1
|
Huang JC, Tong XL, Xiang MSW, Boumelhem BB, Foulis DP, Zhang M, McKenzie CA, McCaughan GW, Reinheckel T, Zhang HE, Gorrell MD. Dipeptidyl peptidase 9 (DPP9) depletion from hepatocytes in experimental primary liver cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167819. [PMID: 40187163 DOI: 10.1016/j.bbadis.2025.167819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an indispensable intracellular protease. Among its many molecular functions is suppression of the NLRP1 inflammasome. Inhibitors targeting all four proteases of the DPP4 family, including DPP9, can reduce tumour burden, including in mouse liver. To explore hepatocyte DPP9 in experimental hepatocellular carcinoma (HCC), we generated hepatocyte-specific DPP9-KO mice by crossing albumin-Cre mice with DPP9 floxed mice and treated sequentially with diethylnitrosamine, then with thioacetamide combined with an atherogenic high-fat diet until 28 weeks of age. DPP9-KO mice had less body, liver and subcutaneous adipose tissue mass, lower fasting plasma glucose and fewer small macroscopic liver nodules compared to DPP9-WT control mice. However, there were no differences in the total number of macroscopic liver nodules, or of microscopic tumour burden, inflammation, fibrosis or steatosis. Consistent with the known function of DPP9 to suppress NLRP1 activation, activated caspase-1 protein and inflammation markers Nfkbib, Cxcl10 and Ccl5 were elevated in DPP9-KO liver. The tumour suppressor protein p53 was increased and the autophagy proteins beclin1, LC3B and p62 were altered. In conclusion, hepatocyte-specific DPP9 gene deletion in experimental primary liver cancer improved energy metabolism and may reduce liver cancer initiation, via mechanisms that may include increased autophagy and tumour suppression.
Collapse
MESH Headings
- Animals
- Hepatocytes/pathology
- Hepatocytes/metabolism
- Hepatocytes/enzymology
- Mice
- Mice, Knockout
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Male
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Diet, High-Fat/adverse effects
- Mice, Inbred C57BL
- Inflammasomes/metabolism
- Liver/pathology
- Liver/metabolism
Collapse
Affiliation(s)
- JiaLi Carrie Huang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xinlin Linda Tong
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michelle Sui Wen Xiang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Badwi B Boumelhem
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Diarmid P Foulis
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - MingChang Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Catriona A McKenzie
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Geoffrey W McCaughan
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Hui E Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mark D Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
2
|
Ahmad SS, Ahmed F, Alam MM, Ahmad S, Khan MA. Unravelling the role of dipeptidyl peptidases-8/9 (DPP-8/9) in inflammatory osteoporosis: a comprehensive study investigating chrysin as a potential anti-osteoporotic agent. J Pharm Pharmacol 2025; 77:249-263. [PMID: 39231440 DOI: 10.1093/jpp/rgae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVES This study aimed to investigate the role of dipeptidyl peptidase-8 and 9 (DPP-8/9) enzymes in inflammatory bone loss using a 4-vinylcyclohexene diepoxide (VCD)-induced model in Wistar rats. Additionally, we evaluated the therapeutic potential of inhibiting these enzymes with the flavonoid chrysin. METHODS Inflammatory osteoporosis was induced by administering VCD that elevated interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) levels. DPP-8/9 enzyme expression and various bone markers were assayed using serum. Further analysis included bone microarchitecture, histology, and immunohistochemistry. Additionally, chrysin's potential to inhibit DPP-8/9 and mitigate VCD-induced inflammatory bone loss was also evaluated. KEY FINDINGS VCD administration in rats caused ovotoxicity that increased IL-6 and TNF-α levels, resulting in significant bone loss. Serum analysis revealed elevated bone resorption markers and DPP-8/9 enzyme levels. Inhibiting DPP-8/9 with 1G244 reversed these effects, confirmed by histology, immunohistochemistry, and micro-CT scans. Moreover, chrysin significantly reduced DPP-8/9 levels compared with the untreated group, improved bone markers, and lower inflammatory cytokines, indicating reduced osteoclastogenesis. CONCLUSION This study highlights the role of DPP-8/9 in inflammation-induced osteoporosis. Following inhibition of DPP-8/9, we observed improved bone markers with preservation of trabecular bone mineral density in rats. Additionally, chrysin demonstrated potential as an anti-DPP-8/9 agent, suggesting its viability for future therapeutic interventions in DPP-8/9-related inflammatory diseases.
