1
|
Wiśnicki K, Donizy P, Kuriata-Kordek M, Uchmanowicz I, Zachciał J, Hałoń A, Janczak D, Banasik M. Interstitial Foci Expression of Indoleamine 2,3-Dioxygenase 1: A Potential Biomarker for Kidney Transplant Rejection. J Clin Med 2024; 13:4265. [PMID: 39064305 PMCID: PMC11277928 DOI: 10.3390/jcm13144265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Kidney transplantation is the best therapy for patients with end-stage renal disease, but the risk of rejection complicates it. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme involved in immune response modulation, has been suggested to play a role in transplant immunological injury. The aim of the study was to explore the expression of IDO1 in the interstitial foci of transplanted kidneys and its potential association with rejection episodes. (2) Methods: This retrospective study analysed kidney transplant biopsies from 121 patients, focusing on IDO1 expression in interstitial foci. Immunohistochemistry was used to detect IDO1, and patients were categorised based on IDO1 presence (IDO1-IF positive or negative). The incidence of rejection was compared between these groups. (3) Results: Patients with IDO1 expression in interstitial foci (IDO1-IF(+)) exhibited higher incidences of rejection 46/80 (57.5%) vs. 10/41 (24.34%) patients compared to IDO1-IF(-) patients, which was statistically significant with p = 0.0005. The analysis of antibody-mediated rejection showed that IDO1-IF(+) patients developed AMR at 12/80 (15%), while only 1 IDO1-IF(-) negative patient did (2,44%), with p = 0.035. T-cell-mediated rejection was also more common in IDO1-IF(+) patients 43/80 (53.75%) than in IDO1-IF(-) patients 7/41 (17.07%), with p = 0.0001. (4) Conclusions: IDO1 expression in interstitial foci of renal transplant biopsies is associated with a higher incidence of rejection, suggesting that IDO1 could serve as a potential biomarker for transplant rejection. These findings highlight the importance of IDO1 in immune regulation and its potential utility in improving the management of kidney transplant recipients.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Magdalena Kuriata-Kordek
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Izabella Uchmanowicz
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Justyna Zachciał
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
2
|
Ma Y, Shi R, Li F, Chang H. Emerging strategies for treating autoimmune disease with genetically modified dendritic cells. Cell Commun Signal 2024; 22:262. [PMID: 38715122 PMCID: PMC11075321 DOI: 10.1186/s12964-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.
Collapse
Affiliation(s)
- Yunhan Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Ruobing Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Wiśnicki K, Donizy P, Hałoń A, Wawrzonkowski P, Janczak D, Krajewska M, Banasik M. Indoleamine 2,3-Dioxygenase 1 (IDO1) in Kidney Transplantation: A Guardian against Rejection. J Clin Med 2023; 12:7531. [PMID: 38137602 PMCID: PMC10743959 DOI: 10.3390/jcm12247531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Kidney transplantation is a crucial treatment for end-stage kidney disease, with immunosuppressive drugs helping to reduce acute rejection rates. However, kidney graft longevity remains a concern. This study explores the role of indoleamine 2,3-dioxygenase 1 (IDO1) in kidney transplant immunology. IDO1 breaks down tryptophan, affecting immune cell behavior, primarily T-cells. The research focuses on both cellular and antibody-mediated immune responses, often causing graft damage. The study assessed IDO1 expression in renal transplant biopsies from patients with graft function decline, examining its connection to clinical parameters. A total of 121 biopsy samples were evaluated for IDO1 expression using immunohistochemistry. Patients were categorized as IDO1(+) positive or IDO1(-) negative based on immunoreactivity in tubular epithelium. Results showed a significant link between IDO1 expression and rejection incidence. IDO1(+) positive patients had lower rejection rates (32.9%) compared to IDO1(-) negative ones (62.2%) [p = 0.0017], with substantial differences in antibody-mediated rejection (AMR) (5.2% vs. 20%) [p = 0.0085] and T-cell mediated rejection (TCMR) (31.6% vs. 57.8%). These associations suggest that IDO1 may play a protective role in kidney transplant rejection. IDO1 modulation could offer novel therapeutic avenues to enhance graft survival. The study underscores IDO1 as a potential marker for rejection risk assessment, with its potential applications in personalized interventions and improved patient outcomes. Further research is needed to fully comprehend the mechanisms behind IDO1's immunomodulatory functions and its potential clinical translation.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Patryk Wawrzonkowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| |
