1
|
Cheng M, Lu Y, Wang J, Wang H, Sun Y, Zhao W, Wang J, Shi C, Luo J, Gao M, Yu T, Wang J, Guan J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Cao X, Yang D, Wang C, Zeng Y. The E3 ligase ASB3 downregulates antiviral innate immunity by targeting MAVS for ubiquitin-proteasomal degradation. Cell Death Differ 2024; 31:1746-1760. [PMID: 39266719 PMCID: PMC11618372 DOI: 10.1038/s41418-024-01376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
E3 ubiquitin ligases are very important for regulating antiviral immunity during viral infection. Here, we discovered that Ankyrin repeat and SOCS box-containing protein 3 (ASB3), an E3 ligase, are upregulated in the presence of RNA viruses, particularly influenza A virus (IAV). Notably, overexpression of ASB3 inhibits type I IFN (IFN-I) responses induced by Sendai virus (SeV) and IAV, and ablation of ASB3 restores SeV and H9N2 infection-mediated transcription of IFN-β and its downstream interferon-stimulated genes (ISGs). Interestingly, animals lacking ASB3 presented decreased susceptibility to H9N2 and H1N1 infections. Mechanistically, ASB3 interacts with MAVS and directly mediates K48-linked polyubiquitination and degradation of MAVS at K297, thereby inhibiting the phosphorylation of TBK1 and IRF3 and downregulating downstream antiviral signaling. These findings establish ASB3 as a critical negative regulator that controls the activation of antiviral signaling and describe a novel function of ASB3 that has not been previously reported.
Collapse
Affiliation(s)
- Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiarui Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haixu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiawei Luo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxin Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiayao Guan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Dongqin Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
2
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
3
|
Chang H, Wu H, Hou P, Aizaz M, Yang R, Xiang A, Qi W, He H, Wang H. DLG1 promotes the antiviral innate immune response by inhibiting p62-mediated autophagic degradation of IKKε. J Virol 2023; 97:e0150123. [PMID: 37982618 PMCID: PMC10734446 DOI: 10.1128/jvi.01501-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE The type-I interferon (IFN-I) signaling pathway is the first line of antiviral innate immunity. It must be precisely regulated against virus-induced damage. The tightly regulated mechanisms of action of host genes in the antiviral innate immune signaling pathway are still worth studying. Here, we report a novel role of DLG1 in positively regulating the IκB kinase epsilon (IKKε)-mediated IFN-I signaling response against negative-stranded RNA virus replication, whereas the RNA virus inhibits the expression of DLG1 for immune escape. Importantly, the E3 ligase March2 interacts with and promotes K27-linked polyubiquitination of IKKε, and p62 is a cargo receptor that recognizes ubiquitinated IKKε for eventual autophagic degradation. Together, the current findings elucidate the role of DLG1 in the antiviral IFN-I signaling pathway and viral infection repression.
Collapse
Affiliation(s)
- Huasong Chang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hao Wu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Rukun Yang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Aibiao Xiang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Wenjing Qi
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
4
|
Yan J, Gao Y, Bai J, Li J, Li M, Liu X, Jiang P. SERPINB1 promotes Senecavirus A replication by degrading IKBKE and regulating the IFN pathway via autophagy. J Virol 2023; 97:e0104523. [PMID: 37811994 PMCID: PMC10617579 DOI: 10.1128/jvi.01045-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Senecavirus A (SVA) is an emerging picornavirus associated with vesicular disease, which wide spreads around the world. It has evolved multiple strategies to evade host immune surveillance. The mechanism and pathogenesis of the virus infection remain unclear. In this study, we show that SERPINB1, a member of the SERPINB family, promotes SVA replication, and regulates both innate immunity and the autophagy pathway. SERPINB1 catalyzes K48-linked polyubiquitination of IκB kinase epsilon (IKBKE) and degrades IKBKE through the proteasome pathway. Inhibition of IKBKE expression by SERPINB1 induces autophagy to decrease type I interferon signaling, and ultimately promotes SVA proliferation. These results provide importantly the theoretical basis of SVA replication and pathogenesis. SERPINB1 could be a potential therapeutic target for the control of viral infection.
Collapse
Affiliation(s)
- Junfang Yan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jian Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minjing Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Kwanten B, Deconick T, Walker C, Wang F, Landesman Y, Daelemans D. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother 2023; 160:114305. [PMID: 36731340 DOI: 10.1016/j.biopha.2023.114305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFβ-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFβ-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.
