1
|
Jiang H, Zhang J, Liu T, Chen X, Yang G, Li H. The characterization of BCL-xL displays a non-apoptotic role in suppression of NLRP1 inflammasome assembly in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2024; 155:110001. [PMID: 39489455 DOI: 10.1016/j.fsi.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The NLRP1 inflammasome is a crucial muti-protein complex in the host anti-pathogen immune response. The previous studies have revealed that the anti-apoptotic protein BCL-xL played a non-apoptotic role by impeding the activation of NLRP1 inflammasome in mammals. However, the potential role of BCL-xL in regulating the inflammasome in fish remains unclear. In the present study, the BCL-xL (CcBCL-xL) was cloned from the head kidney of common carp (Cyprinus carpio L.), and its regulatory effect on the NLRP1 inflammasome was explored. It was found that CcBCL-xL predominantly localized in the brain, spleen and head kidney of common carp, and upon stimulation with Aeromonas hydrophila (A. hydrophila), Edwardsiella tarda (E. tarda), or spring viremia of carp virus (SVCV), the expression of CcBCL-xL significantly increased in multiple immune organs. The interaction between CcBCL-xL and CcNLRP1 was confirmed by co-immunoprecipitation and immunofluorescence. Meanwhile, we also found that CcBCL-xL significantly inhibited the assembly of the CcNLRP1 inflammasome, through ASC oligomerization, ASC specks formation and cytotoxicity experiments. Furthermore, our results revealed that CcBCL-xL interacted with the NACHT, LRR, FIIND, and CARD domains of CcNLRP1. Taken together, the results provide a theoretical foundation for further exploring the regulatory mechanism of NLRP1, and for the prevention and treatment of infectious diseases in fish.
Collapse
Affiliation(s)
- Hong Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Jiahui Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Tingting Liu
- Shandong Industrial Technician College, No.6789 West Ring Road, Weifang, 261000, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
2
|
Moreno-Corona NC, de León-Bautista MP, León-Juárez M, Hernández-Flores A, Barragán-Gálvez JC, López-Ortega O. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Traffic 2024; 25:e12950. [PMID: 38923715 DOI: 10.1111/tra.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.
Collapse
Affiliation(s)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia, Mexico
- Human Health, Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | | | - Juan Carlos Barragán-Gálvez
- División de Ciencias Naturales y Exactas, Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, Paris, France
| |
Collapse
|
3
|
Zhang T, Aipire A, Li Y, Guo C, Li J. Antigen cross-presentation in dendric cells: From bench to bedside. Biomed Pharmacother 2023; 168:115758. [PMID: 37866002 DOI: 10.1016/j.biopha.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Cross-presentation (XPT) is an adaptation of the cellular process in which dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules for recognition of the cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, resulting in immunity or tolerance. Recent advances in DCs have broadened our understanding of the underlying mechanisms of XPT and strengthened their application in tumor immunotherapy. In this review, we summarized the known mechanisms of XPT, including the receptor-mediated internalization of exogenous antigens, endosome escape, engagement of the other XPT-related proteins, and adjuvants, which significantly enhance the XPT capacity of DCs. Consequently, various strategies to enhance XPT can be adopted and optimized to improve outcomes of DC-based therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
4
|
Sun J, Zhao X, Pei C, Zhu L, Zhang J, Kong X. Molecular characterization of NLRC3 and its interaction with other inflammasome components and regulation on the bacterial colonization in Qihe crucian carp Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:958-971. [PMID: 36371052 DOI: 10.1016/j.fsi.2022.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The NLRC as a very unique subfamily of Nod like receptors (NLRs), is believed to play an important role in the bacterial recognition of animals. However, the molecular characterization and immunological role of NLRC3 in Carassius auratus is little known. In this study, we identified and achieved a complete cDNA sequence of NLRC3 gene in Qihe crucian carp Carassius auratus (named as CaNLRC3). The full-length cDNA sequence of CaNLRC3 was composed of 3823 bp, which contained a 5'-UTR of 251 bp, a 3'-UTR of 158 bp, and an open reading frame (ORF) of 3414 bp encoded 1137 amino acids with a predicted isoelectric point of 8.25 and a molecular mass of 124.1 kDa, characterized with a caspase recruitment domain (CARD) at N-terminus. The mRNA expression of CaNLRC3 was detected to be constitutive in all the examined tissues, with the high expression levels in spleen, skin and intestine. After challenges with bacteria or pathogenic analogue, expression levels of CaNLRC3 gene were strongly induced. Co-localization and co-immunoprecipitation