1
|
Li H, Su Y, Chen Y, Liu E, Ahmad A, Yao S. Deep eutectic solvent and styrene copolymer-shelled magnetic microspheres for the capture of Ovomucoid in foods and their interactions. Food Chem 2025; 468:142527. [PMID: 39706119 DOI: 10.1016/j.foodchem.2024.142527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Fe3O4 is a cost-effective and strong magnetic core, meanwhile polymerizable deep eutectic solvents (PDESs) are considered to have excellent performance and biocompatibility in separation and material fields. Therefore, the aim was to prepare magnetic microspheres (P(DES-co-St)@Fe3O4) with Fe3O4 as the core and PDESs (choline chloride/acrylic acid, 1:2; choline chloride/itaconic acid, 1:1)-styrene (St) copolymer as the shell for binding of target protein. The resulting microspheres exhibited ideal magnetic responsiveness (14.14 emu·g-1), stability, dispersion and uniformity (average diameter of 1.04 μm). The acidic PDESs endowed the surface structure of magnetic microspheres with numerous carboxyl groups (3.71 mmol·g-1), providing multiple active sites to capture allergenic proteins (ovomucoid, ovotransferrin, ovalbumin) from foods. Under current conditions, the binding capacity of ovomucoid was determined to be 155.3 mg·mL-1. Kinetic and thermodynamic studies, along with fluorescence spectroscopy and molecular simulations, indicated that the magnetic microspheres bind with ovomucoid through a combination of monolayer multiple interactions with selectivity.
Collapse
Affiliation(s)
- Hongyao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yadi Su
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Enming Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ali Ahmad
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Fan B, Wei J, Yang J, Yang L, Shuang S. Microextraction techniques with deep eutectic solvents for gas chromatographic analysis: a minireview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6460-6473. [PMID: 39235425 DOI: 10.1039/d4ay01167h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sample pretreatment is one of the key steps in sample analysis. The design and development of new materials promote advancements in sample pretreatment technology. Deep eutectic solvents (DESs) are a novel material that have been developed in recent years. They possess characteristics such as low toxicity, good thermal stability, simple preparation methods, and low cost. DESs have the potential to replace traditional organic extraction solvents. DESs are formed from a hydrogen bond donor (HBD) and acceptor (HBA). Changing the type of HBA and HBD or their ratio leads to variations in the structure and properties of the resulting DESs. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are the primary analytical techniques used in laboratories. This paper analyzes the selection relationship between DESs and analytes, as well as the steps of sample pretreatment, based on the characteristics of GC instruments, and utilizing DES extractants and extraction materials for sample pretreatment. This paper summarizes the progress of DES-based microextraction methods for GC. It introduces the different classifications of liquid and solid-phase microextraction and the application of DESs in them. The theoretical mechanism and extraction/separation mechanism of DESs are analyzed, and potential application of DESs in extraction/separation technology is discussed.
Collapse
Affiliation(s)
- Binyue Fan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Jianan Wei
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China.
| | - Junchao Yang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China.
| | - Liu Yang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China.
| | - ShaoMin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Liu H, Liu M, Zheng B, Han J, Fan F. A preliminary study of the temperature-responsive selective extraction performance of hydrogel derived from sulfobetaine methacrylate. Anal Chim Acta 2024; 1319:342958. [PMID: 39122273 DOI: 10.1016/j.aca.2024.342958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The limited extraction selectivity caused by the single extraction selection mechanism of solid phase extraction (SPE) technology is one of the bottlenecks restricting its development. The development of environmentally sensitive materials provides a new opportunity to solve this problem. Based on this, we developed the sulfobetaine methacrylate hydrogel with abundant pore structure, a large number of adsorption sites and especially temperature responsiveness, and used as adsorbent for the extraction of pesticide residues in lychees. RESULTS The new hydrogel adsorbent was prepared by free radical copolymerization with sulfobetaine methacrylate as monomer, and used for the extraction of benzoylurea insecticides from lychees. Interestingly, the hydrogel showed an almost opposite temperature-selective extraction trend for different benzoylurea insecticides with similar structure and polarity, and opposite hydrophilicity, which may be caused by the temperature-sensitive and the special action site of the hydrogel, and the change of the diffusion of aqueous solution. In addition, the analysis method of three hydrophilic benzoylurea insecticides by sulfobetaine methacrylate hydrogel-SPE-HPLC was established. Under optimal conditions, the low limits of detection (0.030 μg L-1) and quantification (0.10 μg L-1), and the wide linear ranges (0.10-50.0 μg L-1) were achieved. Its application in lychee samples were also tested, and the satisfactory results were obtained, with the spiked recoveries from 80.79 % to 108.31 %. SIGNIFICANCE This was a great breakthrough in the selective extraction of similar targets. These properties, combined with low-cost, biodegradable raw materials and convenient, green synthesis method make the sulfobetaine methacrylate hydrogel a very promising solid phase adsorbent. Temperature-responsive selective mode can greatly enrich the selective extraction mechanism and promote its development and application in complex actual samples.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China.