Collapse
Affiliation(s)
- Bert Kwanten
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | - Tine Deconick
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | | | - Feng Wang
- Karyopharm Therapeutics, Newton, MA 02459, USA
| | | | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium.
| |
Collapse
|
6
|
Li X, Sun R, Guo Y, Zhang H, Xie R, Fu X, Zhang L, Zhang L, Li Z, Huang J. N-Acetyltransferase 9 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Proliferation by N-Terminal Acetylation of the Structural Protein GP5. Microbiol Spectr 2023; 11:e0244222. [PMID: 36695606 PMCID: PMC9927549 DOI: 10.1128/spectrum.02442-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious threat to the global swine industry. As a typical immunosuppressive virus, PRRSV has developed a variety of complex mechanisms to escape the host innate immunity. In this study, we uncovered a novel immune escape mechanism of PRRSV infection. Here, we demonstrate for the first time that the endoplasmic reticulum (ER)-resident N-acetyltransferase Nat9 is an important host restriction factor for PRRSV infection. Nat9 inhibited PRRSV proliferation in an acetyltransferase activity-dependent manner. Mechanistically, glycoprotein 5 (GP5) of PRRSV was identified as interacting with Nat9 and being N-terminally acetylated by it, which generates a GP5 degradation signal, promoting the K27-linked-ubiquitination degradation of GP5 to decrease virion assembly. Meanwhile, the expression of Nat9 was inhibited during PRRSV infection. In detail, two transcription factors, ETV5 and SP1, were screened out as the key transcription factors binding to the core promoter region of Nat9, and the PRRSV nonstructural protein 1β (Nsp1β), Nsp4, Nsp9, and nucleocapsid (N) proteins were found to interfere significantly with the expression of ETV5 and SP1, thereby regulating the transcription activity of Nat9 and inhibiting the expression of Nat9. The findings suggest that PRRSV decreases the N-terminal acetylation of GP5 to support virion assembly by inhibiting the expression of Nat9. Taken together, our findings showed that PRRSV has developed complex mechanisms to inhibit Nat9 expression and trigger virion assembly. IMPORTANCE To ensure efficient replication, a virus must hijack or regulate multiple host factors for its own benefit. Understanding virus-host interactions and the molecular mechanisms of host resistance to PRRSV infection is necessary to develop effective strategies to control PRRSV. The N-acetyltransferase Nat9 plays important roles during virus infection. Here, we demonstrate that Nat9 exhibits an antiviral effect on PRRSV proliferation. The GP5 protein of PRRSV is targeted specifically by Nat9, which mediates GP5 N-terminal acetylation and degradation via a ubiquitination-dependent proteasomal pathway. However, PRRSV manipulates the transcription factors ETV5 and SP1 to inhibit the expression of Nat9 and promote virion assembly. Thus, we report a novel function of Nat9 in PRRSV infection and elucidate a new mechanism by which PRRSV can escape the host innate immunity, which may provide novel insights for the development of antiviral drugs.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Huixia Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Ruyu Xie
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Xubin Fu
- Tianjin Ringpu Bio-technology Co., Ltd., Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| |
Collapse
|
7
|
Zang L, Gu J, Yang X, Yuan Y, Guo H, Zhou W, Ma J, Chen Y, Wu Y, Zheng H, Shi W. Ubiquitin-specific protease 24 promotes EV71 infection by restricting K63-linked polyubiquitination of TBK1. Virol Sin 2023; 38:75-83. [PMID: 36334706 PMCID: PMC10006192 DOI: 10.1016/j.virs.2022.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) is an essential protein kinase for activation of interferon regulatory factor 3 (IRF3) and induction of the type I interferons (IFN-I). Although the biochemical regulation of TBK1 activation has been studied, little is known about how enterovirus 71 (EV71) employs the deubiquitinases (DUBs) to regulate TBK1 activation for viral immune evasion. Here, we found that EV71 infection upregulated the expression of ubiquitin-specific protease 24 (USP24). Further studies revealed that USP24 physically interacted with TBK1, and can reduce K63-linked polyubiquitination of TBK1. Knockdown of USP24 upregulated TBK1 K63-linked polyubiquitination, promoted the phosphorylation and nuclear translocation of IRF3, and in turn improved IFN-I production during EV71 infection. As a consequence, USP24 knockdown dramatically inhibited EV71 infection. This study revealed USP24 as a novel regulator of TBK1 activation, which promotes the understanding of immune evasion mechanisms of EV71 and could provide a potential strategy for treatment of EV71 infection.
Collapse
Affiliation(s)
- Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jin Gu
- Hubei Hospital of Integrated Chinese and Western Medicine, Wuhan, 430015, China
| | - Xinyu Yang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, 215123, China
| | - Hui Guo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Wei Zhou
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jinhong Ma
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yan Chen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yumin Wu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, 215123, China.
