1
|
Li Y, Li Y, Cao J, Luo P, Liu J, Ma L, Gao GL, Jiang Z. 4D-Printed Magnetic Responsive Bilayer Hydrogel. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:134. [PMID: 39852749 PMCID: PMC11767551 DOI: 10.3390/nano15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Despite its widespread application in targeted drug delivery, soft robotics, and smart screens, magnetic hydrogel still faces challenges from lagging mechanical performance to sluggish response times. In this paper, a methodology of in situ generation of magnetic hydrogel based on 3D printing of poly-N-isopropylacrylamide (PNIPAM) is presented. A temperature-responsive PNIPAM hydrogel was prepared by 3D printing, and Fe2O3 magnetic particles were generated in situ within the PNIPAM network to generate the magnetic hydrogel. By forming uniformly distributed magnetic particles in situ within the polymer network, 3D printing of customized magnetic hydrogel materials was successfully achieved. The bilayer hydrogel structure was designed according to the different swelling ratios of temperature-sensitive hydrogel and magnetic hydrogel. Combined with the excellent mechanical properties of PNIPAM and printable magnetic hydrogel, 4D-printed remote magnetic field triggered shape morphing of bilayers of five-petal flower-shaped hydrogels was presented, and the deformation process was finished within 300 s.
Collapse
Affiliation(s)
- Yangyang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| | - Yuanyi Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| | - Jiawei Cao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
- Jianghuai Advance Technology Center, Hefei 230009, China; (P.L.); (J.L.)
| | - Peng Luo
- Jianghuai Advance Technology Center, Hefei 230009, China; (P.L.); (J.L.)
| | - Jianpeng Liu
- Jianghuai Advance Technology Center, Hefei 230009, China; (P.L.); (J.L.)
| | - Lina Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| | - Guo-Lin Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| | - Zaixing Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.L.); (Y.L.); (J.C.)
| |
Collapse
|
2
|
Wang X, Mafukidze D, Zheng Y. Microalgae aggregation induced by thermoresponsive polymers. BIORESOURCE TECHNOLOGY 2025; 415:131650. [PMID: 39419406 DOI: 10.1016/j.biortech.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Algal biomass harvesting is one of key technical hurdles impeding the commercialization of algae-based biorefinery. The goal of this work is to develop an innovative technology for algae cell harvesting. Thermoresponsive polymers (TRPs) such as poly(N-isopropylacrylamide) (PNIPAM) and its derivatives were studied on their properties and potential applications for microalgae harvesting. Various PNIPAM was synthesized, and the effects of charge, molecular weight (MW), amine content, and polymer concentration on the polymer phase transition temperature, the degree of phase separation, and the harvesting of microalgae (Chlorella vulgaris) were investigated. The lower critical solution temperature (LCST) of PNIPAM decreased with the increase of polymer concentration, while the decline rate reduced under high MW. The amine content didn't significantly affect the LCST of TRPs. Approx. 92 % of algae cells were harvested by PNIPAM-300 kDa. Modified TRPs showed few benefits in enhancing algae harvesting. TRPs are a promising class of polymers for microalgae harvesting.
Collapse
Affiliation(s)
- Xuexue Wang
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Donovan Mafukidze
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Vijayakumar B, Takatsuka M, Sasaki K, Kita R, Shinyashiki N, Yagihara S, Rathnasabapathy S. Dielectric relaxation of ice in a partially crystallized poly( N-isopropylacrylamide)microgel suspension compared to other partially crystalized polymer-water mixtures. Phys Chem Chem Phys 2023; 25:22223-22231. [PMID: 37566434 DOI: 10.1039/d3cp02116e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A broadband dielectric spectroscopy study was conducted on a partially crystallized 10 wt% poly(N-isopropylacrylamide) [PNIPAM] microgel aqueous suspension to investigate the dielectric relaxation of ice in microgel suspensions. The measurements covered a frequency range of 10 mHz to 10 MHz and at temperatures ranging from 123 K to 273 K. Two distinct relaxation processes were observed at specific frequencies below the melting temperature. One is associated with the combination of the local chain motion of PNIPAM and interfacial polarization in the uncrystallized phase, while another is associated with ice. To understand the temperature-dependent behaviour of the ice relaxation process, the relaxation time of ice was compared with those observed in other frozen polymer water mixtures, including gelatin, poly-vinylpyrrolidone (PVP), and bovine serum albumin (BSA). For concentrations ≥ 10 wt%, the temperature dependence of the relaxation time of ice was found to be independent. Therefore, the study primarily focused on the 10 wt% data for easier comprehension of the ice relaxation process. It was found that the microgel and globular protein BSA had no significant effect on ice crystallization, while gelatin slowed down the crystallization process, and PVP accelerated it. To discuss the mechanism of the dielectric relaxation of ice, the trap-controlled proton transport model developed by Khamzin et al. [Chem. Phys., 2021, 541, 111040.] was employed. The model was used to discuss the dynamic heterogeneity of ice observed in this investigation, distinguishing it from the spatial heterogeneity of ice commonly discussed.