| | - Mengyun Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| | - Boyue Zheng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| | - Jingrui Han
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| | - Fangbin Fan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| |
Collapse
|
4
|
Menegatti T, Kopač T, Žnidaršič-Plazl P. Tuning Mechanical Characteristics and Permeability of Alginate Hydrogel by Polyvinyl Alcohol and Deep Eutectic Solvent Addition. Bioengineering (Basel) 2024; 11:371. [PMID: 38671792 PMCID: PMC11048402 DOI: 10.3390/bioengineering11040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alginate-based hydrogels are widely utilized for various applications, including enzyme immobilization and the development of drug delivery systems, owing to their advantageous characteristics, such as low toxicity, high availability and cost-effectiveness. However, the broad applicability of alginate hydrogels is hindered by their limited mechanical and chemical stability, as well as their poor permeability to hydrophobic molecules. In this study, we addressed the mechanical properties and chemical resistance of alginate hydrogels in a high-pKa environment by the copolymerization of alginate with polyvinyl alcohol (PVA). The addition of PVA resulted in a threefold improvement in the shear modulus of the copolymeric hydrogel, as well as enhanced chemical resistance to (S)-α-methylbenzylamine, a model molecule with a high pKa value. Furthermore, we addressed the permeability challenge by introducing a betaine-propylene glycol deep eutectic solvent (DES) into the PVA-alginate copolymer. This led to an increased permeability for ethyl 3-oxobutanoate, a model molecule used for bioreduction to chiral alcohols. Moreover, the addition of the DES resulted in a notable improvement of the shear modulus of the resulting hydrogel. This dual effect highlights the role of the DES in achieving the desired improvement of the hydrogel as an immobilization carrier.
Collapse
Affiliation(s)
- Tadej Menegatti
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (T.M.); (T.K.)
| | - Tilen Kopač
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (T.M.); (T.K.)
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (T.M.); (T.K.)
- Chair of Micro Process Engineering and Technology—COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
6
|
Aghaziarati M, Yamini Y, Shamsayei M. Electrodeposited histidine-(CuCr)layered double hydroxides/carbon dots for in-tube solid-phase microextraction of chlorophenols from water, juice, and honey samples followed by HPLC-UV. Talanta 2024; 268:125276. [PMID: 37844430 DOI: 10.1016/j.talanta.2023.125276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
A novel adsorbent consisting of a composition of carbon dots and CuCr-layered double hydroxides intercalated with l-histidine (C-dots@His/LDHs) was introduced. This adsorbent was electrochemically deposited on the inner surface of a capillary copper tube. It was used as an adsorbent for in-tube solid-phase microextraction of chlorophenols (CPs). Separation and measurement of CPs were done by high-performance liquid chromatography-ultraviolet detector. The main parameters which had the most impact on the extraction efficiency and time such as extraction time and flow rate, desorption time and flow rate, ionic strength (salt concentration) and pH were optimized. Calibration curves (0.5-1000 μg L-1) were plotted in real sample (tap water) under optimal conditions which coefficients of determination better than 0.9893 and relative recoveries in the range of 88-120 % were obtained. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were obtained in the range of 0.1-1.0 μg L-1 and 0.3-3.0 μg L-1, respectively. The intra- and inter-assay precisions (RSD%, n = 3) were better than 5.9 and 8.8 %, respectively.
