1
|
Rohn H, Rebmann V. Is HLA-E with its receptors an immune checkpoint or an antigenic determinant in allo-HCT? Best Pract Res Clin Haematol 2024; 37:101560. [PMID: 39098806 DOI: 10.1016/j.beha.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Establishment of Rapid Detection Methods for rs76971248 Related to Leukemia. DISEASE MARKERS 2022; 2022:9847708. [PMID: 35392495 PMCID: PMC8983173 DOI: 10.1155/2022/9847708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Background The HLA-E gene is a member of the HLA-I gene family. Its genetic polymorphism is regarded as associated with numerous diseases. Establishing a rapid and accurate detection method of disease-related SNP sites in HLA-E is particularly important. Methods Blood samples from 226 healthy blood donors and 228 leukemia patients were collected, and DNA was extracted. Three typing methods based on PCR-sequence-based typing, TaqMan genotyping, and high-resolution melting curve were established to identify rs76971248 (G>T). The Chi-square test was used for statistical analysis by SPSS. Results Three methods based on PCR-SBT, TaqMan genotyping, and HRM were all able to identify rs76971248. The software for analyzing the results of HLA-E sequencing was easy to use, and the results were accurate. The frequency of rs76971248 in different types of leukemia patients was significantly lower than that in healthy blood donors (p < 0.05). And the frequency of the G/G genotype in leukemia patients was significantly higher than that in healthy blood donors (p < 0.05). Conclusions For the screening of known SNP sites in large-scale populations, among the three methods, the TaqMan genotyping method had the advantage of shortest time consumption, simplest operation, and greatest specificity, which was the most appropriate method for this experiment. The analysis software for HLA-E gene sequencing needed to be further optimized. rs76971248 had a protective effect against leukemia. And the G/G genotype was a risk factor for leukemia.
Collapse
|
3
|
Xu YP, Sun LY, Wang SX, Hong WX. Correlation of Human Leukocyte Antigen-E Genomic Polymorphism with Leukemia and Functional Study of Human Leukocyte Antigen-E Different Type Promoters. DNA Cell Biol 2022; 41:235-244. [PMID: 34986028 DOI: 10.1089/dna.2021.0483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen (HLA)-E is one of the least polymorphic nonclassical major histocompatibility complex (MHC) I genes; its nucleotide variability can affect immune response. In this study, we assess the correlation between HLA-E polymorphism and leukemia and further study the transcriptional activity of promoter variation at nucleotide position-26. A total of 142 healthy blood donors and 111 leukemia patients were collected. The genomic sequence of HLA-E was amplified by high-fidelity reaction system and identified by Sanger and cloning sequencing. The dual luciferase reporter gene assay was used to detect the transcription activity of promoter variation at nucleotide position-26. In the HLA-E genomic sequence results, a total of 16 alleles and 32 genotypes were detected; the HLA-E*01:01:01:06 allele had a significantly lower frequency in leukemia patients than in healthy participants (p = 0.026 < 0.05). And the HLA-E*01:03:02:01, *01:03:02:01 genotype showed the greatest difference in frequency between the two groups of participants (p = 0.028 < 0.05). Eight HLA-E alleles were first reported worldwide in Chinese individuals. The results of the dual luciferase reporter gene experiment showed that the transcription activity of the mutant-type promoter (HLA-E*01:01:01:06 with "T" allele at nucleotide position-26) was significantly lower compared with the wild-type promoter (HLA-E*01:01:01:01 with "G" allele at nucleotide position-26) (p = 0.0242 < 0.05). HLA-E*01:01:01:06 allele has a protective effect against leukemia through decreasing transcription activity by "T" variation at nucleotide position-26.