Collapse
Affiliation(s)
- Balachandar Vijayakumar
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai-600119, India. drrskumar@
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| | - Masanobu Takatsuka
- Graduate School of Science and Technology, Tokai University, Kanagawa 259-1292, Japan
| | - Kaito Sasaki
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
- Micro/Nano Technology Centre, Tokai University, Kanagawa 259-1292, Japan
| | - Rio Kita
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
- Micro/Nano Technology Centre, Tokai University, Kanagawa 259-1292, Japan
| | - Naoki Shinyashiki
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
- Micro/Nano Technology Centre, Tokai University, Kanagawa 259-1292, Japan
| | - Shin Yagihara
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
| | | |
Collapse
|
4
|
Santhamoorthy M, Kim SC. Dual pH- and Thermo-Sensitive Poly(N-isopropylacrylamide-co-allylamine) Nanogels for Curcumin Delivery: Swelling-Deswelling Behavior and Phase Transition Mechanism. Gels 2023; 9:536. [PMID: 37504415 PMCID: PMC10379092 DOI: 10.3390/gels9070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a beneficial ingredient with numerous bioactivities. However, due to its low solubility and poor bioavailability, its therapeutic application is limited. In this work, we prepared poly-N-isopropylacrylamide p(NIPAm) and polyallylamine p(Am)-based nanogel (p(NIPAm-co-Am)) NG for a dual pH- and temperature-sensitive copolymer system for drug delivery application. In this copolymer system, the p(NIPAm) segment was incorporated to introduce thermoresponsive behavior and the p(Am) segment was incorporated to introduce drug binding sites (amine groups) in the resulting (p(NIPAm-co-Am)) NG system. Various instrumental characterizations including 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), zeta potential, and particle size analysis were performed to confirm the copolymer synthesis. Curcumin (Cur), an anticancer bioactive substance, was employed to assess the in vitro drug loading and release performance of the resulting copolymer nanogels system at varied pH levels (pH 7.2, 6.5, and 4.0) and temperatures (25 °C, 37 °C, and 42 °C). The cytocompatibility of the p(NIPAm-co-Am) NG sample was also tested on MDA-MB-231 cells at various sample concentrations. All the study results indicate that the p(NIPAm-co-Am) NG produced might be effective for drug loading and release under pH and temperature dual-stimuli conditions. As a result, the p(NIPAm-co-Am) NG system has the potential to be beneficial in the use of drug delivery applications in cancer therapy.
Collapse
Affiliation(s)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
6
|
Vijayakumar B, Takatsuka M, Kita R, Shinyashiki N, Yagihara S, Rathinasabapathy S. Dynamics of the Poly(N-Isopropylacrylamide) Microgel Aqueous Suspension Investigated by Dielectric Relaxation Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Balachandar Vijayakumar
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Masanobu Takatsuka
- Graduate School of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Rio Kita
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Naoki Shinyashiki
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Shin Yagihara
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | |
Collapse
|
7
|
Inhomogeneities in PNIPAM Aqueous Solutions: The Inside View by Spin Probe EPR Spectroscopy. Polymers (Basel) 2021; 13:polym13213829. [PMID: 34771385 PMCID: PMC8588346 DOI: 10.3390/polym13213829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Coil to globule transition in poly(N-isopropylacrylamide) aqueous solutions was studied using spin probe continuous-wave electronic paramagnetic resonance (CW EPR) spectroscopy with an amphiphilic TEMPO radical as a guest molecule. Using Cu(II) ions as the “quencher” for fast-moving radicals in the liquid phase allowed obtaining the individual spectra of TEMPO radicals in polymer globule and observing inhomogeneities in solutions before globule collapsing. EPR spectra simulations confirm the formation of molten globules at the first step with further collapsing and water molecules coming out of the globule, making it denser.