Collapse
Affiliation(s)
- Mohsen Aghaziarati
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
7
|
Cherniakova M, Varchenko V, Belikov K. Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction. CHEM REC 2024; 24:e202300267. [PMID: 37861277 DOI: 10.1002/tcr.202300267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
In the last 10 years the interest in deep eutectic solvents (DESs) as a new class of green solvents has considerably increased. The emergence of numerous of hydrophobic DESs has stimulated intensive research into their application in extraction technologies, including sample preparation. As the properties of such systems are highly dependent on the properties of their components (hydrogen bond donors and acceptors) and can be finely tuned, DESs can be successfully used for the extraction of both metal ions and organic substances, including biomolecules. Despite the rapidly increasing number of publications on the use of DESs as an extraction medium, including review articles, information on the extraction properties of DESs in terms of their chemical composition has not yet been summarized. This review covers available literature data on the physicochemical properties of menthol-based eutectic solvents and the results of their practical application as an extraction medium. Also, the appropriateness of using the term "DES" for all mixtures with melting points lower than the melting points of their components is discussed.
Collapse
Affiliation(s)
- Marharyta Cherniakova
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Victoria Varchenko
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Konstantin Belikov
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
- School of Chemistry, V.N. Karazin Kharkiv National University, 6 Svobody sq., 61022, Kharkiv, Ukraine
| |
Collapse
|
8
|
Zhang C, Tang J, Huang Y, Fan R, Zhou L. Dispersive solid phase extraction based on cross-linked hydroxypropyl β-cyclodextrin polymers for simultaneous enantiomeric determination of three chiral triazole fungicides in water. Mikrochim Acta 2023; 191:18. [PMID: 38087124 DOI: 10.1007/s00604-023-06091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
An efficient method is presented for simultaneous enantioselective determination of three chiral triazole fungicides (namely paclobutrazol, hexaconazole, and diniconazole) in water samples by DSPE-HPLC-UV. The perfect chiral separation of the enantiomers was achieved on a Chiralpak IH column within 15 min. In order to adsorb and enrich the analytes from water matrices, a cross-linked hydroxypropyl β-cyclodextrin polymer was synthesized. The prepared material exhibited good adsorption capacity, which was assessed by adsorption kinetic and adsorption thermodynamic experiments. One-variable-at-a-time and the response surface methodology were used to optimize the extraction parameters. Under the optimum sample preparation conditions, good linearity (2.0 ~ 800 µg L-1, R2 ≥ 0.9978), detection limits (0.6 to 1.0 µg L-1), quantitation limits (2.0 to 3.2 µg L-1), recoveries (86.7 ~ 105.8%), and the relative standard deviation (intra-day RSD ≤ 3.7%, inter-day RSD ≤ 5.1%) were obtained, satisfying the requirements of pesticides residues determination. These results demonstrated that the proposed method was applicable for routine determination of chiral triazole fungicide residues in water samples.
Collapse
Affiliation(s)
- Chuhan Zhang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China
| | - Jing Tang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yihe Huang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China.
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China.
