1
|
Chen J, Zhao Z, Mu X, Wang M, Tang J, Bi Q. Characterization of a marine endolysin LysVPB against Vibrio parahaemolyticus. Protein Expr Purif 2025; 226:106608. [PMID: 39293536 DOI: 10.1016/j.pep.2024.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Currently, there is an urgent to develop safe and environmentally friendly alternatives to antibiotics for combating Vibrio parahaemolyticus. Endolysins are considered promising antibacterial agents due to their desirable range of action and ability to deal with antibiotic-resistant bacteria. While numerous Vibrio phages have been identified, the research on their endolysins is still in its infancy. In this study, a novel endolysin called LysVPB was cloned and expressed in Pichia pastoris. Phylogenetic analysis revealed that LysVPB bears little resemblance to other known endolysins, highlighting its unique nature. Homology modeling identified a putative calcium-binding site in LysVPB. The recombinant LysVPB achieved a lytic activity of 64.8 U/mL and had a molecular weight of approximately 17 kDa. LysVPB exhibited enhanced efficacy at pH 9.0, with 60 % of its maximum activity observed within the broad pH range of 6.0-10.0. The catalytic efficiency of LysVPB peaked at 30 °C but significantly declined beyond 50 °C. Ba2+, Co2+, and Cu2+ showed inhibitory effects on the activity of LysVPB, while Ca2+ can boost it to 126.8 %. Furthermore, LysVPB exhibited satisfactory efficacy against strains of V. parahaemolyticus. LysVPB is an innovative phage lysin with good characteristics that are specific to certain hosts. The modular nature of LysVPB allows for efficient domain exchange with alternative lysins as antimicrobial components and fusion with antimicrobial peptides. This opens up possibilities for engineering chimeric lysins in a broader range of target hosts with high antimicrobial effectiveness and strong activity under physiological conditions.
Collapse
Affiliation(s)
- Juan Chen
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China; College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Ziyun Zhao
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Xiaofeng Mu
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Mengxin Wang
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Jun Tang
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Qingqing Bi
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China.
| |
Collapse
|
2
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Ramesh R, Sathiyamurthy K, Meganathan V, Athmanathan B. Induction and comparative resuscitation of viable but nonculturable state on Vibrio parahaemolyticus serotypes O3:K6 and O1:K25. Arch Microbiol 2024; 206:376. [PMID: 39141167 DOI: 10.1007/s00203-024-04102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.
Collapse
Affiliation(s)
- Rohini Ramesh
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Baskaran Athmanathan
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
4
|
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D. Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa. Mar Drugs 2022; 21:9. [PMID: 36662182 PMCID: PMC9865402 DOI: 10.3390/md21010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Morgan Palisse
- Département des Sciences de la Vie et de la Terre, Université de Caen Normandie, Boulevard Maréchal Juin CS, CEDEX, 14032 Caen, France
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| |
Collapse
|
5
|
Wang X, Hong X, Chen F, Wang KJ. A truncated peptide Spgillcin177–189 derived from mud crab Scylla paramamosain exerting multiple antibacterial activities. Front Cell Infect Microbiol 2022; 12:928220. [PMID: 36061863 PMCID: PMC9435603 DOI: 10.3389/fcimb.2022.928220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) may be the most promising substitute for antibiotics due to their effective bactericidal activity and multiple antimicrobial modes against pathogenic bacteria. In this study, a new functional gene named Spgillcin was identified in Scylla paramamosain, which encoded 216 amino acids of mature peptide. In vivo, Spgillcin was dominantly expressed in the gills of male and female crabs, offering the highest expression level among all tested organs or tissues. The expression pattern of Spgillcin was significantly altered when challenged by Staphylococcus aureus, indicating a positive immune response. In vitro, a functional truncated peptide Spgillcin177–189 derived from the amino acid sequence of Spgillcin was synthesized and showed a broad-spectrum and potent antibacterial activity against several bacterial strains, including the clinical isolates of multidrug-resistant (MDR) strains, with a range of minimum inhibitory concentrations from 1.5 to 48 μM. Spgillcin177–189 also showed rapid bactericidal kinetics for S. aureus and Pseudomonas aeruginosa but did not display any cytotoxicity to mammalian cells and maintained its antimicrobial activity in different conditions. Mechanistic studies indicated that Spgillcin177–189 was mainly involved in the disruption of cell membrane integrity where the membrane components lipoteichoic acid and lipopolysaccharide could significantly inhibit the antimicrobial activity in a dose-dependent manner. In addition, Spgillcin177–189 could change the membrane permeability and cause the accumulation of intracellular reactive oxygen species. No resistance was generated to Spgillcin177–189 when the clinical isolates of methicillin-resistant S. aureus and MDR P. aeruginosa were treated with Spgillcin177–189 and then subjected to a long term of continuous culturing for 50 days. In addition, Spgillcin177–189 exerted a strong anti-biofilm activity by inhibiting biofilm formation and was also effective at killing extracellular S. aureus in the cultural supernatant of RAW 264.7 cells. Taken together, Spgillcin177–189 has strong potential as a substitute for antibiotics in future aquaculture and medical applications.