Collapse
Affiliation(s)
- Yun-Ping Xu
- Shenzhen Institution of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Li-Yan Sun
- Shenzhen Institution of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Song-Xing Wang
- Shenzhen Institution of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Wen-Xu Hong
- Shenzhen Institution of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Duygu B, Olieslagers TI, Groeneweg M, Voorter CEM, Wieten L. HLA Class I Molecules as Immune Checkpoints for NK Cell Alloreactivity and Anti-Viral Immunity in Kidney Transplantation. Front Immunol 2021; 12:680480. [PMID: 34295330 PMCID: PMC8290519 DOI: 10.3389/fimmu.2021.680480] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can kill diseased- or virally-infected cells, mediate antibody dependent cytotoxicity and produce type I immune-associated cytokines upon activation. NK cells also contribute to the allo-immune response upon kidney transplantation either by promoting allograft rejection through lysis of cells of the transplanted organ or by promoting alloreactive T cells. In addition, they protect against viral infections upon transplantation which may be especially relevant in patients receiving high dose immune suppression. NK cell activation is tightly regulated through the integrated balance of signaling via inhibitory- and activating receptors. HLA class I molecules are critical regulators of NK cell activation through the interaction with inhibitory- as well as activating NK cell receptors, hence, HLA molecules act as critical immune checkpoints for NK cells. In the current review, we evaluate how NK cell alloreactivity and anti-viral immunity are regulated by NK cell receptors belonging to the KIR family and interacting with classical HLA class I molecules, or by NKG2A/C and LILRB1/KIR2DL4 engaging non-classical HLA-E or -G. In addition, we provide an overview of the methods to determine genetic variation in these receptors and their HLA ligands.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Christina E M Voorter
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Sonon P, Collares CVA, Ferreira MLB, Almeida RS, Sadissou I, Cordeiro MT, de Fátima Militão de Albuquerque M, Castelli EC, Lucena-Silva N, Donadi EA. Peripheral spectrum neurological disorder after arbovirus infection is associated with HLA-F variants among Northeastern Brazilians. INFECTION GENETICS AND EVOLUTION 2021; 92:104855. [PMID: 33839310 DOI: 10.1016/j.meegid.2021.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Non-classical class I human leukocyte antigens (HLA) molecules are known to modulate the function of cytotoxic cells (NK and T CD8+) during viral infection by interacting with inhibitory/activating receptors. However, little is known about the HLA-E/-F genetic variability on arbovirus infections. METHODS We evaluated by massive parallel sequencing the full HLA-E/-F genetic diversity among patients infected during the arbovirus (ZIKV, DENV, and CHIKV) outbreak leading to a broad range of neurological complications in the Brazilian State of Pernambuco. In parallel, healthy blood donors from the same area were also studied. Plink and R software were used for genetic association study. To limit the false-positive results and enhance the reliability of the results, we adopted P-values <0.01 as significant levels. RESULTS Compared to controls, the HLA-F alleles: -1610 C (rs17875375), +1383 G (rs17178385), and +3537 A (rs17875384), all in complete linkage disequilibrium with each other (r2 = 1), were overrepresented in patients presenting peripheral spectrum disorders (PSD). The HLA-F*Distal-D haplotype that harbored the -1610 C allele exhibited a trend increase in PSD group. No associations were found for HLA-E. CONCLUSIONS Our findings showed that the HLA-F genetic background seems to be more important than HLA-E on the susceptibility to PSD complications.
Collapse
Affiliation(s)
- Paulin Sonon
- Immunogenetic Laboratory, Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil; Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil
| | - Cristhianna V A Collares
- Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil
| | - Maria Lúcia Brito Ferreira
- Hospital da Restauração Gov. Paulo Guerra, Av. Gov. Agamenon Magalhães, s/n, Derby, 52171011 Recife, PE, Brazil
| | - Renata Santos Almeida
- Immunogenetic Laboratory, Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Ibrahim Sadissou
- Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil
| | - Marli Tenório Cordeiro
- Virology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Maria de Fátima Militão de Albuquerque
- Public Health Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Erick C Castelli
- São Paulo State University (UNESP), School of Medicine, Molecular Genetics and Bioinformatics Laboratory, Prof. Dr. Walter Maurício Correa, s/n Unesp, Campus de Botucatu, Botucatu CEP 18618681, SP, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, SP, Brazil
| | - Norma Lucena-Silva
- Immunogenetic Laboratory, Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Eduardo A Donadi
- Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Sonon P, Tokplonou L, Sadissou I, M'po KKG, Glitho SSC, Agniwo P, Ibikounlé M, Souza AS, Massaro JD, Gonzalez D, Tchégninougbo T, Ayitchédji A, Massougbodji A, Moreau P, Garcia A, Milet J, Sabbagh A, Mendes-Junior CT, Moutairou KA, Castelli EC, Courtin D, Donadi EA. Human leukocyte antigen (HLA)-F and -G gene polymorphisms and haplotypes are associated with malaria susceptibility in the Beninese Toffin children. INFECTION GENETICS AND EVOLUTION 2021; 92:104828. [PMID: 33781967 DOI: 10.1016/j.meegid.2021.104828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Little attention has been devoted to the role of the immunoregulatory HLA-E/-F/-G genes in malaria. We evaluated the entire HLA-E/-F/-G variability in Beninese children highly exposed to Plasmodium falciparum (P.f.) malaria. METHODS 154 unrelated children were followed-up for six months and evaluated for the presence and number of malaria episodes. HLA-E/-F/-G genes were genotyped using massively parallel sequencing. Anti P.f. antibodies were evaluated using ELISA. RESULTS Children carrying the G allele at HLA-F (-1499,rs183540921) showed increased P.f. asymptomatic/symptomatic ratio, suggesting that these children experienced more asymptomatic P.f. episodes than symptomatic one. Children carrying HLA-G-UTR-03 haplotype exhibited increased risk for symptomatic P.f. episodes and showed lower IgG2 response against P.f. GLURP-R2 when compared to the non-carriers. No associations were observed for the HLA-E gene. CONCLUSION HLA-F associations may be related to the differential expression profiles of the encoded immunomodulatory molecules, and the regulatory sites at the HLA-G 3'UTR may be associated to posttranscriptional regulation of HLA-G and to host humoral response against P.f.
