1
|
Lisowska M, Worrall EG, Zavadil-Kokas F, Charlton K, Murray E, Mohtar MA, Krejcir R, Hrabal V, Brydon J, Urionabarrenetxea AG, Saliba DG, Grima M, Kalathiya U, Muller P, Krejci A, Vojtesek B, Ball KL, Fahraeus R, Argyle DJ, Parys M, Hupp TR. The development of a canine single-chain phage antibody library to isolate recombinant antibodies for use in translational cancer research. CELL REPORTS METHODS 2025; 5:101008. [PMID: 40132540 DOI: 10.1016/j.crmeth.2025.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/10/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
The development of canine immunotolerant monoclonal antibodies can accelerate the invention of new medicines for both canine and human diseases. We develop a methodology to clone the naive, somatically mutated variable domain repertoire from canine B cell mRNA using 5'RACE PCR. A set of degenerate primers were then designed and used to clone variable domain genes into archival "holding" plasmid libraries. These archived variable domain genes were then combinatorially ligated to produce a scFv M13 phage library. Next-generation long-read and short-read DNA sequencing methodologies were developed to annotate features of the cloned library including CDR diversity and IGHV/IGKV/IGLV subfamily distribution. A synthetic immunoglobulin G was developed from this scFv library to the canine immune checkpoint receptor PD-1. This synthetic platform can be used to clone and annotate archived antibody variable domain genes for use in perpetuity in order to develop improved preclinical models for the treatment of complex human diseases.
Collapse
Affiliation(s)
- Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland.
| | - Erin G Worrall
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Keith Charlton
- University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, UK
| | - Euan Murray
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK; Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - M Aiman Mohtar
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vaclav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jack Brydon
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | | | - David G Saliba
- Faculty of Health Sciences/Department Applied Biomedical Science, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mariana Grima
- Faculty of Health Sciences/Department Applied Biomedical Science, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Petr Muller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Adam Krejci
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic; Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Kathryn L Ball
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - David J Argyle
- The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Edinburgh, UK
| | - Maciej Parys
- The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Edinburgh, UK
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland; University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| |
Collapse
|
2
|
Kim M, Bai X, Im H, Yang J, Kim Y, Kim MMJ, Oh Y, Jeon Y, Kwon H, Lee S, Lee CH. Construction and validation of a synthetic phage-displayed nanobody library. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:457-467. [PMID: 39198226 PMCID: PMC11361996 DOI: 10.4196/kjpp.2024.28.5.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 09/01/2024]
Abstract
Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.
Collapse
Affiliation(s)
- Minju Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Xuelian Bai
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Hyewon Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jisoo Yang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youngju Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Minjoo MJ Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yeonji Oh
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Yuna Jeon
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Hayoung Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seunghyun Lee
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Korea
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Korea
- Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
3
|
Minatel VM, Prudencio CR, Barraviera B, Ferreira RS. Nanobodies: a promising approach to treatment of viral diseases. Front Immunol 2024; 14:1303353. [PMID: 38322011 PMCID: PMC10844482 DOI: 10.3389/fimmu.2023.1303353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
Since their discovery in the 1990s, heavy chain antibodies have garnered significant interest in the scientific community. These antibodies, found in camelids such as llamas and alpacas, exhibit distinct characteristics from conventional antibodies due to the absence of a light chain in their structure. Furthermore, they possess a single antigen-binding domain known as VHH or Nanobody (Nb). With a small size of approximately 15 kDa, these Nbs demonstrate improved characteristics compared to conventional antibodies, including greater physicochemical stability and enhanced biodistribution, enabling them to bind inaccessible epitopes more effectively. As a result, Nbs have found numerous applications in various medical and veterinary fields, particularly in diagnostics and therapeutics. Advances in biotechnology have made the production of recombinant antibodies feasible and compatible with large-scale manufacturing. Through the construction of immune phage libraries that display VHHs and subsequent selection through biopanning, it has become possible to isolate specific Nbs targeting pharmaceutical targets of interest, such as viruses. This review describes the processes involved in nanobody production, from hyperimmunization to purification, with the aim of their application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Vitória Meneghetti Minatel
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | | | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, São Paulo, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, São Paulo, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| |
Collapse
|
4
|
Liu ML, He XT, Xu ZL, Deng H, Shen YD, Luo L, Shen X, Chen ZJ, Hammock B, Wang H. Development of a Biotinylated Nanobody-Based Gold Nanoparticle Immunochromatographic Assay for the Detection of Procymidone in Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13137-13146. [PMID: 37611148 PMCID: PMC10849196 DOI: 10.1021/acs.jafc.3c03408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A heavy-chain antibody (VHH) library against procymidone (PRM) was constructed via immunizing Bactrian camels. Through careful biopanning, seven nanobodies (Nbs) with different sequences were obtained. The variability in their performance was primarily attributed to the amino acid differences in complementarity-determining region 3 (CDR3), as analyzed by molecular docking. The Nb exhibiting the highest sensitivity, named NbFM5, was biotinylated and conjugated to streptavidin-labeled gold nanoparticles to preserve the epitope's activity and prevent a decrease in sensitivity due to traditional random electrostatic adsorption. Subsequently, a simple and sensitive immunochromatographic assay (ICA) was developed for rapid detection of PRM based on biotinylated Nb (btNb). The developed btNb-ICA showed a cut-off value of 200 ng/mL for visual judgment and a half-inhibitory concentration (IC50) of 6.04 ng/mL for quantitative detection. The limit of detection (LOD) was as low as 0.88 ng/mL. The recoveries in actual samples of crops ranged from 82.2 to 117.3%, aligning well with the results obtained from GC-MS/MS (R2 = 0.995). In summary, the developed btNb-ICA demonstrated high specificity and good accuracy for the rapid detection of PRM residues in vegetables. The total analysis time from preparing the sample to obtaining the result was less than 25 min.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ting He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province / Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, 570100, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Lyu M, Shi X, Liu Y, Zhao H, Yuan Y, Xie R, Gu Y, Dong Y, Wang M. Single-Cell Transcriptome Analysis of H5N1-HA-Stimulated Alpaca PBMCs. Biomolecules 2022; 13:biom13010060. [PMID: 36671445 PMCID: PMC9855979 DOI: 10.3390/biom13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Avian influenza A virus H5N1 is a highly pathogenic and persistently a major threat to global health. Vaccines and antibodies targeting hemagglutinin (HA) protein are the primary management strategies for the epidemic virus. Although camelids possess unique immunological features, the immune response induced by specific antigens has not yet been thoroughly investigated. Herein, we immunized an alpaca with the HA antigen of the H5N1 virus and performed single-cell transcriptome profiling for analysis of longitudinal peripheral blood mononuclear cell (PBMCs) behavior using single-cell sequencing technology (scRNA-seq). We revealed multiple cellular immunities during the immunization. The monocytes continued to expand after immunization, while the plasma cells reached their peak three days after the second antigen stimulation. Both monocytes and B cells were stimulated by the HA antigen and produced cell-type-specific cytokines to participated in the immune response. To our knowledge, this is the first study to examine the HA-specific immunological dynamics of alpaca PBMCs at the single-cell level, which is beneficial for understanding the anti-viral immune system and facilitating the development of more potent vaccines and antibodies in camelid animals.
Collapse
Affiliation(s)
- Menghua Lyu
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | | | - Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Run Xie
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | |
Collapse
|
6
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Bogdanov IV, Ovchinnikova TV. A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region. MEMBRANES 2022; 12:membranes12050515. [PMID: 35629841 PMCID: PMC9146984 DOI: 10.3390/membranes12050515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.
Collapse
|