb/c mice were randomly divided into four groups (FA, PM, WEEK and DAY groups) and were continuously or intermittently exposed to concentrated PM2.5 or filtered air (FA) for four weeks using Shanghai Meteorological and Environmental Animal Exposure System ("Shanghai-METAS"). The levels of IL-6 and TNF-α in serum, bronchoalveolar lavage fluid (BALF), lung tissues and white adipose tissue (WAT) were measured. Meanwhile, the expression of NF-κB and phosphor-NF-κB in lung tissue was detected by Western blot. Glucose tolerance and insulin resistance were also determined at the end of exposure. The results found that the mice in PM group displayed moderate inflammatory cell infiltration in lung, whereas the mice in WEEK and DAY groups displayed slight inflammatory cell infiltration in lung. Compared with the mice in FA group, the mRNA expressions of IL-6 and TNF-α in lung tissue and WAT significantly increased in the mice of PM group. Importantly, IL-6 and TNF-α mRNA expressions in PM group were higher than those in WEEK and DAY groups. The protein expression of phospho-NF-κB in lung tissue showed that PM group showed the activation of NF-κB, which was higher than that in the WEEK and DAY groups. Meanwhile, the mice in PM group showed more severe glucose tolerance and insulin resistance than that in the WEEK and DAY groups. The results suggested that the reduction of PM2.5 cumulative exposure may alleviate pulmonary and adipose inflammation, insulin resistance and glucose tolerance impairment. The results provided a clue that the interruption of ambient PM2.5 exposures by systems such as indoor air purification could be of benefit to people's health.
Collapse
Affiliation(s)
- Shuo Jiang
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China.,b Shanghai Changning Center for Disease Control and Prevention, Shanghai, China
| | - Ji Zhou
- c Shanghai Key Laboratory of Meteorology and Health , Shanghai , China
| | - Jia Zhang
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Xihao Du
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Xuejiao Zeng
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Kun Pan
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Yuquan Xie
- d Department of Cardiology , Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Haidong Kan
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Qinghua Sun
- e Division of Environmental Health Sciences, College of Public Health , The Ohio State University , Columbus , OH , USA
| | - Jing Cai
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China
| | - Jinzhuo Zhao
- a Department of Environmental Health School of Public Health and the Key Laboratory of Public Health Safety Ministry of Education , Fudan University , Shanghai , China.,c Shanghai Key Laboratory of Meteorology and Health , Shanghai , China
| |
Collapse
|
16
|
Sevoflurane preconditioning promotes activation of resident CSCs by transplanted BMSCs via miR-210 in a rat model for myocardial infarction. Oncotarget 2017; 8:114637-114647. [PMID: 29383108 PMCID: PMC5777720 DOI: 10.18632/oncotarget.23062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/14/2017] [Indexed: 11/26/2022] Open
Abstract
Objective To assess the effect of sevoflurane preconditioning (SFpre) on bone marrow mesenchymal stem cells (BMSCs) for the treatment of acute myocardial infarction. Results 24 hours after the transplantation, decreased apoptosis of implanted BMSCs and up-regulation of cytokines expression were found within the ischemic area in SFpreBMSCs group compared with BMSCs group (P < 0.05). 4 weeks later, SFpreBMSCs group showed more viable implanted BMSCs, CSC-derived cardiomyocytes, and higher vessel and myocardial density within the infarcted region and improved cardiac function, compared with control and BMSCs groups (P < 0.05). Compared with untreated BMSCs, promoted migration, inhibited apoptosis, increased cytokine secretion, and enhanced activation to CSCs were detected in SFpreBMSCs exposed to profound hypoxia and serum deprivation, via up-regulating miR-210 expression (P < 0.05). Conclusions Sevoflurane preconditioning can protect BMSCs against hypoxia by activating miR-210 expression and promote their paracrine functions and effects on resident CSCs. Methods After the preconditioning, rat BMSCs (SFpreBMSCs group) were transplanted into rat AMI models, while BMSCs group received unconditioned BMSCs. Apoptosis and paracrine functions of the transplanted BMSCs, angiogenesis, resident cardiac stem cells (CSCs) derived myocardial regeneration, cardiac function and remodeling were assessed at various time points. In vitro experiments were performed to determine the expression of miR-210 in BMSCs exposed to sevoflurane and the effect of sevoflurane on BMSCs’ migration, apoptosis and secretion of cytokines under hypoxic condition, as well as cytokine-induced CSCs activation.