Collapse
Affiliation(s)
- Xiaofei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiao Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Ke-Jian Wang,
| |
Collapse
|
6
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
7
|
Zhou Y, Song Q, Liu Y, Sun Y, Zhang J. A novel type I Crustin from Exopalaemon carinicauda: Antimicrobial ability related to conserved cysteine. FISH & SHELLFISH IMMUNOLOGY 2022; 127:948-955. [PMID: 35661815 DOI: 10.1016/j.fsi.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Crustins are a kind of antibacterial peptides (AMP) existing in crustaceans, and their antibacterial abilities are considered to be related to the conserved WAP domain. In this study, a novel type I Crustin gene was identified in Exopalaemon carinicauda, named EcCru. The deduced amino acid sequence revealed that the conserved cysteine at position 7 in the WAP domain was replaced by aspartic acid. The gene is 405 bp in length, encoding 134 amino acids, and is mainly distributed in gills and hepatopancreas. After Vibrio parahaemolyticus and Aeromonas hydrophila stimulation, the expression of EcCru was significantly up-regulated within 12 h, and then returned to normal levels. The recombinant protein was obtained using the Pichia pastoris expression system, and the recombinant protein had neither antibacterial activity against gram-positive or gram-negative bacteria. But the antibacterial ability emerged when Asp101 was mutated to Cys. Notably, we also obtained a mutant that had a deletion at the 6 th conserved Cys in the WAP domain, and this mutant had antibacterial ability against gram-positive bacteria Bacillus subtilis and B. cereus. This indicates that the conserved cysteine with different positions in WAP domain can have different effects on the antibacterial ability of Crustins.
Collapse
Affiliation(s)
- Yongzhao Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Qinghua Song
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
8
|
Liang H, Zhang M, Shen C, He J, Lu J, Guo Z. Cloning and functional analysis of a trypsin-like serine protease from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2022; 126:327-335. [PMID: 35661766 DOI: 10.1016/j.fsi.2022.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Trypsin-like serine proteases (TLSs) play various roles in dietary protein digestion, hemolymph coagulation, antimicrobial peptide synthesis, and, in particular, the rapid immune pathways activated in response to pathogen detection. The cultured pearl industry, of which Pinctada fucata martensii is one of the most important species, is plagued by disease, thus leading to large economic losses. Herein, the molecular mechanisms underlying the innate immune response of P.f. martensii were explored. First, immune effector molecules from the P.f. martensii genome were screened and a TLS-like gene encoding a protein with a trypsin domain, herein designated as PmTLS, was identified. A multi-sequence alignment indicated a low sequence homology between PmTLS and other mollusk TLS-like proteins. Furthermore, a neighbor-joining phylogenetic analysis indicated that PmTLS has the closest genetic relationship to a Crassostrea gigas TLS. Additionally, real-time quantitative PCR (qPCR) analysis showed that PmTLS mRNA is constitutively expressed in all of the 6 examined P.f. martensii tissues, with significantly higher expression noted in hemocytes relative to the other tissues examined (p < 0.05). P.f. martensii samples were then challenged with various pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide, peptidoglycan, and polyinosinic acid. In the challenge groups, PmTLS was significantly upregulated in hemocytes at 48 h post-challenge when compared to the unchallenged controls. Furthermore, treatment with recombinant PmTLS (rPmTLS) also significantly inhibited the growth of most of the examined gram-negative bacteria tested in vitro (p < 0.05), but it had little effect on the growth of the examined gram-positive bacteria. When examining morphological changes via transmission electron microscopy, rPmTLS treated bacteria exhibited morphological changes such as plasma wall separation. Thus, rPmTLS appears to play a bactericidal role by destroying bacterial cell membranes or cell walls, which subsequently leads to a release of the cellular contents and cell death. The findings presented herein have enabled further characterization of the immune defense mechanisms in P.f. martensii and may lead to improved disease control methods for the pearl cultivation industry.
