1
|
Guelen L, Fischmann TO, Wong J, Mauze S, Guadagnoli M, Bąbała N, Wagenaars J, Juan V, Rosen D, Prosise W, Habraken M, Lodewijks I, Gu D, Stammen-Vogelzangs J, Yu Y, Baker J, Lutje Hulsik D, Driessen-Engels L, Malashock D, Kreijtz J, Bertens A, de Vries E, Bovens A, Bramer A, Zhang Y, Wnek R, Troth S, Chartash E, Dobrenkov K, Sadekova S, van Elsas A, Cheung JK, Fayadat-Dilman L, Borst J, Beebe AM, Van Eenennaam H. Preclinical characterization and clinical translation of pharmacodynamic markers for MK-5890: a human CD27 activating antibody for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005049. [PMID: 36100308 PMCID: PMC9472132 DOI: 10.1136/jitc-2022-005049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily that plays a critical role in promoting responses of T cells, B cells and NK cells. Methods Anti-CD27 antibodies were generated and selected for agonist activity using NF-кB luciferase reporter assays. Antibodies were humanized and characterized for agonism using in vitro T-cell proliferation assays. The epitope recognized on CD27 by MK-5890 was established by X-ray crystallography. Anti-tumor activity was evaluated in a human CD27 knock-in mouse. Preclinical safety was tested in rhesus monkeys. Pharmacodynamic properties were examined in mouse, rhesus monkeys and a phase 1 dose escalation clinical study in patients with cancer. Results Humanized anti-CD27 antibody MK-5890 (hIgG1) was shown to bind human CD27 on the cell surface with sub-nanomolar potency and to partially block binding to its ligand, CD70. Crystallization studies revealed that MK-5890 binds to a unique epitope in the cysteine-rich domain 1 (CRD1). MK-5890 activated CD27 expressed on 293T NF-κB luciferase reporter cells and, conditional on CD3 stimulation, in purified CD8+ T cells without the requirement of crosslinking. Functional Fc-receptor interaction was required to activate CD8+ T cells in an ex vivo tumor explant system and to induce antitumor efficacy in syngeneic murine subcutaneous tumor models. MK-5890 had monotherapy efficacy in these models and enhanced efficacy of PD-1 blockade. MK-5890 reduced in an isotype-dependent and dose-dependent manner circulating, but not tumor-infiltrating T-cell numbers in these mouse models. In rhesus monkey and human patients, reduction in circulating T cells was transient and less pronounced than in mouse. MK-5890 induced transient elevation of chemokines MCP-1, MIP-1α, and MIP-1β in the serum of mice, rhesus monkeys and patients with cancer. MK-5890 was well tolerated in rhesus monkeys and systemic exposure to MK-5890 was associated with CD27 occupancy at all doses. Conclusions MK-5890 is a novel CD27 agonistic antibody with the potential to complement the activity of PD-1 checkpoint inhibition in cancer immunotherapy and is currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Lars Guelen
- BioNovion/Aduro Biotech Europe, Oss, The Netherlands
| | - Thierry O Fischmann
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Jerelyn Wong
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Smita Mauze
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | - Nikolina Bąbała
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Veronica Juan
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - David Rosen
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Winnie Prosise
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, Kenilworth, New Jersey, USA
| | | | | | - Danling Gu
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | - Ying Yu
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Jeanne Baker
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | | | - Dan Malashock
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Joost Kreijtz
- BioNovion/Aduro Biotech Europe, Oss, The Netherlands
| | | | - Evert de Vries
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Bovens
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arne Bramer
- BioNovion/Aduro Biotech Europe, Oss, The Netherlands
| | - Yiwei Zhang
- Clinical Development, Merck & Co Inc, Rahway, New Jersey, USA
| | - Richard Wnek
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Sean Troth
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, West Point, Pennsylvania, USA
| | - Elliot Chartash
- Clinical Development, Merck & Co Inc, Rahway, New Jersey, USA
| | | | - Svetlana Sadekova
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | | - Jason K Cheung
- Process Research and Development, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Laurence Fayadat-Dilman
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | - Jannie Borst
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Amy M Beebe
- Discovery, Preclinical and Translational Medicine, Merck & Co Inc, South San Francisco, California, USA
| | | |
Collapse
|
2
|
Liu W, Maben Z, Wang C, Lindquist KC, Li M, Rayannavar V, Lopez Armenta I, Nager A, Pascua E, Dominik PK, Oyen D, Wang H, Roach RC, Allan CM, Mosyak L, Chaparro-Riggers J. Structural delineation and phase-dependent activation of the costimulatory CD27:CD70 complex. J Biol Chem 2021; 297:101102. [PMID: 34419446 PMCID: PMC8484739 DOI: 10.1016/j.jbc.2021.101102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