results found that CaNLRC3 can assemble CaASC through CARD domain interaction, then CaASC associated with CaCaspase-1a, presumably to assemble the NLRC3 inflammasome complex. The overexpression of CaNLRC3 could significantly increase the mRNA expression of IL-1β, and promote the bacterial elimination and result in the decrease of bacterial loading in liver, spleen and kidney after bacterial infection. Vice versa, the knockdown of CaNLRC3 could obviously reduce IL-1β expression at mRNA level, and bacterial loading was significantly increased in tissue. Taken together, CaNLRC3 is proved to be a pivotal cytosolic innate immune receptor in this study, which is acted as the potential component of inflammasome to regulate inflammation reaction, and could modify bacterial loading in tissue and restrict bacterial infection in teleost.
Collapse
Affiliation(s)
- Juan Sun
- College of Life Science, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China; School of Nursing, Xinxiang Medical University, Xinxiang, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China.
| |
Collapse
|
5
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|
6
|
Montealegre F, Lyons BM. Fluid Therapy in Dogs and Cats With Sepsis. Front Vet Sci 2021; 8:622127. [PMID: 33718468 PMCID: PMC7947228 DOI: 10.3389/fvets.2021.622127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023] Open
Abstract
Sepsis is currently defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis may occur secondary to infection anywhere in the body, and its pathogenesis is complex and not yet fully understood. Variations in the host immune response result in diverse clinical manifestations, which complicates clinical recognition and fluid therapy both in humans and veterinary species. Septic shock is a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Although septic shock is a form of distributive shock, septic patients frequently present with hypovolemic and cardiogenic shock as well, further complicating fluid therapy decisions. The goals of this review are to discuss the clinical recognition of sepsis in dogs and cats, the basic mechanisms of its pathogenesis as it affects hemodynamic function, and considerations for fluid therapy. Important pathophysiologic changes, such as cellular interaction, microvascular alterations, damage to the endothelial glycocalyx, hypoalbuminemia, and immune paralysis will be also reviewed. The advantages and disadvantages of treatment with crystalloids, natural and synthetic colloids, and blood products will be discussed. Current recommendations for evaluating fluid responsiveness and the timing of vasopressor therapy will also be considered. Where available, the veterinary literature will be used to guide recommendations.
Collapse
Affiliation(s)
- Federico Montealegre
- Department of Medical and Scientific Affairs, Nova Biomedical, Waltham, MA, United States
| | - Bridget M Lyons
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Roy AC, Chang G, Roy S, Ma N, Gao Q, Shen X. γ-d-Glutamyl-meso-diaminopimelic acid induces autophagy in bovine hepatocytes during nucleotide-binding oligomerization domain 1-mediated inflammation. J Cell Physiol 2020; 236:5212-5234. [PMID: 33368240 DOI: 10.1002/jcp.30227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/07/2022]
Abstract
Autophagy is a crucial cellular homeostatic process and an important part of the host defense system. Dysfunction in autophagy enhances tissue susceptibility to infection and multiple diseases. However, the role of nucleotide oligomerization domain 1 (NOD1) in autophagy in bovine hepatocytes is not well known. Therefore, our aim was to study the contribution of NOD1 to autophagy during inflammation in response to a specific ligand γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP). To achieve this aim, hepatocytes separated from cows at ∼160 days in milk (DIM) were divided into six groups: the nontreated control (CON) group, the rapamycin-treated (RAP) group as a positive control, the iE-DAP-treated (DAP) group, the 3-MA-treated (MA) group, the rapamycin with 3-MA (RM) group, and the iE-DAP with 3-MA (DM) group. iE-DAP administration significantly increased the mRNA expression of NOD1, ATG16L1, RIPK2, ULK1, AMBRA1, DFCP1, WIPI1, ATG5, ATG7, ATG10, ATG4A, IκBα, NF-κB, CXCL1, IL-8, and STAT6 and significantly decreased PIK3C3. The protein expression of NOD1, p-IκBα, p-NF-κB/p-p65, LC3-II, ATG5, and beclin 1 were significantly upregulated and that of SQSTM1/p62, p-mTOR, and FOXA2 were significantly downregulated in response to iE-DAP. iE-DAP also induced the formation of LC3-GFP autophagic puncta in bovine hepatocytes. We also knocked down the NOD1 with siRNA. NOD1 silencing suppressed the autophagy and inflammation-related genes and proteins. The application of the autophagy inhibitor increased the expression of inflammatory molecules and alleviated autophagy-associated molecules. Taken together, these findings suggest that NOD1 is a key player for regulating both ATG16L1 and RIPK2-ULK1 directed autophagy during inflammation in response to iE-DAP in bovine hepatocytes.