Collapse
|
4
|
Cheng P, Jian Q, Fu Z, Deng R, Ma Y. Inhibition of DAI refrains dendritic cells from maturation and prolongs murine islet and skin allograft survival. Front Immunol 2023; 14:1182851. [PMID: 37197662 PMCID: PMC10183602 DOI: 10.3389/fimmu.2023.1182851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Central to allograft rejection is the T cell-mediated adaptive immune response initiated by activated dendritic cells (DCs). Previous studies have shown that the DNA-dependent activator of IFN regulatory factors (DAI) is involved in the maturation and activation of DCs. Therefore, we hypothesized that inhibition of DAI could prevent DCs from maturation and prolong murine allograft survival. Methods Donor mouse bone marrow-derived dendritic cells (BMDCs) were transduced with the recombinant adenovirus vector (AdV-DAI-RNAi-GFP) to inhibit DAI expression (DC-DAI-RNAi), and the immune cell phenotype and function of DC-DAI-RNAi upon lipopolysaccharide (LPS) stimulation were evaluated. Then DC-DAI-RNAi was injected into recipient mice before islet transplantation and skin transplantation. The survival times of islet and skin allograft were recorded and the proportions of T cell subsets in spleen and secretion levels of cytokines in serum were measured. Results We identified that DC-DAI-RNAi inhibited the expression of main co-stimulatory molecules and MHC-II, exhibited strong phagocytic ability, and secreted high levels of immunosuppressive cytokines and low levels of immunostimulating cytokines. Recipient mice treated with DC-DAI-RNAi had longer islet and skin allograft survival times. In the murine islet transplantation model, we observed an increase in Treg cells proportion, a reduction in Th1 and Th17 cells proportions in spleen, and similar trends in their secreted cytokines in serum in the DC-DAI-RNAi group. Conclusion Inhibition of DAI by adenovirus transduction inhibits the maturation and activation of DCs, affects the differentiation of T cell subsets as well as their secreted cytokines, and prolongs allograft survival.
Collapse
Affiliation(s)
- Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Jian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongli Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ronghai Deng, ; Yi Ma,
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ronghai Deng, ; Yi Ma,
| |
Collapse
|
5
|
Wiśnicki K, Donizy P, Remiorz A, Janczak D, Krajewska M, Banasik M. Significance of Indoleamine 2,3-Dioxygenase Expression in the Immunological Response of Kidney Graft Recipients. Diagnostics (Basel) 2022; 12:2353. [PMID: 36292041 PMCID: PMC9600090 DOI: 10.3390/diagnostics12102353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney transplantation is unquestionably the most advantageous and preferred treatment when patients with end-stage renal disease are considered. It does have a substantially positive influence on both the quality and expectancy of their lives. Thus, it is quintessential to extend the survival rate of kidney grafts. On account of T-cell-focused treatment, this is being exponentially achieved. The kynurenine pathway, as an immunosuppressive apparatus, and indoleamine 2,3-dioxygenase (IDO1), as its main regulator, are yet to be exhaustively explored. This review presents the recognised role of IDO1 and its influence on the kynurenine pathway, with emphasis on immunosuppression in kidney transplant protection.