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
8
|
Ge Z, Ding S. Regulation of cGAS/STING signaling and corresponding immune escape strategies of viruses. Front Cell Infect Microbiol 2022; 12:954581. [PMID: 36189363 PMCID: PMC9516114 DOI: 10.3389/fcimb.2022.954581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the first line of defense against invading external pathogens, and pattern recognition receptors (PRRs) are the key receptors that mediate the innate immune response. Nowadays, there are various PRRs in cells that can activate the innate immune response by recognizing pathogen-related molecular patterns (PAMPs). The DNA sensor cGAS, which belongs to the PRRs, plays a crucial role in innate immunity. cGAS detects both foreign and host DNA and generates a second-messenger cGAMP to mediate stimulator of interferon gene (STING)-dependent antiviral responses, thereby exerting an antiviral immune response. However, the process of cGAS/STING signaling is regulated by a wide range of factors. Multiple studies have shown that viruses directly target signal transduction proteins in the cGAS/STING signaling through viral surface proteins to impede innate immunity. It is noteworthy that the virus utilizes these cGAS/STING signaling regulators to evade immune surveillance. Thus, this paper mainly summarized the regulatory mechanism of the cGAS/STING signaling pathway and the immune escape mechanism of the corresponding virus, intending to provide targeted immunotherapy ideas for dealing with specific viral infections in the future.
Collapse
Affiliation(s)
- Zhe Ge
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- *Correspondence: Shuzhe Ding,
| |
Collapse
|
9
|
Yang Y, Cao X, Huang L, Yang A. RNF19a inhibits antiviral immune response to RNA viruses through degradation of TBK1. Mol Immunol 2022; 143:1-6. [PMID: 34990937 DOI: 10.1016/j.molimm.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a pivotal role in antiviral innate immunity. TBK1 mediates the activation of interferon regulatory factor (IRF) 3, leading to the induction of type I IFNs (IFN-α/β) and of NF-κB signal transduction following viral infections. TBK1 must be tightly regulated to effectively control viral infections and maintain immune homeostasis. Here, we found that E3 ubiquitin ligase RNF19a mediated K48-linked ubiquitination and proteasomal degradation of TBK1. Specifically, the silence of RNF19a enhanced the production of type I interferons and suppressed RNA viral replication. Our results uncover that RNF19a acts as a negative mediator in the RIG-I signaling pathway to attenuate antiviral immune responses and suggest RNF19a as a potential therapy target in clinical infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Lisong Huang
- Emergency Department, The Aerospace Central Hospital, Beijing, 100049, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| |
Collapse
|
10
|
Hu T, Pan M, Yin Y, Wang C, Cui Y, Wang Q. The Regulatory Network of Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Pathway in Viral Evasion. Front Microbiol 2021; 12:790714. [PMID: 34966372 PMCID: PMC8711784 DOI: 10.3389/fmicb.2021.790714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023] Open
Abstract
Virus infection has been consistently threatening public health. The cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway is a critical defender to sense various pathogens and trigger innate immunity of mammalian cells. cGAS recognizes the pathogenic DNA in the cytosol and then synthesizes 2'3'-cyclic GMP-AMP (2'3'cGAMP). As the second messenger, cGAMP activates STING and induces the following cascade to produce type I interferon (IFN-I) to protect against infections. However, viruses have evolved numerous strategies to hinder the cGAS-STING signal transduction, promoting their immune evasion. Here we outline the current status of the viral evasion mechanism underlying the regulation of the cGAS-STING pathway, focusing on how post-transcriptional modifications, viral proteins, and non-coding RNAs involve innate immunity during viral infection, attempting to inspire new targets discovery and uncover potential clinical antiviral treatments.
Collapse
Affiliation(s)
- Tongyu Hu
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ye Cui
- Division of Immunology, The Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
12
|
Long noncoding RNA MIR2187HG suppresses TBK1-mediated antiviral signaling through deriving miR-2187-3p in teleost fish. J Virol 2021; 96:e0148421. [PMID: 34643431 DOI: 10.1128/jvi.01484-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) function as microregulatory factors that influence gene expression after a variety of pathogenic infection, which have been extensively studied in the past few years. Although less attention has been paid to lncRNAs in lower vertebrates than in mammals, current studies reveals that lncRNAs plays a vital role in fish stimulated by pathogens. Here, we discovered a new lncRNA, termed as MIR2187HG, which can function as a precursor of a small RNA miR-2187-3p with regulatory functions in miiuy croaker (Miichthys miiuy). Upon Siniperca chuatsi rhabdovirus (SCRV) virus infection, the expression levels of MIR2187HG were remarkably enhanced. Elevated MIR2187HG expression can act as a pivotally negative regulator that participates in the innate immune response of teleost fish to inhibit the intracellular TANK-binding kinase 1 (TBK1)-mediated antiviral signaling pathways, which can effectively avoid excessive immunity. In addition, we found that the SCRV virus could also utilize MIR2187HG to enhance its own number. Our results not only provide evidence regarding the involvement of the lncRNAs in response to anti-viruses in fish, but also broaden our understanding of the function of lncRNAs as precursor miRNA in teleost fish for the first time. Importance: SCRV infection upregulates MIR2187HG levels, which in turn suppresses SCRV-triggered type I interferon production, thus promoting viral replication in miiuy croaker. Notably, MIR2187HG regulates the release of miR-2187-3p, and TBK1 is a target of miR-2187-3p. MIR2187HG could obtain the function from miR-2187-3p to inhibit TBK1 expression and subsequently modulate TBK1-mediated NF-κB and IRF3 signaling. The collective results suggest that the novel regulation mechanism of TBK1-mediated antiviral response during RNA viral infection was regulated by MIR2187HG. Therefore, a new regulation mechanism for lncRNAs to regulate antiviral immune responses in fish is proposed.