| |
Collapse
|
9
|
Khodayari P, Ebrahimzadeh H. A green QuEChERS syringe filter based micro-solid phase extraction using hydrophobic natural deep eutectic solvent as immobilized sorbent for simultaneous analysis of five anti-diabetic drugs by HPLC-UV. Anal Chim Acta 2023; 1279:341765. [PMID: 37827666 DOI: 10.1016/j.aca.2023.341765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Here, it has been discussed about creating a specific and sustainable analytical technique for monitoring anti-diabetic drugs in order to accurately determine the dosage in patients and reduce side effects, remove them from wastewater (as emerging contaminants), and ultimately abate pharmaceutical pollutants in the environment. RESULTS In this research, a green and reproducible Quick Easy Cheap Effective Rugged Safe (QuEChERS) method based on syringe filter based micro-solid phase extraction (SF-μSPE) coupled with HPLC-UV using a green sorbent was developed and optimized for the extraction of five anti-diabetic drugs from wastewater, serum, and plasma real samples. A novel green sorbent composed of a liquid mixture of thymol: menthol ([Thy]:[Men], 1:1) hydrophobic natural deep eutectic solvent (HNADES) and curcumin (Cur) immobilized into the non-toxic and biodegradable polyvinyl alcohol (PVA) electrospun nanofibers' mat was synthesized simply via cheap equipment. Cur was added to enhance the hydrophobicity and functionality of the sorbent. The immobilization process was performed by soaking the mat in the liquid mixture for a specific duration. The correct synthesis and experimental molar ratio of the HNADES components were confirmed by ATR-FTIR and NMR (1H and 13C) spectroscopy. The prepared green sorbent (Cur-HNADES/PVA) was characterized using ATR-FTIR, FE-SEM, EDX/EDX mapping analysis, and water contact angle (WCA) measurement, and it exhibited satisfactory adsorption capacity for the target analytes. SIGNIFICANCE Under optimal conditions (pH = 6.0, adsorption cycle = 3, sample volume = 5.0 mL, desorption cycle = 1, type and volume of elution = 80:20 %v/v MeOH/ACN and 500.0 μL), the method was validated in terms of specificity, linear dynamic ranges (LDRs = 0.1-2000.0 μg L-1 and 0.1-1800.0 μg L-1), limits of detection (LODs = 0.03-0.09 μg L-1), and precision (within-day RSDs% = 0.32-1.45% and between-day RSDs% = 0.59-2.03%). Evaluation of the greenness aspects of the proposed method was accomplished using the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) approaches. It is noteworthy that the conducted research represents the first report of the synthesis and application of this novel and green sorbent for the determination of anti-diabetic drugs in the mentioned real samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
10
|
Ozalp O, Gumus ZP, Soylak M. Metal-organic framework functionalized with deep eutectic solvent for solid-phase extraction of Rhodamine 6G in water and cosmetic products. J Sep Sci 2023; 46:e2300190. [PMID: 37496320 DOI: 10.1002/jssc.202300190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
An NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized for extraction and determination of Rhodamine (Rh) 6G from environmental and cosmetic samples. The deep eutectic solvent (DES) was prepared by mixing choline chloride and urea in a mole ratio of 1:2. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized using the impregnation method at a ratio of 60:40 (w/w). The optimum conditions were determined after NH2 -MIL-53(Al)-DES(ChCl-Urea) characterization was performed. The optimum conditions were determined as pH 8, adsorbent amount of 15 mg, total adsorption-desorption time of 6 min, and enrichment factor of 20. The recovery values of the solid-phase extraction method for water and cosmetic samples under optimum conditions were between 95% and 106%. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was an economically advantageous adsorbent because of its reusability of 15 times. All analyses were performed using the ultraviolet-visible spectrophotometer. The linear range, limit of detection, and limit of quantification of the method were 100-1000, 9.80, and 32.68 μg/L, respectively. The obtained results showed that the synthesized nanocomposite is a suitable adsorbent for the determination of Rh 6G in water and cosmetic samples. The real sample applications were verified with the high-performance liquid chromatography system.