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agata Remiorz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Wolfe AE, Markey KA. The contribution of the intestinal microbiome to immune recovery after HCT. Front Immunol 2022; 13:988121. [PMID: 36059482 PMCID: PMC9434312 DOI: 10.3389/fimmu.2022.988121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Allogenic hematopoietic stem-cell transplantation (allo-HCT) is a curative-intent immunotherapy for high-risk hematological malignancies and immune deficiencies. Allo-HCT carries a high risk of treatment-related mortality (TRM), largely due to infection or graft-versus-host disease (GVHD). Robust immune recovery is essential for optimal patient outcomes, given the immunologic graft-versus-leukemia effect prevents relapse, and functional innate and adaptive immunity are both needed for the prevention and control of infection. Most simply, we measure immune recovery by enumerating donor lymphocyte subsets in circulation. In functional terms, ideal immune recovery is more difficult to define, and current lab techniques are limited to the measurement of specific vaccine-responses or mitogens ex vivo. Clinically, poor immune function manifests as problematic infection with viral, bacterial and fungal organisms. Furthermore, the ideal recovering immune system is capable of exerting graft-versus-tumor effects to prevent relapse, and does not induce graft-versus-host disease. Large clinical observational studies have linked loss of diversity within the gut microbiome with adverse transplant outcomes including decreased overall survival and increased acute and chronic GVHD. Furthermore, the correlation between intestinal microbial communities and numeric lymphocyte recovery has now been reported using a number of approaches. Large sets of clinically available white blood cell count data, clinical flow cytometry of lymphocyte subsets and bespoke flow cytometry analyses designed to capture microbiota-specific T cells (e.g. Mucosal-associated invariant T cells, subsets of the gd T cells) have all been leveraged in an attempt to understand links between the microbiota and the recovering immune system in HCT patients. Additionally, preclinical studies suggest an immunomodulatory role for bacterial metabolites (including butyrate, secondary bile acids, and indole derivatives from tryptophan metabolism) in transplant outcomes, though further studies are needed to unravel mechanisms relevant to the post-HCT setting. An understanding of mechanistic relationships between the intestinal microbiome and post-transplant outcomes is necessary for reduction of risk associated with transplant, to inform prophylactic procedures, and ensure optimal immune reconstitution without alloreactivity. Here, we summarize the current understanding of the complex relationship between bacterial communities, their individual members, and the metabolites they produce with immune function in both the allo-HCT and steady-state setting.
Collapse
Affiliation(s)
- Alex E. Wolfe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kate A. Markey
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Wang Z, Xu H, Cheng F, Zhang J, Feng Y, Liu D, Shang W, Feng G. Donor BMSC-derived small extracellular vesicles relieve acute rejection post-renal allograft through transmitting Loc108349490 to dendritic cells. Aging Cell 2021; 20:e13461. [PMID: 34499402 PMCID: PMC8520728 DOI: 10.1111/acel.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BMSC)-derived small extracellular vesicles (sEVs) are potent candidates for the suppression of acute rejection post-renal allograft and have been reported to halt dendritic cells (DCs) maturation. However, whether BMSC-derived sEVs mitigate acute rejection post-renal allograft by targeting DCs is still unclear. In this study, donor BMSC-derived sEVs (sEVs) relieved the inflammatory response and suppressed mature DCs (mDCs) location in kidney grafts, and increased regulatory T (Treg) cell population in the spleens of the rats that underwent kidney allograft. In lipopolysaccharide (LPS)-stimulated immature DCs (imDCs), sEVs suppressed the maturation and migration of DCs and inactivated toll-like receptor 4 (TLR4) signaling. Compared with LPS-treated imDCs, imDCs treated with LPS+sEVs promoted CD4+ T cells differentiated toward Treg cells. Subsequently, we found that Loc108349490, a long non-coding RNA (lncRNA) abundant in sEVs, mediated the inhibitory effect of sEVs on DC maturation and migration by promoting TLR4 ubiquitination. In rats that underwent an allograft, Loc108349490 deficiency weakened the therapeutic effect of sEVs on acute rejection. The present study firstly found that sEVs alleviated acute rejection post-renal allograft by transferring lncRNA to DCs and screened out the functional lncRNA loaded in sEVs was Loc108349490.
