1
|
Li Q, Lou Z, Wang C, Li Y. In vitro anticancer effects in hepatocellular carcinoma (HCC) and protein interaction study of xanthoangelol. Int J Biol Macromol 2025; 302:138530. [PMID: 39653233 DOI: 10.1016/j.ijbiomac.2024.138530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 02/09/2025]
Abstract
Xanthoangelol (C25H28O4), a natural flavonoid derived from chalcones, has shown potential pharmacological activities. However, its primary interaction mechanism with proteins and cells is not well understood. In the present study, we focus on the anticancer effects of xanthoangelol against hepatocellular carcinoma (HCC) as well as its binding affinity with a plasma drug carrier protein, α2-macroglobulin. The anticancer effects of xanthoangelol on human HCC cell line HepG2 cells were assayed using MTT, LDH, qPCR, and caspase activity assays. Efficient binding of the xanthoangelol with α2-macroglobulin was established by experimental and molecular docking studies. It was found that xanthoangelol significantly mitigates cell viability through upregulating intrinsic (Bax/Bcl-2, caspase-9) and extrinsic (caspase-8) apoptotic pathways. Moreover, it was detected that xanthoangelol induces ER stress through the upregulation of CHOP in HepG2 cells. Fluorescence spectra show that xanthoangelol strongly interacts with α2-macroglobulin mediated by a static quenching mechanism and Trp1237 and Tyr1323 residues were exposed to the solvent with the addition of xanthoangelol. Meanwhile, both experimental and theoretical studies display that hydrophilic forces play a key role in the formation of xanthoangelol-α2-macroglobulin complex, leading to a slight conformational change in α2-macroglobulin. In conclusion, our findings suggest that xanthoangelol, which has a high binding affinity for a plasma carrier protein, may inhibit the viability of HCC by inducing apoptosis and ER stress.
Collapse
Affiliation(s)
- Qiaobei Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Lou
- Department of Cardiovascular Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Jouyaeian P, Kamkar-Vatanparast M, Tehranian-Torghabeh F, Hoseinpoor S, Saberi MR, Chamani J. New perspective into the interaction behavior explore of Nano-berberine with alpha-lactalbumin in the presence of beta-lactoglobulin: Multi-spectroscopic and molecular dynamic investigations. J Mol Struct 2024; 1316:139020. [DOI: 10.1016/j.molstruc.2024.139020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Ali MS, Teixeira LMC, Ramos MJ, Fernandes PA, Al-Lohedan HA. Interaction of major saffron constituent safranal with trypsin: An experimental and computational investigation. Int J Biol Macromol 2024; 274:133231. [PMID: 38897495 DOI: 10.1016/j.ijbiomac.2024.133231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Trypsin is a serine protease, an important digestive enzyme that digests the proteins in the small intestine. In the present study, we have investigated the interaction of safranal, a major saffron metabolite, with trypsin using spectroscopic and molecular docking analyses. Fluorescence emission spectra of trypsin were largely affected by the inner filter effect from safranal; that's why these were corrected using the standard procedure. The corrected fluorescence spectra have shown that the safranal quenched the intrinsic fluorescence of trypsin with a blue shift in the wavelength of emission maximum, which revealed that the microenvironment of the fluorophore became more hydrophobic. There was approximately 1: 1 fair binding between them, which increased with a rise in temperature. The interaction was favored, principally, by hydrophobic forces, and there was an efficient energy transfer from the fluorophore to the safranal. Synchronous fluorescence spectra suggested that the tryptophan residues were the major ones taking part in the fluorescence quenching of trypsin. Safranal also influenced the secondary structure of trypsin and caused partial unfolding. Molecular Docking and the Molecular Dynamics simulation of the free and complexed trypsin was also carried out. Safranal formed a stable, non-covalent complex within the S2'-S5' subsite. Moreover, two nearby tyrosine residues (Tyr39 and Tyr151) stabilized safranal through π-π interactions. Additionally, the presence of safranal led to changes in the protein flexibility and compactness, which could indicate changes in the surrounding of tryptophan residues, impacting their fluorescence. Furthermore, a loss in compactness is in line with the partial unfolding observed experimentally. Thus, both experimental and computational studies were in good agreement with each other.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Luís M C Teixeira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Li J, Zhang Y, Dong J, Li D, Ba X, Wang S. Dissimilar effects of the hydrophilic carbon dots on the amyloid aggregation of two model proteins and the mechanism discussion. J Mol Recognit 2024; 37:e3085. [PMID: 38599335 DOI: 10.1002/jmr.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, P. R. China