Collapse
Affiliation(s)
- Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (ERU-TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Turkey
| |
Collapse
|
11
|
Asghari Z, Sereshti H, Soltani S, Taghizadeh M, Karami S, Esmaeili Bidhendi M, Rezania S. An alginate-based eutectogel impregnated with polyvinylpyrrolidone/benzoic acid deep eutectic solvent and magnetic carboxylated multiwalled carbon nanotubes: Evaluated as sorbent in green microextraction of pesticides. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123865. [PMID: 37690386 DOI: 10.1016/j.jchromb.2023.123865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
This article presents the synthesis and application of a novel magnetic eutectogel constituting a polymeric deep eutectic solvent (PDES), carboxylated multiwall carbon nanotube (MWCNT-COOH), and super-dispersible/super-paramagnetic polyvinylpyrrolidone coated-Fe3O4 nanocrystals incorporated in alginate gel. Different methods were used for the characterization of novel polymeric based DES gel including FT-NMR, ATR-FTIR, and SEM were used. The novel DES eutectogel was used for the extraction of pesticides from honey. The modified eutectogel with PDES, MWCNT, and PDES-MWCNT showed 1.8-, 1.4-, and 2.5-fold enhancement in the sorption efficiency under green magnetic micro-solid-phase extraction (MSPE) method before GC-MS analysis. Important factors including the acidity of the samples, adsorption and desorption conditions, and the ionic strength of the preparation solution were investigated. The matrix effect, specificity, the quantification limits (0.023-1.023 μg kg-1), linear dynamic range (0.023-500 µg kg-1 with R2 of 0.9845-0.9986), relative standard deviations (<8.4%), were evaluated. In addition, the method was used to analyze 12 pesticides in four samples of honey. In the spiked concentration range of 0.1 to 10 μg kg-, the obtained recoveries were between 73.2 and 110.8% (RSD% = 8.1%, n = 3).
Collapse
Affiliation(s)
- Zeinab Asghari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Sara Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Massoud Taghizadeh
- Department of Biology, Faculty of Science, Shahed University, Tehran, Iran
| | - Sajad Karami
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Mehdi Esmaeili Bidhendi
- School of Environment, College of Engineering, University of Tehran, Tehran 1417614411, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
12
|
Umapathi R, Ghoreishian SM, Kumar K, Dhiman D, Rani GM, Huh YS, Venkatesu P. Deep eutectic solvents induced changes in the phase transition behavior of smart polymers: a sustainable future approach. Phys Chem Chem Phys 2023; 25:21131-21148. [PMID: 37551784 DOI: 10.1039/d3cp01913f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Deep eutectic solvents (DESs) are considered "green" and "sustainable" alternatives to conventional organic solvents and ionic liquids (ILs) due to their characteristic properties and relatively low costs. DESs are considered IL analogs and have attracted consideration as benign media formulations for the synthesis of novel polymers because they satisfy the principle of sustainability. Over the past few years, the use of DESs has resulted in novel pathways for the synthesis of novel materials, biomaterials, functional materials, and ionic soft materials. Furthermore, DESs have been widely applied in the science, industrial, engineering, and technological fields. On the other hand, stimulus-responsive (smart) polymers have been widely utilized in intelligent devices owing to their virtues of good processibility, stimuli and environmental sensitivity, responsivity, and so on. With the introduction of a DES into the smart polymeric matrices, their potential characteristics, biocompatibility, and flexibility endow the corresponding DES-based polymeric materials with intriguing properties, which in turn will broaden their applications in various domains of polymer science and material chemistry. Substantial research has been done in the fabrication of DES-based polymeric materials. Numerous studies have extensively investigated the effects of DESs on biomolecules such as proteins/enzymes and nucleic acids, whereas few have addressed the impact of DESs on the aggregation and phase transition behaviors of smart polymers. This review focuses on mechanistic insights, aggregation behavior, and interactions between smart polymers and DESs. Opportunities and future research perspectives in this blossoming arena are also discussed. It is hoped that this review will pave futuristic pathways for the design and development of advanced DES-based polymeric materials and biomaterials for various applications.