Collapse
|
13
|
Yamano K, Kojima W. Molecular functions of autophagy adaptors upon ubiquitin-driven mitophagy. Biochim Biophys Acta Gen Subj 2021; 1865:129972. [PMID: 34332032 DOI: 10.1016/j.bbagen.2021.129972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Perturbations in organellar health can lead to an accumulation of unwanted and/or damaged organelles that are toxic to the cell and which can contribute to the onset of neurodegenerative diseases such as Parkinson's disease. Mitochondrial health is particularly critical given the indispensable role the organelle has not only in adenosine triphosphate production but also other metabolic processes. Byproducts of oxidative respiration, such as reactive oxygen species, however, can negatively impact mitochondrial fitness. Consequently, selective degradation of damaged mitochondria, which occurs via a specific autophagic process termed mitophagy, is essential for normal cell maintenance. SCOPE OF REVIEW Recent accumulating evidence has shown that autophagy adaptors (also referred to as autophagy receptors) play critical roles in connecting ubiquitinated mitochondria with the autophagic machinery of the autophagy-lysosome pathway that is required for degradation. In this review, we focus on our current understanding of the autophagy adaptor mechanisms underlying PINK1/Parkin-driven mitophagy. MAJOR CONCLUSIONS Although autophagy adaptors are canonically defined as proteins that possess ubiquitin-binding domains and ATG8s-binding motifs, the recent identification of novel binding partners has contributed to the development of a more sophisticated model for how autophagy adaptors contribute to the molecular hub that organizes autophagic cargo-degradation. GENERAL SIGNIFICANCE Although mitophagy is recognized as one of the selective autophagy pathways that removes dysfunctional mitochondria, a more nuanced understanding of the interactions connecting autophagy adaptors and their associated proteins is needed to gain deeper insights into the fundamental biological processes underlying human diseases, including neurodegenerative disorders. This review is part of a Special Issue entitled Mitophagy.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
14
|
Herhaus L. TBK1 (TANK-binding kinase 1)-mediated regulation of autophagy in health and disease. Matrix Biol 2021; 100-101:84-98. [DOI: 10.1016/j.matbio.2021.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
|
15
|
Song Y, Guo Y, Li X, Sun R, Zhu M, Shi J, Tan Z, Zhang L, Huang J. RBM39 Alters Phosphorylation of c-Jun and Binds to Viral RNA to Promote PRRSV Proliferation. Front Immunol 2021; 12:664417. [PMID: 34079549 PMCID: PMC8165236 DOI: 10.3389/fimmu.2021.664417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 01/27/2023] Open
Abstract
As transcriptional co-activator of AP-1/Jun, estrogen receptors and NF-κB, nuclear protein RBM39 also involves precursor mRNA (pre-mRNA) splicing. Porcine reproductive and respiratory syndrome virus (PRRSV) causes sow reproductive disorders and piglet respiratory diseases, which resulted in serious economic losses worldwide. In this study, the up-regulated expression of RBM39 and down-regulated of inflammatory cytokines (IFN-β, TNFα, NF-κB, IL-1β, IL-6) were determined in PRRSV-infected 3D4/21 cells, and accompanied with the PRRSV proliferation. The roles of RBM39 altering phosphorylation of c-Jun to inhibit the AP-1 pathway to promote PRRSV proliferation were further verified. In addition, the nucleocytoplasmic translocation of RBM39 and c-Jun from the nucleus to cytoplasm was enhanced in PRRSV-infected cells. The three RRM domain of RBM39 are crucial to support the proliferation of PRRSV. Several PRRSV RNA (nsp4, nsp5, nsp7, nsp10-12, M and N) binding with RBM39 were determined, which may also contribute to the PRRSV proliferation. Our results revealed a complex mechanism of RBM39 by altering c-Jun phosphorylation and nucleocytoplasmic translocation, and regulating binding of RBM39 with viral RNA to prompt PRRSV proliferation. The results provide new viewpoints to understand the immune escape mechanism of PRRSV infection.
Collapse
Affiliation(s)
- Yinna Song
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoyang Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| |
Collapse
|
16
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|