1
|
Matuszewska E, Plewa S, Pietkiewicz D, Kossakowski K, Matysiak J, Rosiński G, Matysiak J. Mass Spectrometry-Based Identification of Bioactive Bee Pollen Proteins: Evaluation of Allergy Risk after Bee Pollen Supplementation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227733. [PMID: 36431835 PMCID: PMC9695670 DOI: 10.3390/molecules27227733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Bee pollen, because of its high content of nutrients, is a very valuable medicinal and nutritional product. However, since its composition is not completely studied, the consumption of this product may cause adverse effects, including allergic reactions. Therefore, this study aimed to discover and characterize the bioactive proteins of bee pollen collected in Poland, focusing mainly on the allergens. For this purpose, the purified and concentrated pollen aqueous solutions were analyzed using the nanoLC-MALDI-TOF/TOF MS analytical platform. As a result of the experiments, 197 unique proteins derived from green plants (Viridiplantae) and 10 unique proteins derived from bees (Apis spp.) were identified. Among them, potential plant allergens were discovered. Moreover, proteins belonging to the group of hypothetical proteins, whose expression had not been confirmed experimentally before, were detected. Because of the content of bioactive compounds-both beneficial and harmful-there is a critical need to develop guidelines for standardizing bee pollen, especially intended for consumption or therapeutic purposes. This is of particular importance because awareness of the allergen content of bee pollen and other bee products can prevent health- or life-threatening incidents following the ingestion of these increasingly popular "superfoods".
Collapse
Affiliation(s)
- Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
- Correspondence:
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Kacper Kossakowski
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Joanna Matysiak
- Faculty of Health Sciences, Calisia University, 13 Kaszubska Street, 62-800 Kalisz, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznan, 6 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
2
|
Zhang Y, Hu W, Chen D, Ding M, Wang T, Wang Y, Chi J, Li Z, Li Q, Li C. An allergenic plant calmodulin from Artemisia pollen primes human DCs leads to Th2 polarization. Front Immunol 2022; 13:996427. [PMID: 36248805 PMCID: PMC9556433 DOI: 10.3389/fimmu.2022.996427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Artemisia pollen is the major cause of seasonal allergic respiratory diseases in the northern hemisphere. About 28.57% of Artemisia allergic patients’ IgE can recognize ArtCaM, a novel allergenic calmodulin from Artemisia identified in this study. These patients exhibited stronger allergic reactions and a longer duration of allergic symptoms. However, the signaling mechanism that triggers these allergic reactions is not fully understood. In this study, we found that extracellular ArtCaM directly induces the maturation of human dendritic cells (DCs), which is attributed to a series of Ca2+ relevant cascades, including Ca2+/NFAT/CaMKs. ArtCaM alone induces inflammatory response toward Th1, Th17, and Treg. Interestingly, a combination of ArtCaM and anti-ArtCaM IgE led to Th2 polarization. The putative mechanism is that anti-ArtCaM IgE partially blocks the ArtCaM-induced ERK signal, but does not affect Ca2+-dependent cascades. The crosstalk between ERK and Ca2+ signal primes DCs maturation and Th2 polarization. In summary, ArtCaM related to clinical symptoms when combined with anti-ArtCaM IgE, could be a novel allergen to activate DCs and promote Th2 polarization. Such findings provide mechanistic insights into Th2 polarization in allergic sensitization and pave the way for novel preventive and therapeutic strategies for efficient management of such pollen allergic disease.
Collapse
Affiliation(s)
- Yue Zhang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenzhi Hu
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Dongbo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, China
| | - Ming Ding
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Tao Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Yaojun Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Jiaoni Chi
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Zhimin Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| | - Chengxin Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| |
Collapse
|
3
|
The Activity of Chelidonium majus L. Latex and Its Components on HPV Reveal Insights into the Antiviral Molecular Mechanism. Int J Mol Sci 2022; 23:ijms23169241. [PMID: 36012505 PMCID: PMC9409487 DOI: 10.3390/ijms23169241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Yellow-orange latex of Chelidonium majus L. has been used in folk medicine as a therapeutic agent against warts and other visible symptoms of human papillomavirus (HPV) infections for centuries. The observed antiviral and antitumor properties of C. majus latex are often attributed to alkaloids contained therein, but recent studies indicate that latex proteins may also play an important role in its pharmacological activities. Therefore, the aim of the study was to investigate the effect of the crude C. majus latex and its protein and alkaloid-rich fractions on different stages of the HPV replication cycle. The results showed that the latex components, such as alkaloids and proteins, decrease HPV infectivity and inhibit the expression of viral oncogenes (E6, E7) on mRNA and protein levels. However, the crude latex and its fractions do not affect the stability of structural proteins in HPV pseudovirions and they do not inhibit the virus from attaching to the cell surface. In addition, the protein fraction causes increased TNFα secretion, which may indicate the induction of an inflammatory response. These findings indicate that the antiviral properties of C. majus latex arise both from alkaloids and proteins contained therein, acting on different stages of the viral replication cycle.
Collapse
|
4
|
Wang L, Bi H. On-chip immunomagnetic separation of allergens from myofibrillar proteins of seafoods for rapid allergy tests. Analyst 2022; 147:4063-4072. [DOI: 10.1039/d2an00813k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An on-chip strategy to analyze the allergens existing in myofibrillar proteins of seafood matrices using anti-human IgE-functionalized magnetic beads (MBs) has the potential to be applied in blood tests for food allergies with a single drop of blood.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| |
Collapse
|