1
|
Iqbal A, Ashraf M, Ashok AK, Kaouche FC, Bashir B, Qadir A, Riaz N. Exploration of 4-tolyl-5-(p-tolyloxymethyl)-4H-1,2,4-triazole thioethers as potent 15-LOX inhibitors supported by in vitro, in silico, MD simulation and DNA binding studies. J Mol Struct 2025; 1321:139963. [DOI: 10.1016/j.molstruc.2024.139963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Zhang X, Zhang J, Cai Y, Xu S, Wu H, Chen X, Huang Y, Li F. Integrated Electrochemical Aptasensor Array toward Monitoring Anticancer Drugs in Sweat. Anal Chem 2024; 96:4997-5005. [PMID: 38483157 DOI: 10.1021/acs.analchem.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In the realm of clinical practice, the concurrent utilization of anticancer medications can enhance their overall therapeutic efficacy. However, it is crucial to acknowledge that the interactions among these anticancer drugs can potentially yield detrimental consequences on their intended outcomes. Consequently, the assessment of both anticancer potency and potential toxic side effects is greatly refined when multiple anticancer drugs are simultaneously detected and evaluated. Here, we designed a wearable electrochemical aptasensor array for monitoring multiple anticancer drugs in sweat. The integrated sensor array consists of three working electrodes modified with three different aptamers (Apt1, Apt2, and Apt3), a Au counter electrode, and a Ag/AgCl reference electrode. Molecular docking simulations were performed to show the binding affinities between three anticancer drugs and their corresponding aptamers. Various eigenvalues were derived from the square-wave voltammetry electrochemical signals, and these data sets were subjected to rigorous analysis through multivariate data analysis techniques. This analytical approach demonstrated exceptional performance by achieving flawless 100% accuracy in the precise identification of nine anticancer drugs consistently at uniform concentrations. Furthermore, the integrated wearable sensor array exhibited impressive capabilities, correctly recognizing all nine anticancer drugs with 100% accuracy and successfully distinguishing between these drugs in artificial sweat samples. The proposed sensor array presents good stability for 15 days. Flexibility tests showed stable device performance after 500 twisting cycles. This innovative wearable sensing array represents a novel approach for achieving real-time monitoring and precise adjustment of drug dosages. It offers invaluable insights for tailoring the treatment of anticancer drugs to individual patients, predicting both drug efficacy and potential adverse reactions within the field of clinical medicine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Jiabing Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- Xidian University, Xi'an 710071, China
| | - Ying Cai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Siting Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Hao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Xiangyu Chen
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Doddagaddavalli MA, Kalalbandi VKA, Seetharamappa J, Joshi SD. New thiophene-1,3,4-oxadiazole-thiazolidine-2,4-dione hybrids: Synthesis, MCF-7 inhibition and binding studies. Bioorg Chem 2024; 143:107003. [PMID: 38029570 DOI: 10.1016/j.bioorg.2023.107003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Two synthetic methods were proposed for the preparation of a new series of thiophene-1,3,4-oxadiazole-thiazolidine-2,4-dione hybrids (TOT-1 to 15) and their structures were elucidated based on spectral data. Studies on cytotoxicity, ROS, cellular uptake and interactions of TOT-14 with calf thymus DNA were carried out. Anticancer activity of compounds, TOT-1 to 15 on breast cancer (MCF-7) cell lines was investigated. The IC50 values for the standard, epirubicin hydrochloride and TOT-12, 13, 14 and 15 were found to be 6.78, 5.52, 6.53, 4.83 and 5.57 µg/mL, respectively. Notably, TOT-14 exhibited a remarkable antiproliferative activity with a strikingly selective inhibitory effect compared to standard. This specific selectivity could be attributed to the synergistic effect of increased cellular uptake and generation of higher ROS in cancer cells after irradiation. The binding constant of 4.25 x 103 M-1 indicated the moderate interaction between TOT-14 and ct-DNA. The docking score of TOT derivativeswas substantially identical to the docking score of epirubicin hydrochloride. The designed molecules complied with the requirements for drug-likeness and ADME.
