1
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
2
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
3
|
Cai S, Zhao M, Yang G, Li C, Hu M, Yang L, Xing L, Sun X. Modified spatial architecture of regulatory T cells after neoadjuvant chemotherapy in non-small cell lung cancer patients. Int Immunopharmacol 2024; 137:112434. [PMID: 38889507 DOI: 10.1016/j.intimp.2024.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
It is crucial to decipher the modulation of regulatory T cells (Tregs) in tumor microenvironment (TME) induced by chemotherapy, which may contribute to improving the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer (NSCLC). We retrospectively collected specimens from patients with II-III NSCLC, constituting two cohorts: a neoadjuvant chemotherapy (NAC) cohort (N = 141) with biopsy (N = 58) and postoperative specimens (N = 141), and a surgery-only cohort (N = 122) as the control group. Then, the cell density (Dens), infiltration score (InS), and Treg-cell proximity score (TrPS) were conducted using a panel of multiplex fluorescence staining (Foxp3, CD4, CD8, CK, CD31, ɑSMA). Subsequently, the association of Tregs with cancer microvessels (CMVs) and cancer-associated fibroblasts (CAFs) was analyzed. Patients with NAC treatment have a higher density of Tregs in both paired (P < 0.001) and unpaired analysis (P = 0.022). Additionally, patients with NAC treatment showed higher infiltration score (paired, P < 0.001; unpaired, P = 0.014) and more CD8+T cells around Tregs (paired/unpaired, both P < 0.001). Subgroup analysis indicated that tumors with a diameter of ≤ 5 cm exhibited increase in both Dens(Treg) and InS(Treg), and gemcitabine, pemetrexed and taxel enhanced Dens(Treg) and TrPS(CD8) following NAC. Multivariate analysis identified that the Dens(Tregs), InS(Tregs) and TrPS(CD8) were significantly associated with better chemotherapy response [OR = 8.54, 95%CI (1.69, 43.14), P = 0.009; OR = 7.14, 95%CI (1.70, 30.08), P = 0.024; OR = 5.50, 95%CI (1.09, 27.75), P = 0.039, respectively] and positive recurrence-free survival [HR = 3.23, 95%CI (1.47, 7.10), P = 0.004; HR = 2.70; 95%CI (1.27, 5.72); P = 0.010; HR = 2.55, 95%CI (1.21, 5.39), P = 0.014, respectively]. Moreover, TrPS(CD8) and TrPS(CD4) were negatively correlated with the CMVs and CAFs. These discoveries have deepened our comprehension of the immune-modulating impact of chemotherapy and underscored that the modified spatial landscape of Tregs after chemotherapy should be taken into account for personalized immunotherapy, aiming to ultimately improve clinical outcomes in patients with NSCLC.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
4
|
Wu M, Wang S, Yuan K, Xiong B, Li Y, Lyu S. Alteration of the immune microenvironment in the axillary metastatic lymph nodes of luminal A breast cancer patients. World J Surg Oncol 2024; 22:172. [PMID: 38937736 PMCID: PMC11210032 DOI: 10.1186/s12957-024-03454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The alteration of the immune microenvironment in the axillary metastatic lymph nodes of luminal A breast cancer patients is still unclear. METHODS Postsurgical tissues from the enrolled luminal A BCs were divided into five categories: primary BC lesion at stage N0 (PL1), primary BC lesion at stage N1 (PL2), negative axillary lymph node at stage N0 BC (LN1), negative axillary lymph node at stage N1 BC (LN2), and positive axillary lymph node at stage N1 BC (LN3). The frequencies of positive immune markers (CD4, CD8, PD1, PD-L1, T-cell immunoglobulin and mucin domain 3 (TIM3), and forkhead box protein 3 (Foxp3)) in the above tissues were quantified by AKOYA Opal Polaris 7 Color Manual IHC Detection Kit. RESULTS A total of 50 female patients with luminal A BC were enrolled in this study. Among these patients, 23 had stage N1 disease, and 27 had stage N0 disease. Compared with that in the PL2 subgroup, the frequency of PD-1-positive cells was significantly greater in the PL1 subgroup, whether at the stromal or intratumoral level (P value < 0.05). Both the frequency of CD8 + T cells in LN1 and that in LN2 were significantly greater than that in LN3 (P value < 0.05). The frequency of TIM3 + T cells in LN1 was significantly greater than that in PL1 (P value < 0.05). The frequency of CD8 + TIM3 + T cells was significantly greater in both the LN2 and LN3 groups than in the PL2 group (P value < 0.05). The frequency of CD4 + Foxp3 + T cells was significantly greater in LN1 than in PL1 (P value < 0.05), which was the same for both LN3 and PL2 (P value < 0.05). CONCLUSION Increased frequencies of CD8 + PD1+, CD8 + TIM3 + and CD4 + Foxp3 + T cells might inhibit the immune microenvironment of axillary metastatic lymph nodes in luminal A breast cancer patients and subsequently promote lymph node metastasis.