Collapse
Affiliation(s)
- Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Chenghao Shen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Junjun He
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhijie Guo
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
9
|
Qin X, Xu X, Guo Y, Shen Q, Liu J, Yang C, Scott E, Bitter H, Zhang C. A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:421-430. [PMID: 35452950 DOI: 10.1016/j.wasman.2022.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The study aimed to propose an efficient and eco-friendly strategy to improve the utilization of feather waste and converting it into high-valued antimicrobial products. Under the synergistic effect of instant catapult steam explosion (ICSE) (1.5 MPa-120 s), over 90% of chicken feather powder (CFP) was degraded into soluble peptides via keratinolysis within 3 h, about 90% of which were smaller than 3 kDa, indicating an overwhelming advantage than general proteolysis. Importantly, the keratinolysis hydrolysate of CFP was able to inhibit E. coli growth, among which the fraction < 3 kDa exhibited highest antimicrobial activity with a minimal inhibitory concentration of 30 mg/mL. Compared to other fractions, the fraction < 3 kDa contained higher content of hydrophobic amino acids (364.11 mg/g), in which about 79% of peptides had more than 60% hydrophobic ratio, potentially contributing to its antimicrobial activity. ICSE-keratinolysis process holds potential in reducing both protein resource waste and environmental pollution by valorizing feathers into antimicrobial product.
Collapse
Affiliation(s)
- Xiaojie Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Xiong Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingshan Shen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Elinor Scott
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Harry Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
De Mandal S, Panda AK, Murugan C, Xu X, Senthil Kumar N, Jin F. Antimicrobial Peptides: Novel Source and Biological Function With a Special Focus on Entomopathogenic Nematode/Bacterium Symbiotic Complex. Front Microbiol 2021; 12:555022. [PMID: 34335484 PMCID: PMC8318700 DOI: 10.3389/fmicb.2021.555022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
The rapid emergence of multidrug resistant microorganisms has become one of the most critical threats to public health. A decrease in the effectiveness of available antibiotics has led to the failure of infection control, resulting in a high risk of death. Among several alternatives, antimicrobial peptides (AMPs) serve as potential alternatives to antibiotics to resolve the emergence and spread of multidrug-resistant pathogens. These small proteins exhibit potent antimicrobial activity and are also an essential component of the immune system. Although several AMPs have been reported and characterized, studies associated with their potential medical applications are limited. This review highlights the novel sources of AMPs with high antimicrobial activities, including the entomopathogenic nematode/bacterium (EPN/EPB) symbiotic complex. Additionally, the AMPs derived from insects, nematodes, and marine organisms and the design of peptidomimetic antimicrobial agents that can complement the defects of therapeutic peptides have been used as a template.