Collapse
Affiliation(s)
- Reddicherla Umapathi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | | | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Diksha Dhiman
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Gokana Mohana Rani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | | |
Collapse
|
13
|
Ozalp O, Pinar Gumus Z, Soylak M. MIL-101(Cr) metal-organic frameworks based on deep eutectic solvent (ChCl: Urea) for solid phase extraction of imidacloprid in tea infusions and water samples. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
14
|
Deep eutectic solvents-modified advanced functional materials for pollutant detection in food and the environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Magnetic deep eutectic solvents – Fundamentals and applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Deep eutectic solvents-assisted stimuli-responsive smart hydrogels – a review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Wang J, Li M, Duan L, Lin Y, Cui X, Yang Y, Wang C. Deep Eutectic Systems as Novel Vehicles for Assisting Drug Transdermal Delivery. Pharmaceutics 2022; 14:2265. [PMID: 36365084 PMCID: PMC9692497 DOI: 10.3390/pharmaceutics14112265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, deep eutectic systems (DES) emerged as novel vehicles for facilitating the transdermal delivery of various drugs, including polysaccharides, proteins, insulin, vaccine, nanoparticles, and herb extracts. The objective of this study is to conduct a comprehensive review of the application of DES to transdermal drug delivery, based on previous work and the reported references. Following a brief overview, the roles of DES in TDDS, the modes of action, as well as the structure-activity relationship of DES are discussed. Particularly, the skin permeation of active macromolecules and rigid nanoparticles, which are the defining characteristics of DES, are extensively discussed. The objective is to provide a comprehensive understanding of the current investigation and development of DES-based transdermal delivery systems, as well as a framework for the construction of novel DES-TDDS in the future.
Collapse
Affiliation(s)
- Jinbao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Mingjian Li
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Langhuan Duan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
18
|
Hou L, Zhao C, Wu G, Zhao J, Zhao L. Application of ComplexGAPI for the green assessment of a deep eutectic solvent-based ferrofluid assisted liquid-liquid microextraction method for detection of dimethyl phthalate in beverage samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3989-3998. [PMID: 36189826 DOI: 10.1039/d2ay01185a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the present study, a novel ferrofluid was prepared by combining a menthol/thymol deep eutectic solvent with magnetic nanoparticles (Fe3O4@OA). This composite was first applied in vortex-assisted liquid-liquid microextraction (VA-LLME), followed by high performance liquid chromatography with ultraviolet detection (HPLC-UV) for the determination of dimethyl phthalate (DMP) residues in beverages. The synthesized deep eutectic solvent-based ferrofluid (DES-FF) was characterized by using Fourier transform infrared spectrometry (FTIR), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Furthermore, the type of carrier, pH of the sample solution, ferrofluid volume, salt amount, vortex time, type and volume of elution solvents and desorption time were statistically optimized for high extraction efficiencies. Under the optimal extraction conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.008 μg mL-1 and 0.03 μg mL-1, respectively. Moreover, the mean recoveries for DMP ranged from 85.2% to 99.5%, and intra- and inter-day precisions were less than 5.5% and 7.8%, respectively. The proposed method was successfully applied to the analysis of dimethyl phthalate in real samples, making it a promising analysis technique for beverage samples. The greenness of the entire procedure of our proposed method was assessed by comparing it with other reported methods using ComplexGAPI (Complex Green Analytical Procedure Index). The results show that our proposed method has a better greenness than other reported methods.
Collapse
Affiliation(s)
- Lingjun Hou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, Liaoning, China.
| | - Chenyang Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, Liaoning, China.
| | - Guangqing Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, Liaoning, China.
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, Liaoning, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang 110016, Liaoning, China.