Collapse
Affiliation(s)
- Animesh Chandra Roy
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shipra Roy
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qianyun Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Khan A, Singh VK, Mishra A, Soudani E, Bakhru P, Singh CR, Zhang D, Canaday DH, Sheri A, Padmanabhan S, Challa S, Iyer RP, Jagannath C. NOD2/RIG-I Activating Inarigivir Adjuvant Enhances the Efficacy of BCG Vaccine Against Tuberculosis in Mice. Front Immunol 2020; 11:592333. [PMID: 33365029 PMCID: PMC7751440 DOI: 10.3389/fimmu.2020.592333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) kills about 1.5 million people each year and the widely used Bacille Calmette-Guérin (BCG) vaccine provides a partial protection against TB in children and adults. Because BCG vaccine evades lysosomal fusion in antigen presenting cells (APCs), leading to an inefficient production of peptides and antigen presentation required to activate CD4 T cells, we sought to boost its efficacy using novel agonists of RIG-I and NOD2 as adjuvants. We recently reported that the dinucleotide SB 9200 (Inarigivir) derived from our small molecule nucleic acid hybrid (SMNH)® platform, activated RIG-I and NOD2 receptors and exhibited a broad-spectrum antiviral activity against hepatitis B and C, Norovirus, RSV, influenza and parainfluenza. Inarigivir increased the ability of BCG-infected mouse APCs to secrete elevated levels of IL-12, TNF-α, and IFN-β, and Caspase-1 dependent IL-1β cytokine. Inarigivir also increased the ability of macrophages to kill MTB in a Caspase-1-, and autophagy-dependent manner. Furthermore, Inarigivir led to a Capsase-1 and NOD2- dependent increase in the ability of BCG-infected APCs to present an Ag85B-p25 epitope to CD4 T cells in vitro. Consistent with an increase in immunogenicity of adjuvant treated APCs, the Inarigivir-BCG vaccine combination induced robust protection against tuberculosis in a mouse model of MTB infection, decreasing the lung burden of MTB by 1-log10 more than that afforded by BCG vaccine alone. The Inarigivir-BCG combination was also more efficacious than a muramyl-dipeptide-BCG vaccine combination against tuberculosis in mice, generating better memory T cell responses supporting its novel adjuvant potential for the BCG vaccine.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Emily Soudani
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Pearl Bakhru
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Christopher R. Singh
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - David H. Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | | | - Sreerupa Challa
- Spring Bank Pharmaceuticals, Inc., Hopkinton, MA, United States
| | | | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Schaftenaar FH, Amersfoort J, Douna H, Kröner MJ, Foks AC, Bot I, Slütter BA, van Puijvelde GHM, Drijfhout JW, Kuiper J. Induction of HLA-A2 restricted CD8 T cell responses against ApoB100 peptides does not affect atherosclerosis in a humanized mouse model. Sci Rep 2019; 9:17391. [PMID: 31757993 PMCID: PMC6874568 DOI: 10.1038/s41598-019-53642-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases form the most common cause of death worldwide, with atherosclerosis as main etiology. Atherosclerosis is marked by cholesterol rich lipoprotein deposition in the artery wall, evoking a pathogenic immune response. Characteristic for the disease is the pathogenic accumulation of macrophages in the atherosclerotic lesion, which become foam cells after ingestion of large quantities of lipoproteins. We hypothesized that, by inducing a CD8 T cell response towards lipoprotein derived apolipoprotein-B100 (ApoB100), lesional macrophages, that are likely to cross-present lipoprotein constituents, can specifically be eliminated. Based on in silico models for protein processing and MHC-I binding, 6 putative CD8 T cell epitopes derived from ApoB100 were