Collapse
Affiliation(s)
- Surajit De Mandal
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, India
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Gianazza E, Eberini I, Palazzolo L, Miller I. Hemolymph proteins: An overview across marine arthropods and molluscs. J Proteomics 2021; 245:104294. [PMID: 34091091 DOI: 10.1016/j.jprot.2021.104294] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
In this compilation we collect information about the main protein components in hemolymph and stress the continued interest in their study. The reasons for such an attention span several areas of biological, veterinarian and medical applications: from the notions for better dealing with the species - belonging to phylum Arthropoda, subphylum Crustacea, and to phylum Mollusca - of economic interest, to the development of 'marine drugs' from the peptides that, in invertebrates, act as antimicrobial, antifungal, antiprotozoal, and/or antiviral agents. Overall, the topic most often on focus is that of innate immunity operated by classes of pattern-recognition proteins. SIGNIFICANCE: The immune response in invertebrates relies on innate rather than on adaptive/acquired effectors. At a difference from the soluble and membrane-bound immunoglobulins and receptors in vertebrates, the antimicrobial, antifungal, antiprotozoal and/or antiviral agents in invertebrates interact with non-self material by targeting some common (rather than some highly specific) structural motifs. Developing this paradigm into (semi) synthetic pharmaceuticals, possibly optimized through the modeling opportunities offered by computational biochemistry, is one of the lessons today's science may learn from the study of marine invertebrates, and specifically of the proteins and peptides in their hemolymph.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|
12
|
Synthesis and Bio-physical Characterization of Crustin Capped Zinc Oxide Nanoparticles, and Their Photocatalytic, Antibacterial, Antifungal and Antibiofilm Activity. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Li S, Lv X, Yu Y, Zhang X, Li F. Molecular and Functional Diversity of Crustin-Like Genes in the Shrimp Litopenaeus vannamei. Mar Drugs 2020; 18:E361. [PMID: 32668696 PMCID: PMC7401287 DOI: 10.3390/md18070361] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Crustins are crustacean cationic cysteine-rich antimicrobial peptides that contain one or two whey acidic protein (WAP) domain(s) at the carboxyl terminus and mainly show antimicrobial and/or proteinase inhibitory activities. Here, we performed genome and transcriptome screening and identified 34 full-length crustin-like encoding genes in Litopenaeus vannamei. Multiple sequence analysis of the deduced mature peptides revealed that these putative crustins included 10 type Ia, two type Ib, one type Ic, 11 type IIa, three type IIb, four type III, one type IV, one type VI, and one type VII. These putative crustins were clustered into different groups. Phylogenetic analysis, considering their domain composition, showed that different types of crustin-like genes in crustaceans might be originated from the WAP core region, along with sequence insertion, duplication, deletion, and amino acid substitution. Tissue distribution analysis suggested that most crustin-like genes were mainly detected in immune-related tissues while several crustin-like genes exhibited tissue-specific expression patterns. Quantitative PCR analysis on 15 selected crustin-like genes showed that most of them were apparently upregulated after Vibrio parahaemolyticus or white spot syndrome virus (WSSV) infection. One type Ib crustin-like gene, mainly expressed in the ovary, showed the highest expression levels before the gastrula stage and was hardly detected after the limb bud stage, suggesting that it was a maternal immune effector. Collectively, the present data revealed the molecular and functional diversity of crustins and their potential evolutionary routes in crustaceans.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Srinivasan R, Chaitanyakumar A, Subramanian P, Mageswari A, Gomathi A, Aswini V, Sankar AM, Ramya M, Gothandam KM. Recombinant engineered phage-derived enzybiotic in Pichia pastoris X-33 as whole cell biocatalyst for effective biocontrol of Vibrio parahaemolyticus in aquaculture. Int J Biol Macromol 2020; 154:1576-1585. [DOI: 10.1016/j.ijbiomac.2019.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
|
15
|
Biopolymer K-carrageenan wrapped ZnO nanoparticles as drug delivery vehicles for anti MRSA therapy. Int J Biol Macromol 2019; 144:9-18. [PMID: 31821826 DOI: 10.1016/j.ijbiomac.2019.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 02/03/2023]
Abstract
Kappa-Carrageenan wrapped ZnO nanoparticles (KC-ZnO NPs) was synthesized, physico-chemically characterized and evaluated their biocompatibility and antimicrobial therapy against MRSA. XRD showed the highly crystalline and hexagonal phase structure of ZnO NPs. FETEM confirmed the spherical and hexagonal shaped particle with the mean size of 97.03 ± 9.05 nm. The synthesized KC-ZnO NPs exhibited significant antibacterial activity against MRSA. The biofilm growth of MRSA was greatly inhibited at 100 μg/ml as observed through live and dead cell assay. KC-ZnO NPs have shown invitro anti-inflammatory activity (82%) at 500 μg/ml. KC-ZnO NPs was non-toxic to NIH3T3 mouse embryonic fibroblasts cell lines. Further, no apoptotic and necrotic mediated death in NIH3T3 mouse embryonic fibroblasts cells were noticed by flow cytometric analysis. KC-ZnO NPs have good biocompatibility as recorded by the least hemolysis percentage (<3%) up to 100 μg/ml, which is much lesser than the acceptable limit. In addition, ecosafety analysis has shown that KC-ZnO NPs and kappa karrageenan (0-500 μg/ml) caused no mortality of A. salina after 48 h. However, bare zinc acetate has shown 35% mortality of A. salina after 48 h. The results conclude that KC-ZnO NPs could be a novel antibacterial therapy for the treatment of MRSA associated infectious.
