1
|
Benabela I, Benderrag A, Haddou B, Canselier JP, Gourdon C. Dye removal with emulsion liquid membrane: experimental design and response surface methodology. ENVIRONMENTAL TECHNOLOGY 2023; 44:4296-4312. [PMID: 35713229 DOI: 10.1080/09593330.2022.2091480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
This work aims to removing anionic food dyes, Acid Red18 (E124) and Quinoline Yellow WS (E104), from their aqueous solutions. The Emulsion Liquid Membrane (ELM) technique was used. ELM consists of diluent (kerosene), nonionic surfactant (0.5 wt. % Triton X-45), Aliquat 336 as an extractant. Sulfuric acid (H2SO4) solution was used as an internal aqueous phase. The key parameters impacting the stability of liquid membrane and the efficiency of dye removal were investigated; Almost 98% of E124 at 50 mg/L are successfully extracted under optimum conditions. The extraction of a mixture of the two dyes at equal concentrations (25 mg/L) was conducted and their extraction showed more than 95% of efficiency. The experimental results of dye mixture (E124, E104) extraction were expressed by the following three quantities: The concentration of Triton X-45, the concentration of Aliquat 336, and the internal phase concentration of H2SO4, represented on three dimensional plots using the Box-Behnken design and the response surface methodology. For each of the parameters, the values of which were determined by experimental design, these results were subjected to empirical smoothing. The values, thus calculated, are consistent with the measurements.
Collapse
Affiliation(s)
- Imene Benabela
- Laboratoire de Physico-Chimie des Matériaux, Catalyse and Environnement (LPCM-CE), Université des Sciences and de la Technologie d'Oran Mohamed Boudiaf (USTOMB), Oran, Algerie
| | - Abdelkader Benderrag
- Laboratoire de Physico-Chimie des Matériaux, Catalyse and Environnement (LPCM-CE), Université des Sciences and de la Technologie d'Oran Mohamed Boudiaf (USTOMB), Oran, Algerie
| | - Boumediene Haddou
- Laboratoire de Physico-Chimie des Matériaux, Catalyse and Environnement (LPCM-CE), Université des Sciences and de la Technologie d'Oran Mohamed Boudiaf (USTOMB), Oran, Algerie
| | | | | |
Collapse
|
2
|
Xu Y, Shen W, Liu Y, Wei J. Chitosan/lemon residues activated carbon efficiently removal of acid red 18 from aqueous solutions: batch study, isotherm and kinetics. ENVIRONMENTAL TECHNOLOGY 2023; 44:1405-1414. [PMID: 34779747 DOI: 10.1080/09593330.2021.2003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this research, chitosan-decorated activated carbon (AC-CS) was proposed. The AC was cross-linked with glutaraldehyde to prepare an adsorbent (AC-CS). The AC-CS has a rough surface. Adding the AC-CS directly to the dye solution can achieve simple and convenient removal of anionic azo dyes acid red 18 (AR-18). In the dye solution, the AC-CS was used as an adsorbent. The effects of pH, contact time, temperature, initial concentration of AR-18 and the AC-CS dosage on the adsorption efficiency were investigated. Full kinetic and isotherm analyses were also undertaken. In addition, the reusability of the AC-CS was evaluated, and the results showed that the removal rate of AR18 after regeneration remained relatively stable, above 90%. This experiment has shown that AC-CS is a promising anionic azo dye adsorbent.
Collapse
Affiliation(s)
- Yongyao Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| | - Wangqing Shen
- School of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| | - Jiafeng Wei
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| |
Collapse
|
3
|
Recent Literature Review of Significance of Polypyrrole and Its Biocomposites in Adsorption of Dyes from Aqueous Solution. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7047832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The usage of dyes has been tremendously augmented due to industrialization and human’s intrinsic fascination with colors. Owing to their excessive usage in industries like textiles, food, cosmetics, paints, printing etc., it is indisputably a contributing factor in aquatic pollution. Dyes effluents have emerged as a burgeoning challenge. Owing to issues such as toxicity, mutagenicity, and disturbed photosynthesis associated with dye contamination, it is crucial to look for an explication to deal with this challenge. Polypyrrole-based biocomposites have been reported as good adsorbents for textile wastewater treatment. In the last decade, numerous studies have stated the effective removal of dyes via Polypyrrole-based biocomposites. This review concentrates on the implication of different Polypyrrole-based biocomposites for decontamination of dyes and synthesis methods, characteristics, and mechanism of dyes degradation by these biocomposites from wastewater.
Collapse
|
4
|
Tang Z, Wang M, Jia X, Xie S, Chen P, Wang D, Chen L, Zhao J. Organophosphonic Acid-Regulating Assembly of P V-Sb III Polyoxotungstate and Its Potential in Building a Dual-Signal Readout Electrochemical Aptasensor for Carcinogen Detection. Inorg Chem 2022; 61:14648-14661. [PMID: 36073797 DOI: 10.1021/acs.inorgchem.2c02003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Template-directed assembly of giant cluster-based nanomaterials is an everlasting theme in cluster science. In this work, ethylenediamine tetramethylphosphonic acid [H8EDTPA = (POCH2(OH)2)4C2H4N2] and [B-α-SbW9O33]9- were, respectively, used as an organic template and an inorganic template to prepare an organophosphonic acid-regulating PV-SbIII-heteroatom-inserted polyoxotungstate aggregate [H2N(CH3)2]5Na11H9[CeW4O10(HEDTPA)SbW15O50][B-α-SbW9O33]2·36H2O (1). Noteworthily, organophosphonic acid ligand not only works as an organic template leading to the assembly of a [HEDTPASbW15O50]14- building block but also further bridges the sandwich-type [CeW4O10(B-α-SbW9O33)2]11- entity. To extend its potential application in electrochemical sensing properties, we prepared a three-dimensional 1@EGO composite (EGO = reduced graphene oxide functionalized by ethylenediamine) with porous architecture and a prominent conducting ability. Furthermore, the 1@EGO composite was explored as a modification material for glassy carbon electrodes to build a dual-signal readout electrochemical aptasensor for carcinogens, which shows much better detection performance for aflatoxin B1 compared with traditional single-signal biosensors.
