1
|
Yao XC, Wu JJ, Yuan ST, Yuan FL. Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). Int J Mol Med 2025; 55:53. [PMID: 39886977 PMCID: PMC11781520 DOI: 10.3892/ijmm.2025.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Innate immunity is the first line of defence against pathogenic microorganisms and is nearly universal among eukaryotes. The innate immune system is composed of various organs, cells and immune molecules. MicroRNAs (miRs) are a class of small non‑coding RNAs (~22 nucleotides) that are widely involved in post‑transcriptional regulation of proteins within the innate immune system through the recognition of seed sequences. The present review summarizes the role of the miR‑29 family in innate immunity, with a focus on its specific functions in the differentiation of T cells, B cells, natural killer cells and macrophages, as well as the mechanisms by which the miR‑29 family participates in innate immune signalling. Additionally, this review discusses how the miR‑29 family helps the host combat infections by hepatitis B and C viruses, human immunodeficiency virus and influenza A virus through the regulation of specific signalling molecules. This comprehensive analysis of existing studies emphasizes the importance of the miR‑29 family in maintaining immune balance and defence against pathogens.
Collapse
Affiliation(s)
- Xing-Chen Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| | - Sheng-Tao Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
2
|
Czopik AK, McNamee EN, Vaughn V, Huang X, Bang IH, Clark T, Wang Y, Ruan W, Nguyen T, Masterson JC, Tak E, Frank S, Collins CB, Li H, Rodriguez-Aguayo C, Lopez-Berestein G, Gerich ME, Furuta GT, Yuan X, Sood AK, de Zoeten EF, Eltzschig HK. HIF-2α-dependent induction of miR-29a restrains T H1 activity during T cell dependent colitis. Nat Commun 2024; 15:8042. [PMID: 39271652 PMCID: PMC11399416 DOI: 10.1038/s41467-024-52113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Metabolic imbalance leading to inflammatory hypoxia and stabilization of hypoxia-inducible transcription factors (HIFs) is a hallmark of inflammatory bowel diseases. We hypothesize that HIF could be stabilized in CD4+ T cells during intestinal inflammation and alter the functional responses of T cells via regulation of microRNAs. Our assays reveal markedly increased T cell-intrinsic hypoxia and stabilization of HIF protein during experimental colitis. microRNA screen in primary CD4+ T cells points us towards miR-29a and our subsequent studies identify a selective role for HIF-2α in CD4-cell-intrinsic induction of miR-29a during hypoxia. Mice with T cell-intrinsic HIF-2α deletion display elevated T-bet (target of miR-29a) levels and exacerbated intestinal inflammation. Mice with miR-29a deficiency in T cells show enhanced intestinal inflammation. T cell-intrinsic overexpression of HIF-2α or delivery of miR-29a mimetic dampen TH1-driven colitis. In this work, we show a previously unrecognized function for hypoxia-dependent induction of miR-29a in attenuating TH1-mediated inflammation.
Collapse
Affiliation(s)
- Agnieszka K Czopik
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Eóin N McNamee
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Victoria Vaughn
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiangsheng Huang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - In Hyuk Bang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Trent Clark
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tom Nguyen
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Joanne C Masterson
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Gastrointestinal Eosinophilic Disease Program University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Eunyoung Tak
- Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sandra Frank
- Organ Protection Program, Department of Anesthesiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Colm B Collins
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Howard Li
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Cristian Rodriguez-Aguayo
- Departmental of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Departmental of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark E Gerich
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Gastrointestinal Eosinophilic Disease Program University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anil K Sood
- Departmental of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin F de Zoeten
- Mucosal Inflammation Program, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
- Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Outcomes Research, Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
3
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
4
|
Ning H, Liu J, Tan J, Yi M, Lin X. The role of the Notch signalling pathway in the pathogenesis of ulcerative colitis: from the perspective of intestinal mucosal barrier. Front Med (Lausanne) 2024; 10:1333531. [PMID: 38249980 PMCID: PMC10796567 DOI: 10.3389/fmed.2023.1333531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Ulcerative colitis is a common digestive disorder worldwide, with increasing incidence in recent years. It is an urgent problem to be solved, as it seriously affects and threatens the health and life of the global population. Studies have shown that dysfunction of the intestinal mucosal barrier is a critical pathogenic factor and molecular basis of ulcerative colitis, and some scholars have described it as a "barrier organ disease." While the Notch signalling pathway affects a series of cellular processes, including proliferation, differentiation, development, migration, and