Collapse
|
17
|
Liu J, Yang Y, Zeng X, Bo L, Jiang S, Du X, Xie Y, Jiang R, Zhao J, Song W. Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4008-4017. [PMID: 27921246 DOI: 10.1007/s11356-016-8173-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Selenium (Se) is vital for health because of its antioxidative and anti-inflammation functions. The aim of this study was to determine if dietary selenium could inhibit the rat lung injury induced by ambient fine particulate matter (PM2.5). Sprague-Dawley rats were randomly allocated in seven groups (n = 8). The rats in PM2.5 exposure group were intratracheally instilled with 40 mg/kg of body weight (b.w.) of PM2.5 suspension. The rats in Se prevention groups were pretreated with 17.5, 35, or 70 μg/kg b.w. of Se for 4 weeks, respectively. Then, the rats were exposed to 40 mg/kg b.w. of PM2.5 in the fifth week. The bronchoalveolar lavage fluid (BALF) was collected to count the neutrophil numbers and to analyze the cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), soluble intercellular adhesion molecule-1 (sICAM-1)) related to inflammation, the markers related to oxidative stress (total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA)), and the indicators related to cell damage (lactate dehydrogenase (LDH), total protein (TP), alkaline phosphatase (AKP)). The lung lobe that has not undergone bronchoalveolar lavage was processed for light microscopic examination. The results showed that the proportions of neutrophils in the BALF and the pathologic scores of the lung in PM2.5-exposed groups were higher than that in the control group (P < 0.05). Se pretreatment caused a dose-dependent decrease in TNF-α, IL-1β, sICAM-1, LDH, TP, AKP, and MDA when compared with the PM2.5-only exposure group. Meanwhile, the dose-dependent increase in T-AOC, T-SOD, and GSH-Px activities were observed in rats pretreated with Se. In conclusion, Se pretreatment may protect rat lungs against inflammation and oxidative stress induced by PM2.5, which suggests that Se plays an important role as a kind of potential preventative agent to inhibit the PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Jie Liu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Yingying Yang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Liang Bo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200032, China
| | - Rongfang Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China.
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China.
| |
Collapse
|
18
|
Wu Y, Gu C, Huang X. Sevoflurane protects against hepatic ischemia/reperfusion injury by modulating microRNA-200c regulation in mice. Biomed Pharmacother 2016; 84:1126-1136. [PMID: 27780142 DOI: 10.1016/j.biopha.2016.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 12/22/2022] Open
Abstract
This present study was aimed to investigate the molecular mechanisms involved in sevoflurane protection of hepatic ischemia-reperfusion (I/R) injury. Firstly, we investigated the protective effects of sevoflurane against hepatic I/R injury. Biochemical analysis results showed that sevoflurane preconditioning significantly protected against hepatic I/R injury by reducing liver enzymes and improving antioxidant defense markers. We also found that sevoflurane attenuates I/R-induced hepatic cell death, by TUNEL staining, DNA fragmentation ELISA and PARP activity determination. Next, In order to find the molecular mechanism of sevoflurane preconditioning in hepatic I/R injury, we poured our attention to microRNAs regulation. We focused on miR-200c, one of microRNAs which screened from the gene expression omnibus (GEO). Furthermore, a hydrogen peroxide (H2O2)-induced oxidative stress apoptosis model was also established to mimic hepatic I/R injury, the effects of MiR-200c was investigated. We observed that MiR-200c inhibition decreased the H2O2-induced apoptosis of hepatic AML-12 cells. And also, ZEB1 is found as a target gene of miR-200c and is involved in H2O2-induced apoptosis. On the other hand, the in vivo model was established to examine whether sevoflurane protect against hepatic IR injury by downregulating MiR-200c. Together with the biochemical tests and apoptosis detection, results showed that over-expression of miR-200c significantly inhibited the protect effect of sevoflurane in Hepatic IR injury. Summarizing, sevoflurane preconditioning seems to ameliorate hepatic I/R injury in mice, mediated by mechanisms that include microRNA 200c down regulation. However, further more studies need to be carried out to verify this point.
Collapse
Affiliation(s)
- Yamou Wu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Chengyong Gu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China.
| | - Xiaochen Huang
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| |
Collapse
|