Collapse
Affiliation(s)
- Paulin Sonon
- Post-graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Immunogenetic Laboratory, Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Léonidas Tokplonou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin; Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Ibrahim Sadissou
- Post-graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Intertryp, IRD, Cirad, University of Montpellier, Avenue Agropolis, 34398 Montpellier Cedex 5, France
| | - Kuumaaté K G M'po
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Sonya S C Glitho
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Privat Agniwo
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Moudachirou Ibikounlé
- Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Andréia S Souza
- São Paulo State University (UNESP), School of Medicine, Molecular Genetics and Bioinformatics Laboratory, Av. Prof. Dr. Walter Maurício Correa, s/n, 1861868, Botucatu, SP, Brazil
| | - Juliana Doblas Massaro
- Post-graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Daniel Gonzalez
- Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France
| | | | | | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin
| | - Philippe Moreau
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - André Garcia
- Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France
| | | | - Audrey Sabbagh
- Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, AV Bandeirantes, 3900, 14040901 Ribeirão Preto, SP, Brazil
| | - Kabirou A Moutairou
- Laboratoire de Biologie et Physiologie Cellulaire, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Erick C Castelli
- São Paulo State University (UNESP), School of Medicine, Molecular Genetics and Bioinformatics Laboratory, Av. Prof. Dr. Walter Maurício Correa, s/n, 1861868, Botucatu, SP, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, State of São Paulo, SP, Brazil
| | - David Courtin
- Université de Paris, UMR 261 MERIT, IRD, F-75006 Paris, France
| | - Eduardo A Donadi
- Post-graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Araújo RC, Bertol BC, César Dias F, Debortoli G, Almeida PH, Fernandes Souza F, Villanova MG, Ramalho LNZ, Candolo Martinelli AL, Cruz Castelli ÉD, Mendes Junior CT, Antonio Donadi E. HLA-E gene polymorphisms in chronic hepatitis C: Impact on HLA-E liver expression and disease severity. Hum Immunol 2021; 82:177-185. [PMID: 33597096 DOI: 10.1016/j.humimm.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus usually produces chronic infection and liver damage. Considering that: i) the human leukocyte antigen-E (HLA-E) molecule may modulate the immune response, and ii) little is known about the role of HLA-E gene variability on chronic hepatitis C, we studied the impact of HLA-E polymorphisms on the magnitude of HLA-E liver expression and severity of hepatitis C. HLA-E variability was evaluated in terms of: i) single nucleotide polymorphism (SNP) alleles and genotypes along the gene (beginning of the promoter region, coding region and 3'UTR), and ii) ensemble of SNPs that defines the coding region alleles, considered individually or as genotypes. The comparisons of the HLA-E variation sites between patients and controls revealed no significant results. The HLA-E + 424 T > C (rs1059510), +756 G > A (rs1264457) and + 3777 G > A (rs1059655) variation sites and the HLA-E*01:01:01:01 and HLA-E*01:03:02:01 alleles, considered at single or double doses, were associated with the magnitude of HLA-E liver expression in Kupfer cell, steatosis, inflammatory activity and liver fibrosis. Although these associations were lost after corrections for multiple comparisons, these variable sites may propitiate biological clues for the understanding of the mechanisms associated with hepatitis C severity.