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, P. R. China
| |
Collapse
|
5
|
Duan X, Liu W, Liang J, Jing T, Liu Y, Wang X, Liu B. Modulation of protein-ligand interactions in the presence of ZIF-8: Spectroscopy and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124053. [PMID: 38422930 DOI: 10.1016/j.saa.2024.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this paper, we investigated the protein-ligand interactions in the presence of ZIF-8 using multi-spectroscopic approaches and molecular dynamics simulation. Fluorescence experiments and molecular docking results showed that ZIF-8 did not change the type of quenching and interaction force between ciprofloxacin (CIP) and human serum albumin (HSA), but made the binding constant of HSA-CIP to be smaller, suggesting that ZIF-8 maybe accelerate the dissociation of CIP from HSA-CIP complex. Moreover, the effect of ZIF-8 on the physiological function of HSA was explored. Multi-spectroscopic methods revealed that ZIF-8 did not significantly alter the microenvironment of amino acid groups, but cause a slight decrease in the content of α-helical conformation, and a sparse and flexible structure of the protein backbone. These peculiarities might lead to the diminution of HSA's ability to control drugs. In short, ZIF-8 might enhance drug effect due to affecting the binding of drugs to proteins. However, the present study is only a preliminary investigation of the suitability of ZIF-8 as a drug carrier in vitro, and subsequent in vivo experimental studies will be required to further confirm the idea.
Collapse
Affiliation(s)
- Xinyue Duan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Jiaqi Liang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Tingyu Jing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110075, China.
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
6
|
Azeem K, Abdulhameed HT, Hussain A, Amir S, Parveen M, Patel R, Abid M. A Comprehensive Multispectroscopic and Computational Analysis of the Interaction between Plant-Based Antiplasmodial Compounds and Bovine Serum Albumin. ACS OMEGA 2024; 9:5576-5591. [PMID: 38343956 PMCID: PMC10851409 DOI: 10.1021/acsomega.3c07630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Haider Thaer Abdulhameed
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samira Amir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehtab Parveen
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Rajan Patel
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
7
|
Jalan A, Moyon NS. Molecular interactions and binding dynamics of Alpelisib with serum albumins: insights from multi-spectroscopic techniques and molecular docking. J Biomol Struct Dyn 2024; 42:2127-2143. [PMID: 37098825 DOI: 10.1080/07391102.2023.2203256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Alpelisib (ALP) is a potent anti-cancer drug showing promising activity against advanced breast cancers. Hence, profound understanding of its binding dynamics within the physiological system is vital. Herein, we have investigated interaction of ALP with human serum albumin (HSA) and bovine serum albumin (BSA) using spectroscopic techniques like absorption, fluorescence, time-resolved, synchronous and 3D-fluorescence, FRET, FT-IR, CD, and molecular docking studies. The intrinsic fluorescence of both BSA and HSA quenched significantly by ALP with an appreciable red shift in its emission maxima. Stern-Volmer analysis showed increase in Ksv with temperature indicating involvement of dynamic quenching process. This was further validated by no significant change in absorption spectrum of BSA and HSA (at 280 nm) upon ALP interaction, and by results of fluorescence time-resolved lifetime studies. ALP exhibited moderately strong binding affinity with BSA (of the order 106 M-1) and HSA (of the order 105 M-1), and the major forces accountable for stabilizing the interactions are hydrophobic forces. Competitive drug binding experiments and molecular docking suggested that ALP binds to site I in subdomain IIA of BSA and HSA. The Förster distance r was found to be less than 8 nm and 0.5 Ro < r < 1.5 Ro which suggests possible energy transfer between donors BSA/HSA and acceptor ALP. Synchronous and 3D-fluoresecnce, FT-IR and CD studies indicated that ALP induces conformational changes of BSA and HSA upon interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankita Jalan