apoptosis. Therefore, it can regulate intestinal stem cells, CD4+ T cells, innate lymphoid cells, macrophages, and intestinal microbiota and intervene in the chemical, physical, immune, and biological mucosal barriers in cases of ulcerative colitis. The Notch signalling pathway associated with the pathogenesis of ulcerative colitis has distinct characteristics, with good regulatory effects on the mucosal barrier. However, research on ulcerative colitis has mainly focused on immune regulation, anti-inflammatory activity, and antioxidant stress; therefore, the study of the Notch signalling pathway suggests the possibility of understanding the pathogenesis of ulcerative colitis from another perspective. In this article we explore the role and mechanism of the Notch signalling pathway in the pathogenesis of ulcerative colitis from the perspective of the intestinal mucosal barrier to provide new targets and theoretical support for further research on the pathogenesis and clinical treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Hang Ning
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiemin Liu
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiaqian Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Mengni Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Liu X, Lv X, Liu Z, Zhang M, Leng Y. MircoRNA-29a in Astrocyte-derived Extracellular Vesicles Suppresses Brain Ischemia Reperfusion Injury via TP53INP1 and the NF-κB/NLRP3 Axis. Cell Mol Neurobiol 2022; 42:1487-1500. [PMID: 33620674 PMCID: PMC11421693 DOI: 10.1007/s10571-021-01040-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Brain ischemia reperfusion injury (BIRI) is defined as a series of brain injury accompanied by inflammation and oxidative stress. Astrocyte-derived extracellular vesicles (EVs) are importantly participated in BIRI with involvement of microRNAs (miRs). Our study aimed to discuss the functions of miR-29a from astrocyte-derived EVs in BIRI treatment. Thus, astrocyte-derived EVs were extracted. Oxygen and glucose deprivation (OGD) cell models and BIR rat models were established. Then, cell and rat activities and pyroptosis-related protein levels in these two kinds of models were detected. Functional assays were performed to verify inflammation and oxidative stress. miR-29a expression in OGD cells and BIR rats was measured, and target relation between miR-29a and tumor protein 53-induced nuclear protein 1 (TP53INP1) was certified. Rat neural function was tested. Astrocyte-derived EVs improved miR-29a expression in N9 microglia and rat brains. Astrocyte-derived EVs inhibited OGD-induced injury and inflammation in vitro, reduced brain infarction, and improved BIR rat neural functions in vivo. miR-29a in EVs protected OGD-treated cells and targeted TP53INP1, whose overexpression suppressed the protective function of EVs on OGD-treated cells. miR-29a alleviated OGD and BIRI via downregulating TP53INP1 and the NF-κB/NLRP3 pathway. Briefly, our study demonstrated that miR-29a in astrocyte-derived EVs inhibits BIRI by downregulating TP53INP1 and the NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Xin Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xinghua Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Zhenzhen Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Mengjie Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Jiang W, Sun M, Wang Y, Zheng M, Yuan Z, Mai S, Zhang X, Tang L, Liu X, Wang C, Wen Z. Critical Role of Notch-1 in Mechanistic Target of Rapamycin Hyperactivity and Vascular Inflammation in Patients With Takayasu Arteritis. Arthritis Rheumatol 2022; 74:1235-1244. [PMID: 35212196 DOI: 10.1002/art.42103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Takayasu arteritis (TA) is a major type of large vessel vasculitis characterized by progressive inflammation in vascular layers. In our recent study we identified a central role of mechanistic target of rapamycin (mTOR) hyperactivity in proinflammatory T cell differentiation in TA. This study was undertaken to explore potential mechanisms underpinning T cell-intrinsic mTOR hyperactivity and vascular inflammation in TA, with a focus on Notch-1. METHODS Notch-1 expression and activity was determined according to Notch-1, activated Notch-1, and HES-1 levels. We detected mTOR activity with intracellular expression of phosphorylated ribosomal protein S6. Differentiation of proinflammatory T cells was analyzed by detecting Th1 and Th17 lineage-determining transcription factors. The function of Notch-1 was evaluated using γ-secretase inhibitor DAPT and gene knockdown using a short hairpin RNA (shRNA) strategy. We performed our translational study using humanized NSG mouse chimeras in which human vasculitis was induced using immune cells from TA patients. RESULTS CD4+ T cells from TA patients exerted Notch-1high , leading to mTOR hyperactivity and spontaneous maldifferentiation of Th1 cells and Th17 cells. Blockade of Notch-1 using DAPT and Notch-1 shRNA efficiently abrogated mTOR complex 1 (mTORC1) activation and proinflammatory T cell differentiation. Mechanistically, Notch-1 promoted mTOR expression, interacted with mTOR, and was associated with lysosomal localization of mTOR. Accordingly, systemic administration of DAPT and CD4+ T cell-specific gene knockdown of Notch-1 could alleviate vascular inflammation in humanized TA chimeras. CONCLUSION Expression of Notch-1 is elevated in CD4+ T cells from TA patients, resulting in mTORC1 hyperactivity and proinflammatory T cell differentiation. Targeting Notch-1 is a promising therapeutic strategy for the clinical management of TA.