Collapse
Affiliation(s)
- Roberta Chaves Araújo
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil.
| | - Bruna Cristina Bertol
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Fabricio César Dias
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Guilherme Debortoli
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Patrícia Holanda Almeida
- Liver Transplant Department - Hospital Israelita Albert Einstein, 05652-900 São Paulo, State of São Paulo, Brazil
| | - Fernanda Fernandes Souza
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Marcia Guimarães Villanova
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Leandra Naira Zambelli Ramalho
- Pathology Department, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Ana Lourdes Candolo Martinelli
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Érick da Cruz Castelli
- Department of Pathology, School of Medicine. São Paulo State University, 18618-687 Botucatu, State of São Paulo, Brazil
| | - Celso Teixeira Mendes Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Eduardo Antonio Donadi
- Immunology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| |
Collapse
|
8
|
Souza AS, Sonon P, Paz MA, Tokplonou L, Lima THA, Porto IOP, Andrade HS, Silva NDSB, Veiga-Castelli LC, Oliveira MLG, Sadissou IA, Massaro JD, Moutairou KA, Donadi EA, Massougbodji A, Garcia A, Ibikounlé M, Meyer D, Sabbagh A, Mendes-Junior CT, Courtin D, Castelli EC. Hla-C genetic diversity and evolutionary insights in two samples from Brazil and Benin. HLA 2020; 96:468-486. [PMID: 32662221 DOI: 10.1111/tan.13996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen-C (HLA-C) is a classical HLA class I molecule that binds and presents peptides to cytotoxic T lymphocytes in the cell surface. HLA-C has a dual function because it also interacts with Killer-cell immunoglobulin-like receptors (KIR) receptors expressed in natural killer and T cells, modulating their activity. The structure and diversity of the HLA-C regulatory regions, as well as the relationship among variants along the HLA-C locus, are poorly addressed, and few population-based studies explored the HLA-C variability in the entire gene in different population samples. Here we present a molecular and bioinformatics method to evaluate the entire HLA-C diversity, including regulatory sequences. Then, we applied this method to survey the HLA-C diversity in two population samples with different demographic histories, one highly admixed from Brazil with major European contribution, and one from Benin with major African contribution. The HLA-C promoter and 3'UTR were very polymorphic with the presence of few, but highly divergent haplotypes. These segments also present conserved sequences that are shared among different primate species. Nucleotide diversity was higher in other segments rather than exons 2 and 3, particularly around exon 5 and the second half of the 3'UTR region. We detected evidence of balancing selection on the entire HLA-C locus and positive selection in the HLA-C leader peptide, for both populations. HLA-C motifs previously associated with KIR interaction and expression regulation are similar between both populations. Each allele group is associated with specific regulatory sequences, reflecting the high linkage disequilibrium along the entire HLA-C locus in both populations.
Collapse
Affiliation(s)
- Andreia S Souza
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Paulin Sonon
- Laboratório de Biologia Molecular, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Michelle A Paz
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Léonidas Tokplonou
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin
| | - Thálitta H A Lima
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Iane O P Porto
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Heloisa S Andrade
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Nayane Dos S B Silva
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luciana C Veiga-Castelli
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Luiza G Oliveira
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ibrahim Abiodoun Sadissou
- Laboratório de Biologia Molecular, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Juliana Doblas Massaro
- Laboratório de Biologia Molecular, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Kabirou A Moutairou
- Laboratoire de Biologie et Physiologie Cellulaire, Université d'Abomey-Calavi, Cotonou, Benin
| | - Eduardo A Donadi
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin
| | - André Garcia
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France
| | - Moudachirou Ibikounlé
- Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo (USP), São Paulo, Brazil
| | - Audrey Sabbagh
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - David Courtin
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
9
|
Lucas JAM, Hayhurst JD, Turner TR, Gymer AW, Leen G, Robinson J, Marsh SGE, Mayor NP. Single molecule real-time DNA sequencing of the full HLA-E gene for 212 reference cell lines. HLA 2020; 95:561-572. [PMID: 32227678 DOI: 10.1111/tan.13882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 01/19/2023]
Abstract
We have developed a genotyping assay that produces fully phased, unambiguous HLA-E genotyping using Pacific Biosciences' single molecule real-time DNA sequencing. In total 212 cell lines were genotyped, including the panel of 107 established at the 10th International Histocompatibility Workshop. Our results matched the previously known HLA-E genotype in 94 (44.3%) cell lines, in all cases either improving or equalling previous genotyping resolution. Three (1.4%) cells had discrepant HLA-E genotyping data and 115 (54.2%) had no previous HLA-E data. The HLA-E genotypes for four (1.9%) cell lines resulted in a change of zygosity by identifying two distinct haplotypes. We discovered eight novel HLA-E alleles, extended the known reference sequence of seven and confirmed the existence of a further 10.