Collapse
Affiliation(s)
- Min Wu
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing, 100038, China
| | - Keyu Yuan
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Bingjun Xiong
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Yanping Li
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Shuzhen Lyu
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China.
| |
Collapse
|
5
|
Alim LF, Keane C, Souza-Fonseca-Guimaraes F. Molecular mechanisms of tumour necrosis factor signalling via TNF receptor 1 and TNF receptor 2 in the tumour microenvironment. Curr Opin Immunol 2024; 86:102409. [PMID: 38154421 DOI: 10.1016/j.coi.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Tumour necrosis factor (TNF) is a primary mediator of inflammatory processes by facilitating cell death, immune cell activation and triggering of inflammation. In the cancer context, research has revealed TNF as a multifaceted cytokine that can be both pro- or anti-tumorigenic depending on what context is observed. We explore the plethora of ways that TNF and its receptors manipulate the functional and phenotypic characteristics in the tumour microenvironment (TME) on both tumour cells and immune cells, promoting either tumour elimination or progression. Here, we discuss the latest cutting-edge TNF-focused biologics currently in clinical translation that modifies the TME to derive greater immune responses and therapeutic outcomes, and further give perspectives on the future of targeting TNF in the context of cancer by emerging technological approaches.
Collapse
Affiliation(s)
- Louisa F Alim
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | | |
Collapse
|
6
|
Chen J, Li J, Qiao H, Hu R, Li C. Disruption of IDO signaling pathway alleviates chronic unpredictable mild stress-induced depression-like behaviors and tumor progression in mice with breast cancer. Cytokine 2023; 162:156115. [PMID: 36599202 DOI: 10.1016/j.cyto.2022.156115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Women with breast cancer (BC) are often combined with psychological disorder such as depression and anxiety. Depression is associated or correlated with increased toxicity and severity of physical symptoms. However, the mechanism of BC progression related to the regulation of emotion-related circuitry remains to be further explored. The study aims to investigate indoleamine 2,3-dioxygenase (IDO) pathway mechanism underlying stress-induced progression of BC. BC cell line 4T1 was subcutaneously inoculated into BALB/c mice, and they then received daily chronic unpredictable mild stressors (CUMS) for 12 weeks. Depression-like behavior tests were conducted, including sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), and novelty suppressed feeding test (NSF). The levels of 5-Hydroxytryptamine (5-HT) and inflammatory factors, IL-6, CXCL1, IL-10 and IL-4 were measured by enzyme linked immunosorbent assay (ELISA) of mouse serum. Immunohistochemical staining was performed to detect Ki67- or FOXP3-positive tumor cells. The status of IDO signaling pathway was assessed by immunoblotting analysis. CUMS induced depression-like behaviors, decreased the level of 5-HT, promoted tumor progression, enhanced the immunohistochemical staining of Ki-67, and promoted the activation of IDO signaling pathway in BC mice. The IDO signaling pathway was disrupted in mice by lentiviral transduction of shRAN-IDO. Lentivirus-mediated IDO knockdown attenuated CUMS-induced depression-like behaviors, increased the level of 5-HT, inhibited tumor progression, and reduced the immunohistochemical staining of Ki-67 in BC mice. The present study suggests that disruption of IDO signaling pathway alleviates CUMS-induced depression-like behaviors and inhibits tumor progression in BC mice.