Collapse
Affiliation(s)
| | - Mengyao Sun
- First Hospital of Jilin University, Changchun, China
| | | | | | | | - Shixiong Mai
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | | | - Xiyu Liu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | | | | |
Collapse
|
7
|
Lu L, Wang Z, Zhang H, Liu T, Fang H. Drynaria fortunei improves lipid profiles of elderly patients with postmenopausal osteoporosis via regulation of Notch1-NLRP3 inflammasome-mediated inflammation. Gynecol Endocrinol 2022; 38:176-180. [PMID: 34907823 DOI: 10.1080/09513590.2021.2015760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Dyslipidemia is a common comorbidity in elderly patients with postmenopausal osteoporosis (PMOP). Drynaria fortunei (Rhizoma drynariae) is well-known in traditional Chinese medicine for its ability to improve bone mineral density (BMD). However, whether and how Drynaria fortunei improves plasma lipid profiles in elderly PMOP patients remains unclear. METHODS Eighty elderly female patients with concurrent PMOP and hyperlipemia were randomly assigned to Drynaria fortunei 2(n = 40) or control (n = 40) groups. The clinical efficacies of Drynaria fortunei were evaluated. At 0, 3-, 6-, 9-, and 12-month of follow-up, plasma levels of IL-1β, IL-18, TNF-α, IL-6, IL-8, and IL-10 were measured using ELISA, whereas PBMC levels of NLRP3, ASC, caspase-1, NF-κB, SIRT1, and Notch1 were measured using RT-qPCR. PBMC isolated from PMOP patients were cultured and treated with Drynaria fortunei to determine its influence on NLRP3 inflammasome and associated cytokines. RESULTS Drynaria fortunei effectively improved patients' BMD and lipid profiles. IL-1β, IL-18, TNF-α, IL-6, IL-8 levels, as well as inflammasome-molecules of NLRP3, ASC, caspase-1, and NF-κB increased over time in the control group, but were significantly attenuated with Drynaria fortunei administration. In vitro, Drynaria fortunei suppressed NLRP3 inflammasome and associated cytokines by increasing SIRT1 or decreasing Notch1. Drynaria fortunei had inhibitory effects on NLRP3 inflammasome and Notch1 even when SIRT1 expression was suppressed. CONCLUSIONS Drynaria fortunei has been demonstrated to significantly improve lipid profiles for elderly PMOP patients. Drynaria fortunei may down-regulate Notch1 independently of SIRT1 to suppress NLRP3 inflammasome-mediated inflammation, thus improving plasma lipid profile.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Zhi Wang
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Hanqing Zhang
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Tongou Liu
- Department of Gynecology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
- First Clinical Medical College, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Hong Fang
- Department of Gynecology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
- First Clinical Medical College, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| |
Collapse
|
8
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
9
|
Yee Mon KJ, Zhu H, Daly CWP, Vu LT, Smith NL, Patel R, Topham DJ, Scheible K, Jambo K, Le MTN, Rudd BD, Grimson A. MicroRNA-29 specifies age-related differences in the CD8+ T cell immune response. Cell Rep 2021; 37:109969. [PMID: 34758312 DOI: 10.1016/j.celrep.2021.109969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of cell fate in the CD8+ T cell response to infection. Although there are several examples of miRNAs acting on effector CD8+ T cells after infection, it is unclear whether differential expression of one or more miRNAs in the naive state is consequential in altering their long-term trajectory. To answer this question, we examine the role of miR-29 in neonatal and adult CD8+ T cells, which express different amounts of miR-29 only prior to infection and adopt profoundly different fates after immune challenge. We find that manipulation of miR-29 expression in the naive state is sufficient for age-adjusting the phenotype and function of CD8+ T cells, including their regulatory landscapes and long-term differentiation trajectories after infection. Thus, miR-29 acts as a developmental switch by controlling the balance between a rapid effector response in neonates and the generation of long-lived memory in adults.