Collapse
Affiliation(s)
- Jonathan A M Lucas
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - James D Hayhurst
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - Thomas R Turner
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Arthur W Gymer
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - Gayle Leen
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | - James Robinson
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Neema P Mayor
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| |
Collapse
|
10
|
HLAIb worldwide genetic diversity: New HLA-H alleles and haplotype structure description. Mol Immunol 2019; 112:40-50. [PMID: 31078115 DOI: 10.1016/j.molimm.2019.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
The classical HLA class I genes (HLA Ia) were extensively studied because of their implication in clinical fields and anthropology. Less is known about worldwide genetic diversity and linkage disequilibrium for non-classical HLA class I genes (HLA Ib) and HLA pseudogenes. Notably, HLA-H, which is deleted in a fraction of the population, remains scarcely explored. The aims of this study were 1/ to get further insight into HLA-H genetic diversity and into how this variability potentially affects its expression and 2/ to define HLA Ib worldwide allelic diversity and linkage. Exome sequence data from the 1000 Genomes Project were used to define second field HLA-A, -E, -F, -G and -H typing using PolyPheMe software. Allelic and two-loci haplotype frequencies were estimated using Gene[Rate] software both at worldwide and continental levels. Eleven novel HLA-H alleles identified in exome data were validated by NGS performed on 25 genomic DNA samples from the same cohort. Phylogenetic analysis and frequency distribution of HLA-H alleles revealed three clades, each predominantly represented in Admixed American, European and East Asian populations, African populations and South Asian populations. Among these eleven novel alleles, two potentially encode complete transmembrane HLA proteins. We confirm the high LD between HLA-H and -A, and between HLA-H and -G, and show the three genes have distinct worldwide allelic distribution. Conversely, HLA-E and HLA-F both showed little LD, displayed restricted allelic diversity and practically no difference in their distribution across the planet. Our work thus reveals an unexpectedly high HLA-H genetic diversity, with alleles highly represented in Asia possibly encoding a functional HLA protein. Functional implication of these results remains to be explored, both in physiological and pathological contexts.
Collapse
|
11
|
Calvo Tardón M, Allard M, Dutoit V, Dietrich PY, Walker PR. Peptides as cancer vaccines. Curr Opin Pharmacol 2019; 47:20-26. [PMID: 30831470 DOI: 10.1016/j.coph.2019.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022]
Abstract
Cancer vaccines based on synthetic peptides are a safe, well-tolerated immunotherapy able to specifically stimulate tumor-reactive T cells. However, their clinical efficacy does not approach that achieved with other immunotherapies such as immune checkpoint blockade. Nevertheless, major advances have been made in selecting tumor antigens to target, identifying epitopes binding to classical and non-classical HLA molecules, and incorporating these into optimal sized peptides for formulation into a vaccine. Limited potency of currently used adjuvants and the immunosuppressive tumor microenvironment are now understood to be major impediments to vaccine efficacy that need to be overcome. Rationally designed combination therapies are now being tested and should ultimately enable peptide vaccination to be added to immuno-oncology treatment options.