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| | - N Shaemningwar Moyon
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| |
Collapse
|
8
|
Ali MS, Waseem M, Subbarao N, Alahamed AN, Al-Lohedan HA. Probing the interaction of cephalosporin antibiotic "cefoperazone" with lysozyme using spectroscopic and in silico methods: Effect of paracetamol on binding. Int J Biol Macromol 2023; 252:126568. [PMID: 37640184 DOI: 10.1016/j.ijbiomac.2023.126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The interaction of lysozyme with cefoperazone was studied by means of spectroscopic and computational approaches. The change in the UV-visible spectrum of lysozyme in presence of cefoperazone was an indication of the complex formation between them. Fluorescence spectroscopy suggested that there was a fair interaction between the protein and drug which was taken place via dynamic quenching mechanism and the binding ratio was approximately 1:1. The binding was energetically feasible and principally supported by the hydrophobic forces. CD spectroscopic studies have shown that cefoperazone induced the secondary structure of lysozyme by increasing the α-helical contents of the latter. In silico studies revealed that the large nonpolar cavity was the preferred binding site of cefoperazone within lysozyme and the interaction was taken place mainly through hydrophobic forces with small involvement of hydrogen bonding and electrostatic interactions which is in good agreement with the experimental analyses. Effect of paracetamol was also seen on the binding and it was found that paracetamol had a negative influence on the binding between cefoperazone and lysozyme.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Mohd Waseem
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Abdullah Nasser Alahamed
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Qureshi MA, Amir M, Khan RH, Musarrat J, Javed S. Glycation reduces the binding dynamics of aflatoxin B 1 to human serum albumin: a comprehensive spectroscopic and computational investigation. J Biomol Struct Dyn 2023; 41:14797-14811. [PMID: 37021366 DOI: 10.1080/07391102.2023.2194000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/25/2023] [Indexed: 04/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent mutagen, is synthesized by Aspergillus parasiticus and Aspergillus flavus. Human serum albumin (HSA) is a globular protein with diverse roles. As AFB1 is ingested with food and is transported in the body via blood, it becomes pertinent to comprehend the effect of the binding of this toxin on the structure and conformation of HSA, which may help to get insight into the toxic effect of the exposure of the mycotoxin. In this study, multi-spectroscopic approaches have been used to evaluate the binding efficiency of AFB1 with both the native HSA (nHSA) and the glycated HSA (gHSA). Steady-state fluorescence spectroscopy reveals the static type of fluorescence quenching in the fluorescence emission spectra of nHSA and gHSA in the presence of AFB1. The binding constant (Kb) is calculated to be 6.88 × 104 M-1 for nHSA, while a reduced Kb value of 2.95 × 104 M-1 has been obtained for gHSA. The circular dichroism study confirms the change in the secondary structure of nHSA and gHSA in the presence of AFB1, followed by alterations in the melting temperature (Tm) of nHSA and gHSA. In silico computational findings envisaged the amino acid residues and bonds involved in the binding of nHSA and gHSA with AFB1. The comprehensive study analyzes the binding effectiveness of AFB1 with nHSA and gHSA and shows reduced binding of AFB1 to gHSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Ali MS, Muthukumaran J, Jain M, Tariq M, Al-Lohedan HA, Al-Sanea ASS. Detailed Experimental and In Silico Investigation of Indomethacin Binding with Human Serum Albumin Considering Primary and Secondary Binding Sites. Molecules 2023; 28:molecules28072979. [PMID: 37049745 PMCID: PMC10095894 DOI: 10.3390/molecules28072979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The interaction of indomethacin with human serum albumin (HSA) has been studied here considering the primary and secondary binding sites. The Stern–Volmer plots were linear in the lower concentration range of indomethacin while a downward curvature was observed in the higher concentration range, suggesting the presence of more than one binding site for indomethacin inside HSA due to which the microenvironment of the fluorophore changed slightly and some of its fraction was not accessible to the quencher. The Stern–Volmer quenching constants (KSV) for the primary and secondary sites were calculated from the two linear portions