synthesized. HLA-A2 binding was confirmed for all peptides by T2 cell binding assays and recall responses after vaccination with the peptides proved that 5 of 6 peptides could induce CD8 T cell responses. Induction of ApoB100 specific CD8 T cells did not impact plaque size and cellular composition in HLA-A2 and human ApoB100 transgenic LDLr−/− mice. No recall response could be detected in cultures of cells isolated from the aortic arch, which were observed in cell cultures of splenocytes and mesenteric lymph nodes, suggesting that the atherosclerotic environment impairs CD8 T cell activation.
Collapse
Affiliation(s)
- Frank H Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Bram A Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Gijs H M van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
| |
Collapse
|
10
|
Chapman TP, Corridoni D, Shiraishi S, Pandey S, Aulicino A, Wigfield S, do Carmo Costa M, Thézénas ML, Paulson H, Fischer R, Kessler BM, Simmons A. Ataxin-3 Links NOD2 and TLR2 Mediated Innate Immune Sensing and Metabolism in Myeloid Cells. Front Immunol 2019; 10:1495. [PMID: 31379806 PMCID: PMC6659470 DOI: 10.3389/fimmu.2019.01495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
The interplay between NOD2 and TLR2 following recognition of components of the bacterial cell wall peptidoglycan is well-established, however their role in redirecting metabolic pathways in myeloid cells to degrade pathogens and mount antigen presentation remains unclear. We show NOD2 and TLR2 mediate phosphorylation of the deubiquitinase ataxin-3 via RIPK2 and TBK1. In myeloid cells ataxin-3 associates with the mitochondrial cristae protein MIC60, and is required for oxidative phosphorylation. Depletion of ataxin-3 leads to impaired induction of mitochondrial reactive oxygen species (mROS) and defective bacterial killing. A mass spectrometry analysis of NOD2/TLR2 triggered ataxin-3 deubiquitination targets revealed immunometabolic regulators, including HIF-1α and LAMTOR1 that may contribute to these effects. Thus, we define how ataxin-3 plays an essential role in NOD2 and TLR2 sensing and effector functions in myeloid cells.
Collapse
Affiliation(s)
- Thomas P. Chapman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Daniele Corridoni
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Seiji Shiraishi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sumeet Pandey
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Anna Aulicino
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon Wigfield
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Marie-Laëtitia Thézénas
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Fu Y, Zhan X, Wang Y, Jiang X, Liu M, Yang Y, Huang Y, Du X, Zhong XP, Li L, Ma L, Hu S. NLRC3 expression in dendritic cells attenuates CD4 + T cell response and autoimmunity. EMBO J 2019; 38:e101397. [PMID: 31290162 DOI: 10.15252/embj.2018101397] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
NOD-like receptor (NLR) family CARD domain containing 3 (NLRC3), an intracellular member of NLR family, is a negative regulator of inflammatory signaling pathways in innate and adaptive immune cells. Previous reports have shown that NLRC3 is expressed in dendritic cells (DCs). However, the role of NLRC3 in DC activation and immunogenicity is unclear. In the present study, we find that NLRC3 attenuates the antigen-presenting function of DCs and their ability to activate and polarize CD4+ T cells into Th1 and Th17 subsets. Loss of NLRC3 promotes pathogenic Th1 and Th17 responses and enhanced experimental autoimmune encephalomyelitis (EAE) development. NLRC3 negatively regulates the antigen-presenting function of DCs via p38 signaling pathway. Vaccination with NLRC3-overexpressed DCs reduces EAE progression. Our findings support that NLRC3 serves as a potential target for treating adaptive immune responses driving multiple sclerosis and other autoimmune disorders.