Collapse
Affiliation(s)
- Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Menglu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Pei Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
5
|
Ali N, Funmilayo OR, Khan A, Ali F, Bilal M, Yang Y, Akhter MS, Zhou C, Wenjie Y, Iqbal HMN. Nanoarchitectonics: Porous Hydrogel as Bio-sorbent for Effective Remediation of Hazardous Contaminants. J Inorg Organomet Polym Mater 2022; 32:3301-3320. [DOI: 10.1007/s10904-022-02388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
|
6
|
Liu J, Jia J, Yu H, Zhang J, Li J, Ge H, Zhao Y. Graphite felt modified by nanoporous carbon as a novel cathode material for the EF process. NEW J CHEM 2022. [DOI: 10.1039/d2nj01679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoporous carbon prepared by carbonizing ZIF-8@MWCNTs can greatly improve the performance of graphite felt as an electro-Fenton cathode.
Collapse
Affiliation(s)
- Jiaman Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiping Jia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaqiang Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
7
|
Senguttuvan S, Janaki V, Senthilkumar P, Kamala-Kannan S. Polypyrrole/zeolite composite - A nanoadsorbent for reactive dyes removal from synthetic solution. CHEMOSPHERE 2022; 287:132164. [PMID: 34509762 DOI: 10.1016/j.chemosphere.2021.132164] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 05/26/2023]
Abstract
Synthetic dyes are among the common pollutants in the ecosystem. In the present study, polypyrrole/zeolite (PPy/Ze) nanocomposite was prepared and subsequently assessed for the removal of Reactive blue (RB) and Reactive red (RR) from synthetic solution. The polymeric PPy/Ze composite was synthesized by chemical oxidation of pyrrole in the presence of zeolite. Electron microscopic images (transmission and scanning) indicate that PPy/Ze nanocomposite was spherical in shape with an average size of 40-80 nm. The characteristic pyrrole and zeolite Fourier transform infrared spectrum peaks (1542 cm-1, 1463 cm-1, 1156 cm-1, 1054 cm-1, 879 cm-1 and 756 cm-1) in the nanocomposite confirmed zeolite integration with polypyrrole. Experimental variables such as PPy/Ze nanocomposite dose, initial RB and RR concentration, reaction temperature and pH were optimized. The PPy/Ze nanocomposite adsorbed 86.2% of RB and 88.3% of RR from synthetic solution at optimal conditions (pH 9, initial RR or RB concentration, 75 mg/l; PPy/Ze dose, 1.8 g/l; and temperature, 50 °C). Freundlich isotherm model and pseudo-second-order kinetics showed better fit for both RB and RR removal from synthetic solution. X-ray diffractogram confirmed the amorphous nature of PPy/Ze nanocomposite and that it was not altered even after dye adsorption. Adsorption-desorption studies showed that the composite has satisfactory adsorption potential for four cycles. The results show that the PPy/Ze nanocomposite could be used for the removal of dyes from wastewaters.
Collapse
Affiliation(s)
- S Senguttuvan
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, 636011, Tamil Nadu, India
| | - V Janaki
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - P Senthilkumar
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, 636011, Tamil Nadu, India.
| | - S Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
8
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
9
|
Mechanism of interactions in C.I. Acid Red 18 – Floating plants and polymeric resins systems: Kinetic, equilibrium, auxiliaries impact and column studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
|
11
|
Mashkoor F, Nasar A. Facile synthesis of polypyrrole decorated chitosan-based magsorbent: Characterizations, performance, and applications in removing cationic and anionic dyes from aqueous medium. Int J Biol Macromol 2020; 161:88-100. [DOI: 10.1016/j.ijbiomac.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
12
|
Sapurina IY, Shishov MA, Ivanova VT. Sorbents for water purification based on conjugated polymers. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Cendrowski K, Opała K, Mijowska E. Carbonized Lanthanum-Based Metal-Organic Framework with Parallel Arranged Channels for Azo-Dye Adsorption. NANOMATERIALS 2020; 10:nano10061053. [PMID: 32486157 PMCID: PMC7353049 DOI: 10.3390/nano10061053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
In this contribution, the synthesis of the metal−organic framework (MOF) based on lanthanum that exhibits trigonal prism shape is presented. The length of a single side of this structure ranges from 2 to 10 μm. The carbonized lanthanum-based organic framework (CMOF–La) maintained the original shape. However, the lanthanum oxide was reshaped in the form of rods during the carbonization. It resulted in the creation of parallel arranged channels. The unique structure of the carbonized structure motivated us to reveal its adsorption performance. Therefore, the adsorption kinetics of acid red 18 onto a carbonized metal−organic framework were conducted. Various physicochemical parameters such as initial dye concentration and pH of dye solution were investigated in an adsorption process. The adsorption was found to decrease with an increase in initial dye concentration. In addition, the increase in adsorption capacity was noticed when the solution was changed to basic. Optimal conditions were obtained at a low pH. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. The adsorption kinetics were well fitted using a pseudo-second-order kinetic model. It was found that the adsorption of anionic dye onto CMOF–La occurs by hydrophobic interactions between carbonized metal-organic framework and acid red 18.
Collapse
|
14
|
Stejskal J, Trchová M. Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04607-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00982-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|