Collapse
Affiliation(s)
- Jun Chen
- Department of Acupuncture and Massage, Shaanxi University of Chinese Medicine, 1 Middle Section of Century Avenue, Qindu District, Xianyang 712046, China
| | - Jing Li
- Department of Chinese Medicine, The Sixth Medical Center of PLA Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Haifa Qiao
- Department of Acupuncture and Massage, Shaanxi University of Chinese Medicine, 1 Middle Section of Century Avenue, Qindu District, Xianyang 712046, China
| | - Rong Hu
- Department of Chinese Medicine, The Sixth Medical Center of PLA Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, China
| | - Chaoqun Li
- Department of Chinese Medicine, The Sixth Medical Center of PLA Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
7
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
8
|
Wang H, Huang H, Lin X, Chi P, Chen H, Chen J, Mou Y, Chen Z, Yang Q, Guo C. Dynamic analysis of immune status in patients with intracranial germ cell tumor and establishment of an immune risk prognostic model. Front Immunol 2022; 13:1010146. [PMID: 36304453 PMCID: PMC9592720 DOI: 10.3389/fimmu.2022.1010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Immune status was evaluated by means of lymphocyte subset counts and immune factors in cancer. This study analyzed the peripheral blood immune index and survival outcomes in intracranial germ cell tumor (iGCT) patients. Methods Peripheral blood lymphocyte subset counts and levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), and interferon-γ (IFN) from 133 iGCT patients were collected and retrospectively analyzed. Their clinical information was extracted from the hospital database, and prognosis was confirmed by telephone visit. Patients (n=11) underwent prospective review and their samples of peripheral blood lymphocytes were verified. Results A total of 113 (84.2%) patients received comprehensive treatments, including 96 standard therapy (combination of full course chemotherapy and radiology with or without surgery) and 17 comprehensive but non-standard therapy (either without full course chemotherapy or with non-standard radiotherapy) and 98 (73.7%) reached complete or partial response. T lymphocytes (CD3+), cytotoxic T cells (CD3+CD8+ or Tc), and B lymphocytes (CD19+) decreased (p=0.047, p=0.004, and p<0.001, respectively), while activated cytotoxic T lymphocytes (CD8+CD25+) and IFN increased (p<0.001 and p=0.002, respectively) after treatment. Median survival was 45.33 months, and patients with increased Tc cells and activated Tc cells as well as IFN presented encouraging outcomes (p=0.039, p=0.041, and p=0.017 respectively). Regression analysis showed that non-increased Tc cells and non-increased activated Tc cells were independent factors of poor prognosis (p=0.016, HR=3.96, 95%CI=1.288-12.20; p=0.002, HR=4.37 95%CI= 1.738-10.97). Standard chemo-radiotherapy was independently related to reduced risk of death(p=0.022, HR=0.19, 95%CI=0.044-0.79). Consistence was seen in a nomogram established through retro and prospective studies. An immune risk model indicated the activated group (with both increased activated T cells and IFN levels) had the best prognosis, the mildly activated type with elevated IFN levels had intermediate outcome, and patients with the silent immune status had the worst outcomes (Log rank test, p=0.011). Conclusion Implementation of standard comprehensive treatments led to positive responses. Dynamic monitoring of peripheral blood lymphocyte subsets can be used as an auxiliary indicator for prognosis judgment.