of the Stern–Volmer plots. There was around a two-fold decrease in the quenching constants for the low-affinity site as compared to the primary binding site. The interaction takes place via a static quenching mechanism and the KSV decreases at both primary and secondary sites upon increasing the temperature. The binding constants were also evaluated, which show strong binding at the primary site and fair binding at the secondary site. The binding was thermodynamically favorable with the liberation of heat and the ordering of the system. In principle, hydrogen bonding and Van der Waals forces were involved in the binding at the primary site while the low-affinity site interacted through hydrophobic forces only. The competitive binding was also evaluated using warfarin, ibuprofen, hemin, and a warfarin + hemin combination as site markers. The binding profile remained unchanged in the presence of ibuprofen, whereas it decreased in the presence of both warfarin and hemin with a straight line in the Stern–Volmer plots. The reduction in the binding was at a maximum when both warfarin and hemin were present simultaneously with the downward curvature in the Stern–Volmer plots at higher concentrations of indomethacin. The secondary structure of HSA also changes slightly in the presence of higher concentrations of indomethacin. Molecular dynamics simulations were performed at the primary and secondary binding sites of HSA which are drug site 1 (located in the subdomain IIA of the protein) and the hemin binding site (located in subdomain IB), respectively. From the results obtained from molecular docking and MD simulation, the indomethacin molecule showed more binding affinity towards drug site 1 followed by the other two sites.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Mohammad Tariq
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saad S. Al-Sanea
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Ali MS, Rehman MT, Al-Lohedan HA, AlAjmi MF. Exploration of the binding between cuminol and bovine serum albumin through spectroscopic, molecular docking and molecular dynamics methods. J Biomol Struct Dyn 2022; 40:12404-12412. [PMID: 34488560 DOI: 10.1080/07391102.2021.1971560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cuminol (4-Isopropylbenzyl alcohol), found in the essential oils of several plant sources, is an important constituent of several cosmetics formulations. The interaction of cuminol with model plasma protein bovine serum albumin was studied in this paper. The experimental studies were mainly carried out using fluorescence spectrophotometry aided with UV visible and CD spectroscopies. Intrinsic fluorescence measurements showed that there was a weak binding between cuminol and BSA. The mechanism of binding involved static quenching with around 1:1 binding. The binding was chiefly supported by hydrophobic forces although a little contribution of hydrogen bonding was also found in the interaction and the values of enthalpy change were negative with positive entropy change. The secondary structure of BSA didn't change significantly in presence of low concentrations of cuminol, however, partial unfolding of the former taken place when the concentration of the latter increased. Molecular docking analyses showed cuminol binds at the intersection of subdomains IIA and IIIA, i.e. its binding site is in between Sudlow sites I and II. Molecular dynamics simulations results have shown that BSA forms a stable complex with cuminol and the structure of the former didn't change much in presence of later. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Khashkhashi-Moghadam S, Ezazi-Toroghi S, Kamkar-Vatanparast M, Jouyaeian P, Mokaberi P, Yazdyani H, Amiri-Tehranizadeh Z, Reza Saberi M, Chamani J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Ali MS, Al-Lohedan HA. Experimental and Computational Investigation on the Interaction of Anticancer Drug Gemcitabine with Human Plasma Protein: Effect of Copresence of Ibuprofen on the Binding. Molecules 2022; 27:1635. [PMID: 35268736 PMCID: PMC8912049 DOI: 10.3390/molecules27051635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022] Open
Abstract