Collapse
Affiliation(s)
- Marta Calvo Tardón
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mathilde Allard
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Buttura RV, Ramalho J, Lima TH, Donadi EA, Veiga-Castelli LC, Mendes-Junior CT, Castelli EC. HLA-F displays highly divergent and frequent haplotype lineages associated with different mRNA expression levels. Hum Immunol 2019; 80:112-119. [DOI: 10.1016/j.humimm.2018.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/10/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
|
13
|
Sonon P, Sadissou I, Tokplonou L, M'po KKG, Glitho SSC, Agniwo P, Ibikounlé M, Massaro JD, Massougbodji A, Moreau P, Sabbagh A, Mendes-Junior CT, Moutairou KA, Castelli EC, Courtin D, Donadi EA. HLA-G, -E and -F regulatory and coding region variability and haplotypes in the Beninese Toffin population sample. Mol Immunol 2018; 104:108-127. [PMID: 30448608 DOI: 10.1016/j.molimm.2018.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
HLA-G/E/F genes exhibit immunomodulatory properties and are expressed in placenta. Little attention has been devoted to the study of these genes in sub-Saharan African populations, which are yet the most diverse. To fill this gap, we evaluated the complete gene variability, approximately 5.1 kb for HLA-G (n = 149), 7.7 kb for HLA-E (n = 150) and 6.2 kb for HLA-F (n = 152) in the remote Beninese Toffin population, using massive parallel sequencing. Overall, 96, 37 and 68 variable sites were detected along the entire HLA-G, -E and -F, respectively, arranged into region-specific haplotypes; i.e., promoter haplotypes (16, 19, and 15 respectively), coding haplotypes (19, 15, and 29 respectively), 3' untranslated region (3'UTR) haplotypes (12, 7 and 2, respectively) and extended haplotypes (33, 31 and 32 respectively). All promoter/coding/3'UTR haplotypes followed the patterns already described in worldwide populations. HLA-E was the most conserved, exhibiting mainly two full-length encoded-molecules (E*01:01 and E*01:03), followed by HLA-F, three full-length proteins (F*01:01, F*01:02 and F*01:03) and HLA-G, four proteins: three full-length (G*01:01, G*01:03 and G*01:04) and one truncated (G*01:05N). Although HLA-G/E/F alleles in the Toffin population were the most frequently observed worldwide, the frequencies of the coding haplotypes were closely similar to those described for other African populations (Guinea-Conakry and Burkina-Faso), when compared to non-African ones (Brazilian), indicating that variable sites along these genes were present in Africa before human dispersion.
Collapse
Affiliation(s)
- Paulin Sonon
- Laboratório de Biologia Molecular, Universidade de São Paulo, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Ibrahim Sadissou
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Léonidas Tokplonou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université d'Abomey-Calavi, Cotonou, Benin.
| | - Kuumaaté K G M'po
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Sonya S C Glitho
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Privat Agniwo
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Moudachirou Ibikounlé
- Université d'Abomey-Calavi, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Juliana Doblas Massaro
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin.
| | - Philippe Moreau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; Université Paris-Diderot, Sorbonne Paris-Cité, UMR_E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Audrey Sabbagh
- UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, State of São Paulo, Brazil.
| | - Kabirou A Moutairou
- Laboratoire de Biologie et Physiologie Cellulaire, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Erick C Castelli
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, State of São Paulo, Brazil.
| | - David Courtin
- UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Eduardo A Donadi
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Extended HLA-G genetic diversity and ancestry composition in a Brazilian admixed population sample: Implications for HLA-G transcriptional control and for case-control association studies. Hum Immunol 2018; 79:790-799. [DOI: 10.1016/j.humimm.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022]
|
15
|
Castelli EC, Paz MA, Souza AS, Ramalho J, Mendes-Junior CT. Hla-mapper: An application to optimize the mapping of HLA sequences produced by massively parallel sequencing procedures. Hum Immunol 2018; 79:678-684. [PMID: 30122171 DOI: 10.1016/j.humimm.2018.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Abstract
A challenging task when more than one HLA gene is evaluated together by second-generation sequencing is to achieve a reliable read mapping. The polymorphic and repetitive nature of HLA genes might bias the read mapping process, usually underestimating variability at very polymorphic segments, or overestimating variability at some segments. To overcome this issue we developed hla-mapper, which takes into account HLA sequences derived from the IPD-IMGT/HLA database and unpublished HLA sequences to apply a scoring system. This comprehends the evaluation of each read pair, addressing them to the most likely HLA gene they were derived from. Hla-mapper provides a reliable map of HLA sequences, allowing accurate downstream analysis such as variant calling, haplotype inference, and allele typing. Moreover, hla-mapper supports whole genome, exome, and targeted sequencing data. To assess the software performance in comparison with traditional mapping algorithms, we used three different simulated datasets to compare the results obtained with hla-mapper, BWA MEM, and Bowtie2. Overall, hla-mapper presented a superior performance, mainly for the classical HLA class I genes, minimizing wrong mapping and cross-mapping that are typically observed when using BWA MEM or Bowtie2 with a single reference genome.
Collapse
Affiliation(s)
- Erick C Castelli
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil; São Paulo State University (UNESP), Pathology Department, School of Medicine, Botucatu, State of São Paulo, Brazil.
| | - Michelle A Paz
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil
| | - Andréia S Souza
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil
| | - Jaqueline Ramalho
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| |
Collapse
|