Collapse
Affiliation(s)
- Hairong Wang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoping Lin
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peidong Chi
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyu Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiangen Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Chengcheng Guo, ; Qunying Yang, ; Zhongping Chen,
| |
Collapse
|
9
|
Hayashi K, Nogawa D, Kobayashi M, Asakawa A, Ohata Y, Kitagawa S, Kubota K, Takahashi H, Yamada M, Oda G, Nakagawa T, Uetake H, Onishi I, Kinowaki Y, Kurata M, Kitagawa M, Yamamoto K. Quantitative high-throughput analysis of tumor infiltrating lymphocytes in breast cancer. Front Oncol 2022; 12:901591. [PMID: 36132149 PMCID: PMC9484474 DOI: 10.3389/fonc.2022.901591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/22/2022] [Indexed: 12/19/2022] Open
Abstract
In breast cancer (BC), the development of cancer immunotherapy including immune checkpoint inhibitors has progressed. Tumor infiltrating lymphocytes (TILs) is one of the important factors for an immune response between tumor cells and immune cells in the tumor microenvironment, and the presence of TILs has been identified as predictors of response to chemotherapy. However, because complex mechanisms underlies the crosstalk between immune cells and cancer cells, the relationship between immune profiles in the tumor microenvironment and the efficacy of the immune checkpoint blocked has been unclear. Moreover, in many cases of breast cancer, the quantitative analysis of TILs and immuno-modification markers in a single tissue section are not studied. Therefore, we quantified detailed subsets of tumor infiltrating lymphocytes (TILs) from BC tissues and compared among BC subtypes. The TILs of BC tissues from 86 patients were classified using multiplex immunohistochemistry and an artificial intelligence-based analysis system based on T-cell subset markers, immunomodification markers, and the localization of TILs. The levels of CD4/PD1 and CD8/PD1 double-positive stromal TILs were significantly lower in the HER2- BC subtype (p <0.01 and p <0.05, respectively). In triple-negative breast cancer (TNBC), single marker-positive intratumoral TILs did not affect prognosis, however CD4/PDL1, CD8/PD1, and CD8/PDL1 double-positive TILs were significantly associated with TNBC recurrence (p<0.05, p<0.01, and p<0.001, respectively). TIL profiles differed among different BC subtypes, suggesting that the localization of TILs and their tumor-specific subsets influence the BC microenvironment.
Collapse
Affiliation(s)
- Kumiko Hayashi
- Department of Specialized Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daichi Nogawa
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Maki Kobayashi
- Molecular Pathology Group, Translational Research Department, Daiichisankyo RD Novare, Tokyo, Japan
| | - Ayaka Asakawa
- Department of Respiratory Medicine, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yae Ohata
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shota Kitagawa
- Department of Respiratory Medicine, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuishi Kubota
- Department of Translational Science, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Hisashi Takahashi
- Molecular Pathology Group, Translational Research Department, Daiichisankyo RD Novare, Tokyo, Japan
| | - Miyuki Yamada
- Molecular Pathology Group, Translational Research Department, Daiichisankyo RD Novare, Tokyo, Japan
| | - Goshi Oda
- Department of Specialized Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsuyoshi Nakagawa
- Department of Specialized Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Uetake
- Department of Specialized Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Human Pathology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Medler J, Kucka K, Wajant H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14112603. [PMID: 35681583 PMCID: PMC9179537 DOI: 10.3390/cancers14112603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough. TNFR2 can also co-stimulate CD8+ T-cells, sensitize some immune and tumor cells to the cytotoxic effects of TNFR1 and/or acts as an oncogene. In view of the wide range of cancer-associated TNFR2 activities, it is not surprising that both antagonists and agonists of TNFR2 are considered for tumor therapy and have indeed shown overwhelming anti-tumor activity in preclinical studies. Based on a brief summary of TNFR2 signaling and the immunoregulatory functions of TNFR2, we discuss here the main preclinical findings and insights gained with TNFR2 agonists and antagonists. In particular, we address the question of which TNFR2-associated molecular and cellular mechanisms underlie the observed anti-tumoral activities of TNFR2 agonists and antagonists.