Collapse
Affiliation(s)
- Syed Sufian Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Mohd Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
Kiepura A, Suski M, Stachyra K, Kuś K, Czepiel K, Wiśniewska A, Ulatowska-Białas M, Olszanecki R. The Influence of the FFAR4 Agonist TUG-891 on Liver Steatosis in ApoE-Knockout Mice. Cardiovasc Drugs Ther 2024; 38:667-678. [PMID: 36705799 PMCID: PMC11266261 DOI: 10.1007/s10557-023-07430-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) constitutes an independent risk factor for the development of coronary heart disease. Low-grade inflammation has been shown to play an important role in the development of atherosclerosis and NAFLD. Free fatty acid receptor 4 (FFAR4/GPR120), which is involved in damping inflammatory reactions, may represent a promising target for the treatment of inflammatory diseases. Our objective was to evaluate the effect of TUG-891, the synthetic agonist of FFAR4/GPR120, on fatty liver in vivo. METHODS The effect of TUG-891 on fatty liver was investigated in apoE-/- mice fed a high-fat diet (HFD), using microscopic, biochemical, molecular, and proteomic methods. RESULTS Treatment with TUG-891 inhibited the progression of liver steatosis in apoE-/- mice, as evidenced by histological analysis, and reduced the accumulation of TG in the liver. This action was associated with a decrease in plasma AST levels. TUG-891 decreased the expression of liver genes and proteins involved in de novo lipogenesis (Srebp-1c, Fasn and Scd1) and decreased the expression of genes related to oxidation and uptake (Acox1, Ehhadh, Cd36, Fabp1). Furthermore, TUG-891 modified the levels of selected factors related to glucose metabolism (decreased Glut2, Pdk4 and Pklr, and increased G6pdx). CONCLUSION Pharmacological stimulation of FFAR4 may represent a promising lead in the search for drugs that inhibit NAFLD.
Collapse
Affiliation(s)
- Anna Kiepura
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland.
| |
Collapse
|
4
|
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal 2023; 39:684-707. [PMID: 37212238 DOI: 10.1089/ars.2023.0268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Collapse
Affiliation(s)
- Ippei Kawano
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bazila Bazila
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Wiśniewska A, Czepiel K, Stachowicz A, Pomierny B, Kuś K, Kiepura A, Stachyra K, Surmiak M, Madej J, Olszanecki R, Suski M. The antiatherosclerotic action of 1G244 - An inhibitor of dipeptidyl peptidases 8/9 - is mediated by the induction of macrophage death. Eur J Pharmacol 2023; 944:175566. [PMID: 36739078 DOI: 10.1016/j.ejphar.2023.175566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. METHODS The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. CONCLUSIONS In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna str., 30-688, Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 8 Skawinska str., 31-066, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland.
| |
Collapse
|
6
|
Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022; 128:67-82. [DOI: 10.1016/j.diff.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
7
|
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022; 13:1002871. [PMID: 36172198 PMCID: PMC9510841 DOI: 10.3389/fphar.2022.1002871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.
Collapse
Affiliation(s)
- Chenkai Cui
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinhong Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kexin Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Rongguo Fu,
| |
Collapse
|
8
|
CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology. Cells 2022; 11:cells11071175. [PMID: 35406738 PMCID: PMC8997538 DOI: 10.3390/cells11071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
CARD19 is a mitochondrial protein of unknown function. While CARD19 was originally reported to regulate TCR-dependent NF-κB activation via interaction with BCL10, this function is not recapitulated ex vivo in primary murine CD8+ T cells. Here, we employ a combination of SIM, TEM, and confocal microscopy, along with proteinase K protection assays and proteomics approaches, to identify interacting partners of CARD19 in macrophages. Our data show that CARD19 is specifically localized to the outer mitochondrial membrane. Through deletion of functional domains, we demonstrate that both the distal C-terminus and transmembrane domain are required for mitochondrial targeting, whereas the CARD is not. Importantly, mass spectrometry analysis of 3×Myc-CARD19 immunoprecipitates reveals that CARD19 interacts with the components of the mitochondrial intermembrane bridge (MIB), consisting of mitochondrial contact site and cristae organizing system (MICOS) components MIC19, MIC25, and MIC60, and MICOS-interacting proteins SAMM50 and MTX2. These CARD19 interactions are in part dependent on a properly folded CARD. Consistent with previously reported phenotypes upon siRNA silencing of MICOS subunits, absence of CARD19 correlates with irregular cristae morphology. Based on these data, we propose that CARD19 is a previously unknown interacting partner of the MIB and the MIC19–MIC25–MIC60 MICOS subcomplex that regulates cristae morphology.
Collapse
|