Collapse
Affiliation(s)
- Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Luyen T Vu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kristin Scheible
- Department of Pediatrics, Division of Neonatology, University of Rochester, Rochester, NY 14642, USA
| | - Kondwani Jambo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Trivedi P, Patel SK, Bellavia D, Messina E, Palermo R, Ceccarelli S, Marchese C, Anastasiadou E, Minter LM, Felli MP. When Viruses Cross Developmental Pathways. Front Cell Dev Biol 2021; 9:691644. [PMID: 34422814 PMCID: PMC8375270 DOI: 10.3389/fcell.2021.691644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021; 28:36. [PMID: 33966637 PMCID: PMC8106838 DOI: 10.1186/s12929-021-00732-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can be defined as an excessive and deregulated deposition of extracellular matrix proteins, causing loss of physiological architecture and dysfunction of different tissues and organs. In the skin, fibrosis represents the hallmark of several acquired (e.g. systemic sclerosis and hypertrophic scars) and inherited (i.e. dystrophic epidermolysis bullosa) diseases. A complex series of interactions among a variety of cellular types and a wide range of molecular players drive the fibrogenic process, often in a context-dependent manner. However, the pathogenetic mechanisms leading to skin fibrosis are not completely elucidated. In this scenario, an increasing body of evidence has recently disclosed the involvement of Notch signalling cascade in fibrosis of the skin and other organs. Despite its apparent simplicity, Notch represents one of the most multifaceted, strictly regulated and intricate pathways with still unknown features both in health and disease conditions. Starting from the most recent advances in Notch activation and regulation, this review focuses on the pro-fibrotic function of Notch pathway in fibroproliferative skin disorders describing molecular networks, interplay with other pro-fibrotic molecules and pathways, including the transforming growth factor-β1, and therapeutic strategies under development.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy.
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Alexander Nystrom
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.,IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| |
Collapse
|
12
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
13
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:7065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
14
|
Bi K, Zhang X, Chen W, Diao H. MicroRNAs Regulate Intestinal Immunity and Gut Microbiota for Gastrointestinal Health: A Comprehensive Review. Genes (Basel) 2020; 11:genes11091075. [PMID: 32932716 PMCID: PMC7564790 DOI: 10.3390/genes11091075] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small non-coding RNAs regulating gene expression at the post-transcriptional level. The regulation of microRNA expression in the gut intestine is gradually recognized as one of the crucial contributors of intestinal homeostasis and overall health. Recent studies indicated that both the microRNAs endogenous in the gut intestine and exogenous from diets could play influential roles in modulating microbial colonization and intestinal immunity. In this review, we discuss the biological functions of microRNAs in regulating intestinal homeostasis by modulating intestinal immune responses and gut microbiota. We particularly focus on addressing the microRNA-dependent communication and interactions among microRNA, gut microbiota, and intestinal immune system. Besides, we also summarize the roles of diet-derived microRNAs in host-microbiome homeostasis and their benefits on intestinal health. A better understanding of the relationships among intestinal disorders, microRNAs, and other factors influencing intestinal health can facilitate the application of microRNA-based therapeutics for gastrointestinal diseases.
Collapse
|
15
|
Xu S, Sui J, Fu Y, Wu W, Liu T, Yang S, Liang G. Titanium dioxide nanoparticles induced the apoptosis of RAW264.7 macrophages through miR-29b-3p/NFAT5 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26153-26162. [PMID: 32361970 DOI: 10.1007/s11356-020-08952-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely found in consumer and industrial products, contributing to their prevalent presence in our surroundings. In this study, several miRNAs in the immuno-related pathways were found to be dysregulated in RAW264.7 cells after 24-h exposure to TiO2 NPs, including miR-29b-3p, which had not been previously found to be associated with the dysregulation of immunity after exposure to TiO2 NPs. The KEGG pathway and GO enrichment analysis suggested that miR-29b-3p functioned both in the T and B cell receptor signaling pathways. The NFAT5 gene was predicted to regulate miR-29b-3p using the MiRDB online database. The expression of miR-29b-3p and NFAT5 was found to be inversely correlated using qRT-PCR and western blotting analysis. Dual-luciferase reporter gene assays demonstrated the precise regulatory relationship between miR-29b-3p and NFAT5. The upregulation of miR-29b-3p was found to reinforce the apoptosis of cells, while no changes were found in terms of the cell cycle or cell proliferation, using MTT, cell apoptosis, and cycle detection experiments. Our results demonstrate that miR-29b-3p is involved in the response of RAW264.7 cells to exposure to TiO2, proving evidence for the further study of the toxicity and mechanisms of nano-TiO2 exposure.