Collapse
|
11
|
Ghods A, Mehdipour F, Rasolmali R, Talei AR, Ghaderi A. The expression pattern of membranous TNF-α is distinct from its intracellular form in breast cancer-draining lymph nodes. Clin Immunol 2022; 238:109026. [PMID: 35489644 DOI: 10.1016/j.clim.2022.109026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/03/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is mostly known as a soluble cytokine. This study, however, focused on its membranous form whose significance is rarely investigated in antitumor immunity. Herein, we assessed the expression of both membranous and intracellular forms of TNF-α (m/icTNF-α) in the lymphocytes derived from breast cancer-draining lymph nodes. CD4+T cells were the main subset expressing mTNF-α with the highest intensity, whereas icTNF-α expression was most intense in CD8+T cells. An inverse correlation was seen between the frequency of mTNF-α and the expression intensity of this cytokine in B cells. In the clinical context, the higher intensity of mTNF-α expression in CD19+ cells correlated with poor prognosticators, while the frequency of mTNF-α+CD19+ cells showed a reverse correlation with the number of involved lymph nodes. The two forms of TNF-α did not show similar associations with cancer parameters, which highlights the complex role of this cytokine in breast cancer immunity.
Collapse
Affiliation(s)
- Atri Ghods
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Rasolmali
- Department of Pathology, Shiraz Central Hospital, Shiraz, Iran
| | - Abdol-Rasoul Talei
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Yan B, Xiong J, Ye Q, Xue T, Xiang J, Xu M, Li F, Wen W. Correlation and prognostic implications of intratumor and tumor draining lymph node Foxp3 + T regulatory cells in colorectal cancer. BMC Gastroenterol 2022; 22:122. [PMID: 35296257 PMCID: PMC8925044 DOI: 10.1186/s12876-022-02205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prognostic value of intratumor T regulatory cells (Tregs) in colorectal cancer (CRC) was previously reported, but the role of these cells in tumor draining lymph nodes (TDLNs) was less addressed. METHODS A total of 150 CRC stages I-IV were retrospectively enrolled. Intratumor and TDLN Tregs were examined by immunohistochemical assay. The association of these cells was estimated by Pearson correlation. Survival analyses of subgroups were conducted by Kaplan-Meier curves, and the log-rank test and risk factors for survival were tested by the Cox proportional hazard model. RESULTS High accumulation of Tregs in tumors was significant in patients with younger age and good histological grade, where enrichment of these cells in TDLNs was more apparent in those with node-negative disease and early TNM stage disease, both of which were more common in early T stage cases. A significant correlation of intratumoral and TDLN Tregs was detected. Patients with higher intratumoral Tregs displayed significantly better PFS and OS than those with lower Tregs. However, no such differences were found, but a similar prognostic prediction trend was found for these cells in TDLNs. Finally, intratumoral Tregs were an independent prognostic factor for both PFS (HR = 0.97, 95% CI 0.95-0.99, P < 0.01) and OS (HR = 0.98, 95% CI 0.95-1.00, P = 0.04) in the patients. CONCLUSIONS Higher intratumor Tregs were associated with better survival in CRC. Although no such role was found for these cells in TDLNs, the positive correlation and similar prognostic prediction trend with their intratumoral counterparts may indicate a parallelized function of these cells in CRC.
Collapse
Affiliation(s)
- Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jianmei Xiong
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Mingyue Xu
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Fang Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China.
| | - Wei Wen
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China.
| |
Collapse
|
13
|
Bai J, Ding B, Li H. Targeting TNFR2 in Cancer: All Roads Lead to Rome. Front Immunol 2022; 13:844931. [PMID: 35251045 PMCID: PMC8891135 DOI: 10.3389/fimmu.2022.844931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
TNF receptor 2 (TNFR2) has become one of the best potential immune checkpoints that might be targeted, mainly because of its vital role in tumor microenvironments (TMEs). Overexpression of TNFR2 in some tumor cells and essential function in immunosuppressive cells, especially regulatory T cells (Tregs), makes blocking TNFR2 an excellent strategy in cancer treatment; however, there is evidence showing that activating TNFR2 can also inhibit tumor progression in vivo. In this review, we will discuss drugs that block and activate TNFR2 under clinical trials or preclinical developments up till now. Meanwhile, we summarize and explore the possible mechanisms related to them.
Collapse
Affiliation(s)
- Jingchao Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bowen Ding
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|