The interaction of common anticancer drug gemcitabine with human serum albumin (HSA) has been studied in detail. The effect of an omnipresent nonsteroidal anti-inflammatory drug ibuprofen was also seen on the binding of HSA and gemcitabine. A slight hyperchromic shift in the difference UV-visible absorption spectra of HSA on the addition of gemcitabine gave a primary idea of the possible complex formation between them. The inner filter effect, which happens due to the significant absorbance of the ligand at the excitation and/or emission wavelengths, played an important role in the observed fluorescence quenching of HSA by gemcitabine that can be understood by comparing the observed and corrected fluorescence intensities obtained at λex = 280 nm and 295 nm. Gemcitabine showed weak interaction with HSA, which took place via a dynamic quenching mechanism with 1:1 cooperative binding between them. Secondary structural analysis, based on circular dichroism (CD) spectroscopy, showed that low concentrations of gemcitabine did not affect the native structure of protein; however, higher concentrations affected it slightly with partial unfolding. For understanding the binding site of gemcitabine within HSA, both experimental (using site markers, warfarin and ibuprofen) as well as computational methods were employed, which revealed that the gemcitabine binding site is located between the interface of subdomain IIA and IIB within the close proximity of the warfarin site (drug site 1). The effect of ibuprofen on the binding was further elaborated because of the possibility of its coexistence with gemcitabine in the prescription given to the cancer patients, and it was noticed that, ibuprofen, even present in high amounts, did not affect the binding efficacy of gemcitabine with HSA. DFT analyses of various conformers of gemcitabine obtained from its docking with various structures of HSA (free and bounded with site markers), show that the stability of the gemcitabine molecule increased slightly after binding with ibuprofen-complexed HSA. Both experimental as well as computational results were in good agreement with each other.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | | |
Collapse
|
15
|
Zhang H, Min S, Zhang L, Li L. Design, synthesis and protein-binding character of an acylhydrazone anticancer candidate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Ding Y, Wang H, Zhang L, Li L, Zhang H. Albumin-binding difference caused by hydroxy and bromo on position-2 of benzothiazole. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ali MS, Muthukumaran J, Jain M, Santos-Silva T, Al-Lohedan HA, Al-Shuail NS. Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Experimental and in silico investigation on the interaction of indomethacin with bovine serum albumin: Effect of sodium dodecyl sulfate surfactant monomers on the binding. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Liao X, Zhu C, Huang D, Wen X, Zhang SL, Shen Y. Profiling the interaction of a novel toxic pyruvate dehydrogenase kinase inhibitor with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119733. [PMID: 33827040 DOI: 10.1016/j.saa.2021.119733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
To discover novel pyruvate dehydrogenase kinase (PDK) inhibitors, a new compound 2,2-dichloro-1-(4-((4-isopropylphenyl)amino)-3-nitrophenyl)ethan-1-one, namely XB-1 was identified, which inhibited PDK activity with a half maximal inhibitory concentration (IC50) value of 337.0 nM, and reduced A549 cell proliferation with a half maximal effective concentration (EC50) value of 330.0 nM. However, the compound appears to exhibit a negligible selectivity between cancer cell and normal one, indicating a potential toxicity existed for the compound. Herein, the interaction of the toxic XB-1 to human serum albumin (HSA) was firstly explored by spectroscopic approaches with the aim to reduce/avoid the toxicity of PDK inhibitors in the next hit-to-lead campaign. In detail, it was found that the XB-1 could effectively bind to HSA mainly via hydrogen bond interaction in PBS buffer (pH = 7.4, 10.0 mM), resulting in the formation of HSA-XB-1 complex. The negative value of ΔG showed that the binding of XB-1 to HSA is a spontaneous process. The result from site-selective binding assay suggested that the XB-1 bound to the site I of HSA by competing with warfarin, which was perfect in agreement with the molecular docking method. The results of this paper may offer a valuable theoretical basis to study the toxicity of biofunctional molecules and may offer thoughts about how to avoid/reduce toxicity for a small molecule.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ding Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
20
|