Collapse
|
16
|
Rekha R, Divya M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN, Pavela R, Vaseeharan B. Synthesis and characterization of crustin capped titanium dioxide nanoparticles: Photocatalytic, antibacterial, antifungal and insecticidal activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111620. [PMID: 31522113 DOI: 10.1016/j.jphotobiol.2019.111620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022]
Abstract
Current scenario of bio-nanotechnology, successfully fabrication of ultrafine titanium dioxide nanoparticles (TiO2NPs) using various biological protein sources for the multipurpose targets. The present research report involves synthesis of TiO2NPs using antimicrobial peptide (AMP) crustin (Cr). Crustin previously purified from the blue crab, Portunus pelagicus haemolymph, by blue Sepharose CL-6B matrix assisted affinity column chromatography. Synthesized Cr-TiO2NPs was physico-chemically characterized by UV-Visible spectroscopy (UV-Visible), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High-resolution transmission electron microscopy (HR-TEM) and zeta potential examination. X-ray diffraction analysis for crystalline nature and phase identification of titanium dioxide nanoparticles was absorbed. Functional groups were found through FTIR ranges between 1620 and 1700 cm-1. HR-TEM analysis showed that the synthesized Cr-TiO2NPs tetragonal shape and sizes ranging from 10 to 50 nm. Finally, the surface charge of the Cr-TiO2NPs was confirmed through zeta potential analysis. Furthermore, the characterized Cr-TiO2NPs exhibited good biofilm inhibition against GPB - S. mutans (Gram Positive Bacteria- Streptococcus mutans), GNB - P. vulgaris (Gram Negative Bacteria- Proteus vulgaris) and fungal Candida albicans. Moreover, photocatalysis demonstrated that the Cr-TiO2NPs was effectively explored the degradation of dyes. The results suggest that Cr-TiO2NPs is an excellent bactericidal, fungicidal and photocatalytic agent that can be supportively used for biomedical and industrial applications.
Collapse
Affiliation(s)
- Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Mani Divya
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
17
|
He J, Liang H, Zhu J, Fang X. Separation, identification and gene expression analysis of PmAMP-1 from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2019; 92:728-735. [PMID: 31279079 DOI: 10.1016/j.fsi.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Antibacterial peptides (AMPs) constitute an important part of the body's innate immune system and are responsible for a wide range of inhibitory effects against pathogens such as bacteria, fungi, and viruses. In this study, multi-step high performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify proteins with antibacterial activity from the serum of Pinctada fucata martensii (P.f. Martensii) and obtain a component named P.f. Martensii antimicrobial peptide-1 (PmAMP-1). PmAMP-1 cDNA was cloned and sequenced by rapid amplification of cDNA ends (RACE) and mRNA expression of was analyzed by quantitative real-time PCR (qRT-PCR). From the results of this study, full-length PmAMP-1 cDNA was shown to be 700 base pairs (bp) long with an open reading frame (ORF) of 294 bp, encoding 97 amino acids with a predicted structure that is mostly α-helices. PmAMP-1 mRNA was constitutively expressed in all tested tissues including the adductor muscle, mantle, hepatopancreas, gill, gonads and hemocytes. The highest level of PmAMP-1 transcription was observed at 8 h and 2 h after bacterial challenge in hemocytes and adductor muscle (p < 0.01), respectively. Furthermore, PmAMP-1 caused significant morphological alterations in E. coli, as shown by transmission electron microscopy (TEM). The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.