Collapse
Affiliation(s)
| | | | | | - Shrinivas D Joshi
- Department of Pharmaceutical Chemistry, SET's College of Pharmacy, Dharwad 580 002, India
| |
Collapse
|
4
|
Çeşme M, Özaltay A. DNA‐Binding Studies of Ofloxacin Using a Series of Spectroscopic, Electrochemical Techniques and in Silico Approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mustafa Çeşme
- Department of Chemistry Faculty of Sciences Kahramanmaras Sütçü İmam University 46040 Kahramanmaras TURKEY
| | - Ayşe Özaltay
- Department of Chemistry Faculty of Sciences Kahramanmaras Sütçü İmam University 46040 Kahramanmaras TURKEY
| |
Collapse
|
5
|
Ponkarpagam S, Vennila KN, Elango KP. Intercalation of diafenthiuron insecticide with calf thymus DNA: spectroscopic and molecular dynamics analysis. J Biomol Struct Dyn 2022:1-9. [PMID: 35848349 DOI: 10.1080/07391102.2022.2098824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A series of biophysical experiments like UV-Vis, fluorescence, circular dichroism (CD), competitive displacement assays, voltammetric studies, viscosity measurements and denaturation effect and metadynamics simulation studies were performed to establish the mode of binding of diafenthiuron (DF) insecticide with calf thymus DNA (CT-DNA). Analysis of absorption and fluorescence spectra in Tris-HCl buffer of pH 7.4 indicates the formation of a complex between DF and CT-DNA and the binding constant of which is in the order of 104 M-1. Competitive displacement assay with ethidium bromide (EB) and Hoechst 33258 suggests that the most probable mode of binding of DF with CT-DNA may be via intercalation mode. The results of other experiments such as CD spectral studies, viscosity measurements and the effect of denaturation agent urea support the intercalation of DF with CT-DNA. Thermodynamic parameters (ΔHo, ΔSo and ΔGo) reveal that hydrogen bonds (H-bonds) or van der Waals (vdW) force is the main binding force in the spontaneous interaction between DF and CT-DNA. Molecular dynamics (MD) simulation studies confirmed the intercalation of DF into the base pairs of CT-DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
6
|
Rana M, Faizan MI, Dar SH, Ahmad T. Design and Synthesis of Carbothioamide/Carboxamide-Based Pyrazoline Analogs as Potential Anticancer Agents: Apoptosis, Molecular Docking, ADME Assay, and DNA Binding Studies. ACS OMEGA 2022; 7:22639-22656. [PMID: 35811873 PMCID: PMC9260921 DOI: 10.1021/acsomega.2c02033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/03/2022] [Indexed: 05/14/2023]
Abstract
To discover anticancer drugs with novel structures and expand our research scope, pyrazoline derivatives (3a-3l) were designed and synthesized through cyclization of chalcones with thiosemicarbazide/semicarbazide in CH3COOH as a solvent. All newly synthesized pyrazoline derivatives were fully characterized using several spectroscopic experiments such as 1H, 13C NMR, FT-IR spectroscopy, and mass analysis. By HPLC, the purity of all analogs was found above 95% and both lead compounds (3a and 3h) were also validated by HRMS. Anticancer activity of synthesized pyrazoline derivatives (3a-3l) was investigated by the MTT assay against the human lung cancer cell (A549), human cervical cancer cell (HeLa), and human primary normal lung cells (HFL-1). Staurosporine (STS) was used as a standard drug. The anticancer results showed that two potent analogs 3a and 3h exhibit excellent activity against A549 (IC50 = 13.49 ± 0.17 and 22.54 ± 0.25 μM) and HeLa cells (IC50 = 17.52 ± 0.09 and 24.14 ± 0.86 μM) and low toxicity against the HFL-1 (IC50 = 114.50 ± 0.01 and 173.20 ± 10 μM). The flow cytometry was further used to confirm the anticancer activity of potent derivatives against the A549 cancer cell line. DNA binding interaction of anticancer agents 3a and 3h with Ct-DNA has been carried out by absorption, fluorescence, EtBr (dye displacement assay), circular dichroism, cyclic voltammetry and time-resolved fluorescence, which showed noncovalent binding mode of interaction. Anticancer activity of both lead compounds (3a and 3h) may be attributed to DNA binding. The evaluation of the antioxidant potential of pyrazoline analogs 3a and 3h by 2,2-diphenyl-1-picrylhydrazyl free radical showed promising antioxidant activity with IC50 values of 0.132 ± 0.012 and 0.215 ± 0.025 μg/mL, respectively. In silico molecular docking of pyrazoline derivatives was also performed using autodock vina software against the DNA hexamer with PDB ID: 1Z3F and ADMET properties to explore their best hits.
Collapse
Affiliation(s)
- Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Sajad Hussain Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
7
|
Applications of choline-based ionic liquids in drug delivery. Int J Pharm 2022; 612:121366. [PMID: 34896216 DOI: 10.1016/j.ijpharm.2021.121366] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) usually refer to kinds of salts with melting point below 100 °C and are composed of definite anions and cations. In recent years, in addition to the field of material engineering, the applications of ILs have been extended to biomedical application. As a solubilizer, skin penetration enhancer, antibacterial agent, and macromolecular stabilizer of poorly soluble active pharmaceutical ingredients, ILs have attracted great attention in the field of pharmaceutical research. Among them, choline-based ILs are very popular in the field of drug delivery due to their biocompatibility, biodegradability, low toxicity or non-toxicity and other characteristics. This article mainly reviews the applications of choline-based ILs formed by choline and organic acid and choline-based ionic liquids-pharmaceutical active ingredients in transdermal delivery, topical delivery and oral delivery.