Ali MS, Muthukumaran J, Jain M, Al-Lohedan HA, Farah MA, Alsowilem OI. Experimental and computational investigation on the binding of anticancer drug gemcitabine with bovine serum albumin. J Biomol Struct Dyn 2021; 40:9144-9157. [PMID: 33998966 DOI: 10.1080/07391102.2021.1924270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study reports the experimental and computational investigation on the binding of a common anticancer drug, gemcitabine, with the model plasma protein, bovine serum albumin (BSA). Several experimental and computational methods, such as intrinsic and synchronous fluorescence, UV-visible, and circular dichroism spectroscopies, consensus molecular docking and molecular dynamics simulation have been employed to elucidate the binding mechanism. Gemcitabine altered the UV-visible spectrum of BSA, which is a clear indication of the complex formation between them. The visual inspection of observed fluorescence quenching results at λex = 280 nm and 295 nm has shown the substantial involvement of tyrosine residue, even larger than tryptophan. However, after the correction of inner filter effect of the observed data, it became clear that tyrosine has a negligible role in quenching. A 20-fold decrease in quenching constant was found in the corrected data, as compared to the observed data at λex = 280 nm. There was a 1:1 weak binding between BSA and gemcitabine accompanied by dynamic quenching. The secondary structure of BSA remained almost intact in the presence of gemcitabine. The primary binding site of gemcitabine inside BSA was the drug binding site 2 or DS II, which is located in the subdomain 3 A. MD Simulation results suggested that gemcitabine doesn't affect or deviate the structure of BSA upon interaction throughout 100 ns time period. The dominating intermolecular forces were hydrophobic forces and hydrogen bonding. A small change in the frontier molecular orbitals of gemcitabine was also observed after its binding with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Osama Ibrahim Alsowilem
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Ali MS, Waseem M, Subbarao N, Al-Lohedan HA. Noncovalent molecular interactions between antineoplastic drug gemcitabine and a carrier protein identified through spectroscopic and in silico methods. Int J Biol Macromol 2021; 182:993-1002. [PMID: 33857514 DOI: 10.1016/j.ijbiomac.2021.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
Herein we have studied the noncovalent molecular interactions between hen egg white lysozyme (HEWL) and the commonly employed antineoplastic drug gemcitabine through the cumulative implementation of spectroscopic techniques and in silico approaches. The formation of a complex between HEWL and gemcitabine was made evident by the differences between the UV-visible spectra of the protein and protein-gemcitabine complex. Fluorescence quenching of HEWL by gemcitabine was hardly detectable at room temperature, but it became prominent at higher temperatures. Very low values for the bimolecular quenching constant and the non-reciprocal dependence of quenching on temperature indicated that dynamic quenching was taking place. Analysis of experimental data indicated that the interaction was dominated by hydrophobic forces, while the results of a computational investigation suggested the concomitant contribution of hydrogen bonding. Gemcitabine binding induced modifications of the secondary structure of HEWL by slightly increasing the α-helical content of the protein. Finally, gemcitabine binding site was inferred to be located in HEWL big hydrophobic cavity.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Mohd Waseem
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Hamad A Al-Lohedan
- Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Ali MS, Waseem M, Subbarao N, Al-Lohedan HA. Dynamic interaction between lysozyme and ceftazidime: Experimental and molecular simulation approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Qi X, Xu D, Zhu J, Wang S, Peng J, Gao W, Cao Y. Studying the interaction mechanism between bovine serum albumin and lutein dipalmitate: Multi-spectroscopic and molecular docking techniques. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106513] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Tobal IE, Bautista R, Diez D, Garrido NM, García-García P. 1,3-Cyclohexadien-1-Als: Synthesis, Reactivity and Bioactivities. Molecules 2021; 26:1772. [PMID: 33809941 PMCID: PMC8004145 DOI: 10.3390/molecules26061772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
In synthetic organic chemistry, there are very useful basic compounds known as building blocks. One of the main reactions wherein they are applied for the synthesis of complex molecules is the Diels-Alder cycloaddition. This reaction is between a diene and a dienophile. Among the most important dienes are the cyclic dienes, as they facilitate the reaction. This review considers the synthesis and reactivity of one of these dienes with special characteristics-it is cyclic and has an electron withdrawing group. This building block has been used for the synthesis of biologically active compounds and is present in natural compounds with interesting properties.