Collapse
Affiliation(s)
- Junjun He
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Haiying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China.
| | - Jiaping Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Xiaochen Fang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| |
Collapse
|
18
|
RethnaPriya E, Ravichandran S, Gobinath T, Tilvi S, Devi SP. Functional characterization of anti-cancer sphingolipids from the marine crab Dromia dehanni. Chem Phys Lipids 2019; 221:73-82. [PMID: 30922836 DOI: 10.1016/j.chemphyslip.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Sphingolipids have been considered for many years only as structural components of membranes. It is now acknowledged that they are also involved in controlling cellular processes such as proliferation.The present work was designed to find the anticancer activity of the crab Dromia dehanni hemolymph in in-vivo and in vitro with special reference to the anticancer compound sphingolipids isolation and characterization. The active fraction of the purified hemolymph was subjected to NMR and ESI-MS/MS analysis. The ESI-MS/MS spectrum exhibited intense signals for sodiated molecular ions [M + Na]+ of sphingomyelins (SM) identified as N-2-O-Acetyl-12 pentadecenoyl sphingosine phosphorylcholine, N-9-eicosenoyl- sphinganine phosphocholine and the corresponding dehydro sphingomyelin, N-9-eicosenoyl- dehydro- sphinganine phosphocholine along with the ions at m/z 147, 184 characteristic of phosphocholine. The present study revealed D. dehaani might be a great source for the novel anti-cancer compounds which can be used for human benefits.
Collapse
Affiliation(s)
- Elangovan RethnaPriya
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Samuthirapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India.
| | - Thilagar Gobinath
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Supriya Tilvi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| | - S Prabha Devi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| |
Collapse
|
19
|
Rekha R, Vaseeharan B, Vijayakumar S, Abinaya M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN. Crustin-capped selenium nanowires against microbial pathogens and Japanese encephalitis mosquito vectors - Insights on their toxicity and internalization. J Trace Elem Med Biol 2019; 51:191-203. [PMID: 30466931 DOI: 10.1016/j.jtemb.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Herein, we reported a method to synthesize selenium nanowires (Cr-SeNWs) relying to purified cysteine-rich antimicrobial peptide crustin in presence of ascorbic acid. Cr-SeNWs were characterized by UV-vis, XRD, FTIR and Raman spectroscopy, as well as SEM, HR-TEM and EDAX. The UV-vis spectroscopy peak was noted at 350 nm. XRD showed the crystalline nature of Cr-SeNWs through diffraction peaks observed 2θ at 12° and 28° corresponding to (020), and (241) lattice planes, respectively. HR-TEM results shed light on the size of Cr-SeNWs, ranging from 17 to 47 nm. Raman spectroscopy and EDAX analysis of Cr-SeNWs showed presence of 57% selenium element. Furthermore, Cr-SeNWs showed higher antimicrobial activity on Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) over Gram-negative ones (Pseudomonas aeruginosa, Escherichia coli). The zone of inhibition was larger on S. aureus (50 μg/ml = 4.0 mm, 75 μg/ml = 7.2 mm) and E. faecalis (50 μg/ml = 3.1 mm, 75 μg/ml = 5.1 mm), over P. aeruginosa (50 μg/ml = 2.1 mm, 75 μg/ml = 4.8 mm), E. coli (50 μg/ml = 1.3 mm, 75 μg/ml = 4.3 mm) bacteria. The antibiofilm activity of Cr-SeNWs was also investigated and biofilm reduction was observed at 75 μg/ml. In addition, Cr-SeNWs were highly effective as larvicides against Zika virus and Japanese encephalitis mosquito vectors, i.e., Culex quinquefasciatus and Culex tritaeniorhynchus, with LC50 values of 4.15 and 4.85 mg/l, respectively. The nanowire toxicity and internalization was investigated through confocal laser scanning microscopy and histological studies. To investigate the potential of Cr-SeNWs for real-world applications, we also evaluated Cr-SeNWs in hemolytic assays, showing no cytotoxicity till 5 mg/ml. Besides, higher antioxidant activity at the concentration at 100 μg/ml was noted, if compared with purified crustin. The strong antioxidant potential of this nanomaterial can be helpful to boost the shelf-life potential of Cr-SeNWs-based pesticides and antimicrobials.
Collapse
Affiliation(s)
- Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India.
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Muthukumar Abinaya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam, 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|