Collapse
|
8
|
Hanifeh Ahagh M, Dehghan G, Mahdavi M, Hosseinpour Feizi MA, Teimuri-Mofrad R, Payami E, Mehdipour M, Rashtbari S. DNA binding ability and cytotoxicity, cell cycle arrest and apoptosis inducing properties of a benzochromene derivative against K562 human leukemia cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:732-753. [PMID: 34126850 DOI: 10.1080/15257770.2021.1937644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Chromene and its derivatives are generally spread in nature. Heterocylic-based compounds like chromenes have displayed pharmacological activities. Chromene derivatives are critical due to some biological features such as anticancer activity. CML, chronic myelogenous leukemia, is a fatal malignancy determined by resistance to apoptosis and contains the Philadelphia chromosome. Induction of apoptosis is one of the main approaches in cancer therapy. In this research, benzochromene derivative, 2-amino-4-(4-methoxy phenyl)-4H-benzochromene-3-carbonitrile (4-MC) was tested for cytotoxic and apoptotic induction activities in the human leukemic K562 cell line. The MTT growth inhibition assay was used to determine the cellular growth and survival. Moreover, the binding attribute of 4-MC with double helix DNA was assessed by some spectroscopic and viscosity measurement, and also for docking analysis. 4-MC exhibited good cytotoxicity on K562 cell line and the IC50 value was calculated to be 30 µM. Furthermore, the mechanisms of apoptosis induction were determined morphologically by fluorescence dual staining with acridine orange and ethidium bromide and cell cycle analysis was based on DNA content, as well as the presence of phosphatidyl serine on the outside of the cells by the flow cytometric method. The results showed that 4-MC had potent cytotoxic activity via sub-G1 cell cycle arrest and induction of apoptosis. The experimental and simulation studies reported that 4-MC binds to ctDNA through groove binding mode with the binding constant (Kb) of 2.5 × 103 M-1. These data represent a considerable anticancer potential of 4-MC and could be suggested for further pharmacological studies.
Collapse
Affiliation(s)
- Mina Hanifeh Ahagh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of chemistry, University of Tabriz, Tabriz, Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of chemistry, University of Tabriz, Tabriz, Iran
| | - Maryam Mehdipour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Samaneh Rashtbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
9
|
Liu Y, Liu M, Yan H, Liu H, Liu J, Zhao Y, Wu Y, Zhang Y, Han J. Enhanced solubility of bisdemethoxycurcumin by interaction with Tween surfactants: Spectroscopic and coarse-grained molecular dynamics simulation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wu Y, Liu M, Pei W, Zhao Y, Wang D, Liu T, Sun B, Wang Q, Han J. Thermodynamics, in vitro release and cytotoxity studies on doxorubicin–toluidine blue O combination drugs co-loaded in aptamer-tethered DNA nanostructures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Synthesis, characterization, DNA-binding and biological studies of novel titanium (IV) complexes. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Şenel P, Agar S, Sayin VO, Altay F, Yurtsever M, Gölcü A. Elucidation of binding interactions and mechanism of Fludarabine with dsDNA via multispectroscopic and molecular docking studies. J Pharm Biomed Anal 2020; 179:112994. [DOI: 10.1016/j.jpba.2019.112994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
|
13
|
Chaurasia M, Tomar D, Chandra S. Synthesis, spectroscopic characterization and DNA binding studies of Cu(II) complex of Schiff base containing benzothiazole moiety. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2019.1681724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Madhuri Chaurasia
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Deepak Tomar
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India
| | - Sulekh Chandra
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Huang S, Cheng L, Yang J, Hu Y. Comparative study of two cephalosporin antibiotics binding to calf thymus DNA by multispectroscopy, electrochemistry, and molecular docking. LUMINESCENCE 2019; 35:52-61. [DOI: 10.1002/bio.3696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sheng‐Chao Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi China
| | - Li‐Yang Cheng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi China
| | - Jing Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi China
| | - Yan‐Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi China
| |
Collapse
|
15
|
Ionic liquids with methotrexate moieties as a potential anticancer prodrug: Synthesis, characterization and solubility evaluation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
17
|
Yang CZ, Li LY, Wang XH, Yu SQ, Hu YJ. One-pot synthesis and characterization CdTe:Zn2+
quantum dots and its molecular interaction with calf thymus DNA. J Mol Recognit 2017; 31:e2691. [DOI: 10.1002/jmr.2691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Cheng-Zhang Yang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Lin-Yi Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Xiao-Han Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Si-Qian Yu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); Wuhan University; Wuhan 430072 China
| |
Collapse
|