Collapse
Affiliation(s)
- Ignacio E. Tobal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, University of Salamanca, Plaza de los Caídos 1–5, 37008 Salamanca, Spain; (I.E.T.); (R.B.); (D.D.); (N.M.G.)
| | - Rocío Bautista
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, University of Salamanca, Plaza de los Caídos 1–5, 37008 Salamanca, Spain; (I.E.T.); (R.B.); (D.D.); (N.M.G.)
| | - David Diez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, University of Salamanca, Plaza de los Caídos 1–5, 37008 Salamanca, Spain; (I.E.T.); (R.B.); (D.D.); (N.M.G.)
| | - Narciso M. Garrido
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, University of Salamanca, Plaza de los Caídos 1–5, 37008 Salamanca, Spain; (I.E.T.); (R.B.); (D.D.); (N.M.G.)
| | - Pilar García-García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS, IBSAL, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
25
|
Ali MS, Muthukumaran J, Al-Lohedan HA. Molecular interactions of ceftazidime with bovine serum albumin: Spectroscopic, molecular docking, and DFT analyses. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Musa KA, Ning T, Mohamad SB, Tayyab S. Intermolecular recognition between pyrimethamine, an antimalarial drug and human serum albumin: Spectroscopic and docking study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Dogra A, Kotwal P, Gour A, Bhatt S, Singh G, Mukherjee D, Nandi U. Description of Druglike Properties of Safranal and Its Chemistry behind Low Oral Exposure. ACS OMEGA 2020; 5:9885-9891. [PMID: 32391475 PMCID: PMC7203973 DOI: 10.1021/acsomega.0c00160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/01/2020] [Indexed: 05/11/2023]
Abstract
Safranal, a plant secondary metabolite isolated from saffron, has been reported for several promising pharmacological properties toward the management of Alzheimer's disease. In the present study, we observe and report for the first time about several druglike attributes of safranal, such as adherence to Lipinski's rule of five; optimum lipophilicity; high permeability; low blood-to-plasma ratio; less to moderate propensity to interact with P-glycoprotein (P-gp) or breast cancer-resistant protein (BCRP) transporters; and high plasma protein binding as common to most of the marketed drugs using in vitro and ex vivo models. In spite of the above attributes, in vivo oral absorption was found to be very poor, which is linked to the structural integrity of safranal in simulated gastric fluid, simulated intestinal fluid, plasma, and liver microsomes. Moreover, the presence of unsaturated aldehyde moiety in safranal remains in equilibrium with its hydroxylated acetal form. Further research work is required to find out the stable oral absorbable form of safranal by derivatization of its aldehyde group without losing its potency.
Collapse
Affiliation(s)
- Ashish Dogra
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Pankul Kotwal
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Abhishek Gour
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Shipra Bhatt
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Gurdarshan Singh
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Debaraj Mukherjee
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Natural
Product Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Utpal Nandi
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- ,
| |
Collapse
|
28
|
Ali MS, Al-Lohedan HA. Spectroscopic and Molecular Docking Investigation on the Noncovalent Interaction of Lysozyme with Saffron Constituent "Safranal". ACS OMEGA 2020; 5:9131-9141. [PMID: 32363265 PMCID: PMC7191604 DOI: 10.1021/acsomega.9b04291] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Owing to the various beneficial properties of the popular spice saffron, the interaction of safranal, a secondary metabolite of the former, with hen egg white lysozyme was investigated. The formation of a complex was evidenced by UV-visible spectroscopy. Fluorescence quenching experiments were also performed to understand the binding mechanism and to evaluate the forces involved in binding. The strong absorption of safranal in the range of excitation and emission wavelengths of lysozyme fluorescence required the correction of the inner filter effect for fluorescence spectra to obtain the apparent extent of binding. There was a considerable difference between the observed spectra and corrected spectra, and a similar observation was found in the case of synchronous fluorescence spectra. From the analysis of quenching data, it was found that the mechanism involved in quenching was static with 1:1 binding between them. The interaction was found to be driven, mainly, by hydrophobic forces and hydrogen bonding. Safranal had negligible impact on the secondary structure of lysozyme. The interaction was also studied by molecular docking, and the results were in good agreement with the results obtained experimentally. The binding site of safranal was in the big hydrophobic cavity of lysozyme. The amino acids involved in the interaction were Asp52, Ile58, Gln57, Asn59, Trp62, Trp63, Trp108, Ile98, Asp101, and Ala107.
Collapse
|
29
|
Lopes JPB, Câmara VS, Russowsky D, Nogara PA, da Rocha JBT, da Silveira Santos F, Rodembusch FS, Ceschi MA. Tacrine-pyrimidine photoactive molecular hybrids: Synthesis, photophysics, docking and BSA interaction study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|