Collapse
Affiliation(s)
- Zhi‐gang Wang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong‐en Xu
- Precision Medicine Center of Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Fu‐min Cheng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jie Zhang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yong‐hua Feng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dan‐hua Liu
- Precision Medicine Center of Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Wen‐jun Shang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐wen Feng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Lassiter R, Merchen TD, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol 2021; 12:671025. [PMID: 34305900 PMCID: PMC8293746 DOI: 10.3389/fimmu.2021.671025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Renal tubular epithelial cells (TECs) are the primary targets of ischemia-reperfusion injury (IRI) and rejection by the recipient's immune response in kidney transplantation (KTx). However, the molecular mechanism of rejection and IRI remains to be identified. Our previous study demonstrated that kynurenine 3-monooxygenase (KMO) and kynureninase were reduced in ischemia-reperfusion procedure and further decreased in rejection allografts among mismatched pig KTx. Herein, we reveal that TEC injury in acutely rejection allografts is associated with alterations of Bcl2 family proteins, reduction of tight junction protein 1 (TJP1), and TEC-specific KMO. Three cytokines, IFN γ , TNFα, and IL1β, reported in our previous investigation were identified as triggers of TEC injury by altering the expression of Bcl2, BID, and TJP1. Allograft rejection and TEC injury were always associated with a dramatic reduction of KMO. 3HK and 3HAA, as direct and downstream products of KMO, effectively protected TEC from injury via increasing expression of Bcl-xL and TJP1. Both 3HK and 3HAA further prevented allograft rejection by inhibiting T cell proliferation and up-regulating aryl hydrocarbon receptor expression. Pig KTx with the administration of DNA nanoparticles (DNP) that induce expression of indoleamine 2,3-dioxygenase (IDO) and KMO to increase 3HK/3HAA showed an improvement of allograft rejection as well as murine skin transplant in IDO knockout mice with the injection of 3HK indicated a dramatic reduction of allograft rejection. Taken together, our data provide strong evidence that reduction of KMO in the graft is a key mediator of allograft rejection and loss. KMO can effectively improve allograft outcome by attenuating allograft rejection and maintaining graft barrier function.
Collapse
Affiliation(s)
- Randi Lassiter
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Todd D. Merchen
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xuexiu Fang
- Division of Nephrology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Youli Wang
- Division of Nephrology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
9
|
Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H, Chen J. Dendritic Cells: Versatile Players in Renal Transplantation. Front Immunol 2021; 12:654540. [PMID: 34093544 PMCID: PMC8170486 DOI: 10.3389/fimmu.2021.654540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes—rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia–reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia–reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Hongyi Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenxi Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ao Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingwei Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
10
|
Zulpaite R, Miknevicius P, Leber B, Strupas K, Stiegler P, Schemmer P. Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int J Mol Sci 2021; 22:1921. [PMID: 33671985 PMCID: PMC7919278 DOI: 10.3390/ijms22041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.
Collapse
Affiliation(s)
- Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
| |
Collapse
|
11
|
Mo C, Xie S, Liu B, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Indoleamine 2,3-dioxygenase 1 limits hepatic inflammatory cells recruitment and promotes bile duct ligation-induced liver fibrosis. Cell Death Dis 2021; 12:16. [PMID: 33414436 PMCID: PMC7791029 DOI: 10.1038/s41419-020-03277-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a course of chronic liver dysfunction, can develop into cirrhosis and hepatocellular carcinoma. Inflammatory insult owing to pathogenic factors plays a crucial role in the pathogenesis of liver fibrosis. Indoleamine 2,3-dioxygenase 1 (IDO1) can affect the infiltration of immune cells in many pathology processes of diseases, but its role in liver fibrosis has not been elucidated completely. Here, the markedly elevated protein IDO1 in livers was identified, and dendritic cells (DCs) immune-phenotypes were significantly altered after BDL challenge. A