CD27 is a tumor necrosis factor (TNF) receptor, which stimulates lymphocytes and promotes their differentiation upon activation by TNF ligand CD70. Activation of the CD27 receptor provides a costimulatory signal to promote T cell, B cell, and NK cell activity to facilitate antitumor and anti-infection immunity. Aberrant increased and focused expression of CD70 on many tumor cells renders CD70 an attractive therapeutic target for direct tumor killing. However, despite their use as drug targets to treat cancers, the molecular basis and atomic details of CD27 and CD70 interaction remain elusive. Here we report the crystal structure of human CD27 in complex with human CD70. Analysis of our structure shows that CD70 adopts a classical TNF ligand homotrimeric assembly to engage CD27 receptors in a 3:3 stoichiometry. By combining structural and rational mutagenesis data with reported disease-correlated mutations, we identified the key amino acid residues of CD27 and CD70 that control this interaction. We also report increased potency for plate-bound CD70 constructs compared with solution-phase ligand in a functional activity to stimulate T-cells in vitro. These findings offer new mechanistic insight into this critical costimulatory interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hui Wang
- Pfizer, Inc, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
4
|
Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 2018; 131:39-48. [PMID: 29118006 DOI: 10.1182/blood-2017-07-741025] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, monoclonal antibodies (mAbs) able to reinvigorate antitumor T-cell immunity have heralded a paradigm shift in cancer treatment. The most high profile of these mAbs block the inhibitory checkpoint receptors PD-1 and CTLA-4 and have improved life expectancy for patients across a range of tumor types. However, it is becoming increasingly clear that failure of some patients to respond to checkpoint inhibition is attributable to inadequate T-cell priming. For full T-cell activation, 2 signals must be received, and ligands providing the second of these signals, termed costimulation, are often lacking in tumors. Members of the TNF receptor superfamily (TNFRSF) are key costimulators of T cells during infection, and there has been an increasing interest in harnessing these receptors to augment tumor immunity. We here review the immunobiology of 2 particularly promising TNFRSF target receptors, CD27 and OX40, and their respective ligands, CD70 and OX40L, focusing on their role within a tumor setting. We describe the influence of CD27 and OX40 on human T cells based on in vitro studies and on the phenotypes of several recently described individuals exhibiting natural deficiencies in CD27/CD70 and OX40. Finally, we review key literature describing progress in elucidating the efficacy and mode of action of OX40- and CD27-targeting mAbs in preclinical models and provide an overview of current clinical trials targeting these promising receptor/ligand pairings in cancer.
Collapse
Affiliation(s)
- Sarah L Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Aymen Al-Shamkhani
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Teplyakov A, Obmolova G, Malia TJ, Gilliland GL. Crystal structure of CD27 in complex with a neutralizing noncompeting antibody. Acta Crystallogr F Struct Biol Commun 2017; 73:294-299. [PMID: 28471362 PMCID: PMC5417320 DOI: 10.1107/s2053230x17005957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 11/21/2022] Open
Abstract
CD27 is a T-cell and B-cell co-stimulatory glycoprotein of the tumor necrosis factor (TNF) receptor superfamily that is dependent on the availability of the TNF-like ligand CD70. Therapeutic approaches to treating autoimmune diseases and cancers with antagonistic and agonistic anti-CD27 monoclonal antibodies (mAbs), respectively, have recently been developed. Mouse anti-human CD27 mAb 2177 shows potency in neutralizing CD70-induced signaling; however, it does not block the binding of soluble CD70. To provide insight into the mechanism of action of the mAb, the crystal structure of the CD27 extracellular domain in complex with the Fab fragment of mAb 2177 was determined at 1.8 Å resolution. CD27 exhibits the assembly of cysteine-rich domains characteristic of the TNF receptor superfamily. The structure reveals a unique binding site of mAb 2177 at the edge of the receptor molecule, which allows the mAb to sterically block the cell-bound form of CD70 from reaching CD27 while leaving the ligand epitope clear. This mode of action suggests a potential dual use of mAb 2177 either as an antagonist or as an agonist.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antigen-Antibody Complex/chemistry
- Antigen-Antibody Complex/genetics
- Baculoviridae/genetics
- Baculoviridae/metabolism
- Binding Sites
- CD27 Ligand/chemistry
- CD27 Ligand/genetics
- CD27 Ligand/immunology
- Cloning, Molecular
- Crystallography, X-Ray
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- HEK293 Cells
- Humans
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Ligands
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Sequence Alignment
- Sf9 Cells
- Spodoptera
- Tumor Necrosis Factor Receptor Superfamily, Member 7/chemistry
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
Collapse
Affiliation(s)
- Alexey Teplyakov
- Janssen Research and Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Galina Obmolova
- Janssen Research and Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Thomas J. Malia
- Janssen Research and Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Gary L. Gilliland
- Janssen Research and Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|