Collapse
|
8
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
9
|
Yao H, Olsen BD. SANS quantification of bound water in water-soluble polymers across multiple concentration regimes. SOFT MATTER 2021; 17:5303-5318. [PMID: 34013304 DOI: 10.1039/d0sm01962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-variation small-angle neutron scattering (CV-SANS) is a widely used technique for quantifying hydration water in soft matter systems, but it is predominantly applied in the dilute regime or for systems with a well-defined structure factor. Here, CV-SANS was used to quantify the number of hydration water molecules associating with three water-soluble polymers with different critical solution temperatures and types of water-solute interactions in dilute, semidilute, and concentrated solution through the exploration of novel methods of data fitting and analysis. Multiple SANS fitting workflows with varying levels of model assumptions were evaluated and compared to give insight into SANS model selection. These fitting pathways ranged from general, model-free algorithms to more standard form and structure factor fitting. In addition, Monte Carlo bootstrapping was evaluated as a method to estimate parameter uncertainty through simulation of technical replicates. The most robust fitting workflow for dilute solutions was found to be form factor fitting without CV-SANS (i.e. polymer in 100% D2O). For semidilute and concentrated solutions, while the model-free approach can be mathematically defined for CV-SANS data, the addition of a structure factor imposes physical constraints on the optimization problem, suggesting that the optimal fitting pathway should include appropriate form and structure factor models. The measured hydration numbers were consistent with the number of tightly bound water molecules associated with each monomer unit, and the concentration dependence of the hydration number was largely governed by the chemistry-specific interactions between water and polymer. Polymers with weaker water-polymer interactions (i.e. those with fewer hydration water molecules) were found to have more bound water at higher concentrations than those with stronger water-polymer interactions due to the increase in the number of forced water-polymer contacts in the concentrated system. This SANS-based method to count hydration water molecules can be applied to polymers in any concentration regime, which will lead to improved understanding of water-polymer interactions and their impact on materials design.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
10
|
Friesen S, Fedotova MV, Kruchinin SE, Buchner R. Hydration and dynamics of L-glutamate ion in aqueous solution. Phys Chem Chem Phys 2021; 23:1590-1600. [PMID: 33409510 DOI: 10.1039/d0cp05489e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aqueous solutions of sodium l-glutamate (NaGlu) in the concentration range 0 < c/M ≤ 1.90 at 25 °C were investigated by dielectric relaxation spectroscopy (DRS) and statistical mechanics (1D-RISM and 3D-RISM calculations) to study the hydration and dynamics of the l-glutamate (Glu-) anion. Although at c → 0 water molecules beyond the first hydration shell are dynamically affected, Glu- hydration is rather fragile and for c ⪆ 0.3 M apparently restricted to H2O molecules hydrogen bonding to the carboxylate groups. These hydrating dipoles are roughly parallel to the anion moment, leading to a significantly enhanced effective dipole moment of Glu-. However, l-glutamate dynamics is determined by the rotational diffusion of individual anions under hydrodynamic slip boundary conditions. Thus, the lifetime of the hydrate complexes, as well as of possibly formed [Na+Glu-]0 ionpairs and l-glutamate aggregates, cannot exceed the characteristic timescale for Glu- rotation.
Collapse
Affiliation(s)
- Sergej Friesen
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Marina V Fedotova
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Sergey E Kruchinin
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
11
|
González-Sálamo J, Ortega-Zamora C, Carrillo R, Hernández-Borges J. Application of stimuli-responsive materials for extraction purposes. J Chromatogr A 2020; 1636:461764. [PMID: 33316565 DOI: 10.1016/j.chroma.2020.461764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive materials, frequently designated as "smart/intelligent materials", can modify their structure or properties by either a biological, physical, or chemical stimulus which, if properly controlled, could be used for specific applications. Such materials have been studied and exploited in several fields, like electronics, photonics, controlled drugs administration, imaging and medical diagnosis, among others, as well as in Analytical Chemistry where they have been used as chromatographic stationary phases, as part of sensors and for extraction purposes. This review article pretends to provide an overview of the most recent applications of these materials (mostly polymeric materials) in sample preparation for extraction purposes, as well as to provide a general vision of the current state-of-the-art of this field, their potential use and future applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología IPNA-CSIC. Avda. Astrofísico Fco. Sánchez, 3. 38206 San Cristóbal de La Laguna, España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|