distinct hepatic population of CD11c+DCs was decreased and presented an immature immune-phenotype, reflected by lower expression levels of co-stimulatory molecules (CD40, MHCII). Frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+MHCII+, and CD11c+CD40+ cells in splenic leukocytes were reduced significantly. Notably, IDO1 overexpression inhibited hepatic, splenic CD11c+DCs maturation, mature DCs-mediated T-cell proliferation and worsened liver fibrosis, whereas above pathological phenomena were reversed in IDO1-/- mice. Our data demonstrate that IDO1 affects the process of immune cells recruitment via inhibiting DCs maturation and subsequent T cells proliferation, resulting in the promotion of hepatic fibrosis. Thus, amelioration of immune responses in hepatic and splenic microenvironment by targeting IDO1 might be essential for the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Bin Liu
- Department of Emergency, Guangzhou Red Cross Hospital, Medical College, Jinan University, 510220, Guangzhou, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, 518033, Shenzhen, Guangdong, People's Republic of China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
13
|
Na N, Zhao D, Zhang J, Wu J, Miao B, Li H, Luo Y, Tang Z, Zhang W, Bellanti JA, Zheng SG. Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/AKT signaling. Signal Transduct Target Ther 2020; 5:194. [PMID: 32934199 PMCID: PMC7493938 DOI: 10.1038/s41392-020-00232-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023] Open
Abstract
Modulation of alloimmune responses is critical to improving transplant outcome and promoting long-term graft survival. To determine mechanisms by which a nonhematopoietic erythropoietin (EPO) derivative, carbamylated EPO (CEPO), regulates innate and adaptive immune cells and affects renal allograft survival, we utilized a rat model of fully MHC-mismatched kidney transplantation. CEPO administration markedly extended the survival time of kidney allografts compared with the transplant alone control group. This therapeutic effect was inhibited when the recipients were given LY294002, a selective inhibitor of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway or anti-EPO receptor (EPOR) antibody, in addition to CEPO. In vitro, CEPO inhibited the differentiation and function of dendritic cells and modulated their production of pro-inflammatory and anti-inflammatory cytokines, along with activating the PI3K/AKT signaling pathway and increasing EPOR mRNA and protein expression by these innate immune cells. Moreover, after CD4+ T cells were exposed to CEPO the Th1/Th2 ratio decreased and the regulatory T cell (Treg)/Th17 ratio increased. These effects were abolished by LY294002 or anti-EPOR antibody, suggesting that CEPO regulates immune responses and promotes kidney allograft survival by activating the PI3K/AKT signaling pathway in an EPOR-dependent manner. The immunomodulatory and specific signaling pathway effects of CEPO identified in this study suggest a potential therapeutic approach to promoting kidney transplant survival.
Collapse
Affiliation(s)
- Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Daqiang Zhao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Jinhua Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Jiaqing Wu
- Department of Kidney Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Bin Miao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Heng Li
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yingxun Luo
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Zuofu Tang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Wensheng Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA. .,Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA. .,United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, 78234, TX, USA.
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA.
| |
Collapse
|
14
|
He JG, Li BB, Zhou L, Yan D, Xie QL, Zhao W. Indoleamine 2,3-dioxgenase-transfected mesenchymal stem cells suppress heart allograft rejection by increasing the production and activity of dendritic cells and regulatory T cells. J Investig Med 2020; 68:728-737. [PMID: 31892638 DOI: 10.1136/jim-2019-001160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2019] [Indexed: 01/14/2023]
Abstract