Collapse
Affiliation(s)
- Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yanyun Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Wenjuan Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
16
|
miR-223-3p Inhibits Antigen Endocytosis and Presentation and Promotes the Tolerogenic Potential of Dendritic Cells through Targeting Mannose Receptor Signaling and Rhob. J Immunol Res 2020; 2020:1379458. [PMID: 32656268 PMCID: PMC7320286 DOI: 10.1155/2020/1379458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background The role of miR-223-3p in dendritic cells (DCs) is unknown. This study is aimed at investigating the effect of miR-223-3p on the antigen uptake and presentation capacities of DCs and the underlying molecular mechanism. Methods FITC-OVA antigen uptake and cell surface markers in bone marrow-derived DCs (BMDCs) were analyzed by flow cytometry. BMDCs were transfected with the miR-223-3p mimic or inhibitor. Cytokine levels were determined by ELISA. CD4+ T cell differentiation was determined by mixed lymphocyte culture assay. Results OVA treatment significantly downregulated miR-223-3p in BMDCs. The miR-223-3p mimic significantly inhibited OVA-induced antigen uptake and surface expression of MHC-II on BMDCs (P < 0.01). The miR-223-3p mimic increased TGF-β1 production in OVA-treated DCs (P < 0.01). Mixed lymphocyte reaction showed that the miR-223-3p mimic significantly promoted Treg cell differentiation. In addition, the miR-223-3p mimic significantly upregulated CD103 in DCs, indicating the promotion of tolerogenic DCs. The miR-223-3p mimic downregulated Rhob protein in OVA-induced DCs. Rhob knockdown significantly suppressed the ability of FITC-OVA endocytosis (P < 0.01) and surface MHC-II molecule expression (P < 0.01) in BMDCs, promoting promoted Treg cell differentiation. Mannose receptor (MR) knockdown significantly upregulated miR-223-3p, downregulated Rhob protein in OVA-treated DCs, inhibited the FITC-OVA endocytosis and surface MHC-II expression in BMDCs, and promoted Treg cell differentiation (all P < 0.01). Conclusion These data suggest that miR-223-3p has an inhibitory effect on the antigen uptake and presentation capacities of BMDCs and promotes Treg cell differentiation, which is, at least partially, through targeting MR signaling and Rhob.
Collapse
|
17
|
Wells AC, Pobezinskaya EL, Pobezinsky LA. Non-coding RNAs in CD8 T cell biology. Mol Immunol 2020; 120:67-73. [PMID: 32085976 PMCID: PMC7093237 DOI: 10.1016/j.molimm.2020.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
CD8 T cells are among the most vigorous soldiers of the immune system that fight viral infections and cancer. CD8 T cell development, maintenance, activation and differentiation are under the tight control of multiple transcriptional and post-transcriptional networks. Over the last two decades it has become clear that non-coding RNAs (ncRNAs), which consist of microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as global biological regulators. While our understanding of the function of specific miRNAs has increased since the discovery of RNA interference, it is still very limited, and the field of lncRNAs is just starting to blossom. Here we will summarize our knowledge on the role of ncRNAs in CD8 T cell biology, including differentiation into memory and exhausted cells.
Collapse
Affiliation(s)
- Alexandria C Wells
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, United States.
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
18
|
Goh SY, Chao YX, Dheen ST, Tan EK, Tay SSW. Role of MicroRNAs in Parkinson's Disease. Int J Mol Sci 2019; 20:E5649. [PMID: 31718095 PMCID: PMC6888719 DOI: 10.3390/ijms20225649] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a disabling neurodegenerative disease that manifests with resting tremor, bradykinesia, rigidity and postural instability. Since the discovery of microRNAs (miRNAs) in 1993, miRNAs have been shown to be important biological molecules involved in diverse processes to maintain normal cellular functions. Over the past decade, many studies have reported dysregulation of miRNA expressions in PD. Here, we identified 15 miRNAs from 34 reported screening studies that demonstrated dysregulation in the brain and/or neuronal models, cerebrospinal fluid (CSF) and blood. Specific miRNAs-of-interest that have been implicated in PD pathogenesis include miR-30, miR-29, let-7, miR-485 and miR-26. However, there are several challenges and limitations in drawing definitive conclusions due to the small sample size in clinical studies, varied laboratory techniques and methodologies and their incomplete penetrance of the blood-brain barrier. Developing an optimal delivery system and unravelling druggable targets of miRNAs in both experimental and human models and clinical validation of the results may pave way for novel therapeutics in PD.
Collapse
Affiliation(s)
- Suh Yee Goh
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| | - Yin Xia Chao
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Medical Education, Research and Evaluation (MERE) department, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| | - Eng-King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Neuroscience and Behavioral Disorders (NBD) department, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Samuel Sam-Wah Tay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| |
Collapse
|