Collapse
Affiliation(s)
- Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yichong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
13
|
Li S, Qiu J, Qin L, Peng P, Li C, Mao J, Fang G, Chen Z, Lin S, Fu Y, Cai W, Ding Y. NOD2 negatively regulated titanium particle-induced osteolysis in mice. Biomater Sci 2019; 7:2702-2715. [PMID: 31065630 DOI: 10.1039/c9bm00306a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For patients undergoing total joint replacement (TJR), one of the complications, aseptic loosening, could cause serious consequences, such as revision surgery. In early research, pattern recognition receptors (PRRs) were reported to play vital roles in recognizing wear particles from the prosthesis and initiating an inflammation response. In this research, we aimed to clarify the role of nucleotide-binding and oligomerization domain containing protein 2 (NOD2), one of the PRRs, in macrophage-induced aseptic loosening in vivo and in vitro. High expressions of NOD2 and TNFα were observed from twenty patients who underwent primary or revision total hip replacements (THR). The effect of NOD2 on the activation of inflammation pathways was observed in RAW264.7 cells and CRISPR-Cas9 NOD2-knockout mice. The expressions of NOD2, the NF-κB pathway, the MAPK pathway and proinflammatory cytokine TNF-α in macrophages stimulated by wear particles were up-regulated. Otherwise, inhibition of NOD2 further up-regulated the expressions of NOD2, the NF-κB pathway, the MAPK pathway and TNF-α. Knockdown of the NOD2 gene enhanced the cranial osteolysis induced by titanium particles in a mouse model. In conclusion, our study demonstrated that NOD2 plays a negative role in osteolysis induced by titanium particles in vitro and in vivo.
Collapse
Affiliation(s)
- Shixun Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Junxiong Qiu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory Department of Orthopaedics & Taumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, SAR, PR China
| | - Peng Peng
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Changchuan Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jiaji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Guibin Fang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Zhong Chen
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Sipeng Lin
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yuan Fu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center and Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Ding
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
14
|
Corridoni D, Shiraishi S, Chapman T, Steevels T, Muraro D, Thézénas ML, Prota G, Chen JL, Gileadi U, Ternette N, Cerundolo V, Simmons A. NOD2 and TLR2 Signal via TBK1 and PI31 to Direct Cross-Presentation and CD8 T Cell Responses. Front Immunol 2019; 10:958. [PMID: 31114588 PMCID: PMC6503738 DOI: 10.3389/fimmu.2019.00958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
NOD2 and TLR2 recognize components of bacterial cell wall peptidoglycan and direct defense against enteric pathogens. CD8+ T cells are important for immunity to such pathogens but how NOD2 and TLR2 induce antigen specific CD8+ T cell responses is unknown. Here, we define how these pattern recognition receptors (PRRs) signal in primary dendritic cells (DCs) to influence MHC class I antigen presentation. We show NOD2 and TLR2 phosphorylate PI31 via TBK1 following activation in DCs. PI31 interacts with TBK1 and Sec16A at endoplasmic reticulum exit sites (ERES), which positively regulates MHC class I peptide loading and immunoproteasome stability. Following NOD2 and TLR2 stimulation, depletion of PI31 or inhibition of TBK1 activity in vivo impairs DC cross-presentation and CD8+ T cell activation. DCs from Crohn's patients expressing NOD2 polymorphisms show dysregulated cross-presentation and CD8+ T cell responses. Our findings reveal unidentified mechanisms that underlie CD8+ T cell responses to bacteria in health and in Crohn's.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Seiji Shiraishi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tessa Steevels
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Daniele Muraro
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Marie-Laëtitia Thézénas
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ji-Li Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|