Expression of indoleamine 2,3-dioxygenase (IDO) in mesenchymal stem cells (MSC) is thought to contribute to MSC-mediated immunosuppression. A lentiviral-based transgenic system was used to generate bone marrow stem cells (BMSC) which stably expressed IDO (IDO-BMSCs). Coculture of IDO-BMSCs with dendritic cells (DC) or T cells was used to evaluate the immunomodulatory effect of IDO-BMSCs. A heterotopic heart transplant model in rats was used to evaluate allograft rejection after IDO-BMSC treatment. Mechanisms of IDO-BMSC-mediated immunosuppression were investigated by evaluating levels of proinflammatory and anti-inflammatory cytokines, and production of Tregs. A significant decrease in DC marker-positive cells and a significant increase in Tregs were observed in IDO-BMSC cocultured. Treatment of transplanted rats with IDO-BMSCs was associated with significantly prolonged graft survival. Compared with the control groups, transplanted animals treated with IDO-BMSCs had a (1) significantly higher ejection fraction and fractional shortening, (2) significantly lower expression of CD86, CD80, and MHCII, and significantly higher expression in CD274, and Tregs, and (3) significantly higher levels of interleukin-10 (IL-10), transforming growth factor beta-1 (TGF-β1), TGF-β2, and TGF-β3, and significantly lower levels of IL-2 and interferon gamma. Our results expand our understanding of the molecular mechanisms underlying suppression of heart allograft rejection via IDO-expressing BMSCs.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Bei-Bei Li
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Dan Yan
- Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming, China
| | - Qiao-Li Xie
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Zhao
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
15
|
Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation. Aging (Albany NY) 2019; 11:8911-8924. [PMID: 31655796 PMCID: PMC6834404 DOI: 10.18632/aging.102346] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
Objective: To investigate the mechanism of immature dendritic cells-derived exosomes (imDECs) in the regulation of T cell differentiation and immune tolerance in renal allograft model mice. Results: imDECs significantly improved the percent of survival, relieved inflammatory response, and reduced CD4+T cell infiltration. In addition, imDECs reduced the rejection associated cytokines in allograft mice, and increased the percentage of Foxp3+CD4+T cells in spleen and kidney tissues. imDECs suppressed the IL17+CD4+T cells and promoted the Foxp3+CD4+T cells under Th17 polarization condition. Moreover, miR-682 was found to be highly expressed in imDECs which suppressed the IL17+CD4+T cells and promoted the Foxp3+CD4+T cells. Luciferase reporter assay showed ROCK2 was a target of miR-682, and ROCK mRNA level was negative correlated with miR-682 mRNA level. Conclusion: miR-682 was highly expressed in imDECs, and imDECs-secreted miR-682 promoted Treg cell differentiation by negatively regulating ROCK2 to promote immune tolerance in renal allograft model mice. Methods: Renal allograft model mice were established, and imDECs or mature dendritic cells-derived exosomes (mDECs) were injected into model mice. Rejection associated cytokines IFN-γ, IL-2, IL-17 levels in plasma were detected by ELISA. IL-17A, Foxp3, miR-682, ROCK2, p-STAT3, p-STAT5 expressions were measured by qRT-PCR or western blot.
Collapse
|
16
|
Sounidaki M, Pissas G, Eleftheriadis T, Antoniadi G, Golfinopoulos S, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase suppresses humoral alloimmunity via pathways that different to those associated with its effects on T cells. Biomed Rep 2019; 1:1-5. [PMID: 31258898 DOI: 10.3892/br.2019.1212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic antibody-mediated rejection remains a major cause of late graft loss. Regarding cellular alloimmunity, the immunosuppressive properties of indoleamine 2,3-dioxygenase (IDO) have been well investigated; however, little is known of its effects on humoral alloimmunity. Therefore, the present study aimed to evaluate the effects of IDO on humoral alloimmunity. We developed a method for the induction of humoral alloimmunity in a one-way mixed lymphocyte reaction (MLR), which was measured with an antibody-mediated complement-dependent cytotoxicity assay using resting cells, which are similar to the stimulator cells of the aforementioned MLR. In parallel, cellular alloimmunity was assessed in two-way MLRs. The IDO inhibitor 1-methyl-DL-tryptophan was used for evaluating the role of IDO. In order to investigate whether the pathways known to serve a role in the effects of IDO on T cells are applied in humoral alloimmunity, the general control nonderepressible-2 (GCN-2) kinase activator tryptophanol and the aryl hydrocarbon receptor (AhR) inhibitor CH223191 were employed. The IDO inhibitor was revealed to increased cellular autoimmunity, but was decreased by the GCN-2 kinase activator. Unexpectedly, the AhR inhibitor decreased cellular alloimmunity. In addition, the IDO inhibitor was observed to suppress humoral alloimmunity, which may occur in manners independent of GCN-2 kinase AhR. The present study proposed that IDO may decrease humoral alloimmunity in primary human peripheral blood mononuclear cells via pathways that differ to those associated with its effect on T cells.
Collapse
Affiliation(s)
- Maria Sounidaki
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| |
Collapse
|