| |
Collapse
|
19
|
Rezaie N, Nojavan S, Behpour M. Amylodextrin hydrogel as a green sorbent for pipette-tip micro-solid phase extraction followed by ion mobility spectrometry for analysis of triazole fungicides in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Sereshti H, Mohammadi Z, Soltani S, Najarzadekan H. A green miniaturized QuEChERS based on an electrospun nanofibrous polymeric deep eutectic solvent coupled to gas chromatography-mass spectrometry for analysis of multiclass pesticide residues in cereal flour samples. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
22
|
Qiu R, Zhang P, Feng G, Ni X, Miao Z, Wei L, Sun H. Enhanced thermal activation of persulfate by coupling hydrogen peroxide for efficient degradation of pyrene. CHEMOSPHERE 2022; 303:135057. [PMID: 35671814 DOI: 10.1016/j.chemosphere.2022.135057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, H2O2 was introduced into thermally activated persulfate oxidation system (T-HPS), and the oxidation of pyrene (PYR) was investigated by the combined T-HPS technology. The results showed that H2O2 could significantly improve the reactivity of the thermally activated persulfate system (T-PS), with 240-min PYR degradation ratio increasing from 79.3% to 97.2% at 70 °C. In the T-HPS system, as persulfate initial concentration increased from 5 to 100 μM, the kinetic rate constant (kobs) of PYR degradation increased from 4.70 × 10-3 to 3.01 × 10-2 min-1, but the kobs did not show a positive association with H2O2 concentration with the same range, and the highest kobs was obtained at the H2O2 initial concentration of 20 μM. The optimal ratio of PS and H2O2 was set at 1:1 with the initial concentrations of the two oxidants both being 20 μM. Furthermore, PYR could be removed efficiently in a wide range of pH, and the best PYR degradation performance was obtained under neutral pH. Scavenging experiments demonstrated that OH played a more important role in PYR degradation in the T-HPS system than in the T-PS system. As suggested by the Arrhenius equation, the activation energy decreased from 124.5 to 107.4 kJ mol-1 after adding H2O2 to the T-PS system. This study provides a new oxidation approach that could prompt the T-PS activity by adding a suitable dosage of H2O2.
Collapse
Affiliation(s)
- Rui Qiu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Guojie Feng
- Beijing GeoEnviron Engineering & Technology Inc., Beijing, 100095, China
| | - Xinxin Ni
- Beijing GeoEnviron Engineering & Technology Inc., Beijing, 100095, China
| | - Zhu Miao
- Beijing GeoEnviron Engineering & Technology Inc., Beijing, 100095, China
| | - Li Wei
- Beijing GeoEnviron Engineering & Technology Inc., Beijing, 100095, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| |
Collapse
|
23
|
Ultrasound assisted dispersive solid-phase extraction coupled with high-performance liquid chromatography-diode array detector for determination of caffeine and carbamazepine in environmental samples using exfoliated graphite/chitosan hydrogel. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Sereshti H, Seraj M, Soltani S, Rashidi Nodeh H, Hossein Shojaee AliAbadi M, Taghizadeh M. Development of a sustainable dispersive liquid–liquid microextraction based on novel hydrophobic and hydrophilic natural deep eutectic solvents for the analysis of multiclass pesticides in water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Gontrani L, Tagliatesta P, Donia DT, Bauer EM, Bonomo M, Carbone M. Recent Advances in the Synthesis of Inorganic Materials Using Environmentally Friendly Media. Molecules 2022; 27:2045. [PMID: 35408444 PMCID: PMC9000861 DOI: 10.3390/molecules27072045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Deep Eutectic Solvents have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly valuable is the synthesis and modification of inorganic materials-in particular, nanoparticles. In this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which has led to an increasing number of studies focusing on exploiting these new reaction media to prepare nanomaterials. This review aims to provide a summary of the numerous and most recent achievements made in this area, reporting several examples of the newest mixtures obtained by mixing molecules originating from natural feedstocks, as well as linking them to the more consolidated methods that use "classical" DES, such as reline.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Domenica Tommasa Donia
- Department of Surgical Science, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elvira Maria Bauer
- Italian National Research Council-Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015 Monterotondo, Italy;
| | - Matteo Bonomo
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
26
|
Zhao Z, Li M, Zheng L, Yang Y, Cui X, Xu T, Zhang W, Wang C. Noninvasive transdermal delivery of mesoporous silica nanoparticles using deep eutectic solvent. J Control Release 2022; 343:43-56. [DOI: 10.1016/j.jconrel.2022.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/31/2023]
|
27
|
|
28
|
Metal organic framework-based magnetic solid phase extraction of pesticides in complex matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Phosiri P, Burakham R. Deep eutectic solvent-modified mixed iron hydroxide-silica: Application in magnetic solid-phase extraction for enrichment of organochlorine pesticides prior to GC-MS analysis. J Sep Sci 2021; 44:3636-3645. [PMID: 34355518 DOI: 10.1002/jssc.202100329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023]
Abstract
A new type of magnetic material based on silica-coated mixed iron hydroxides functionalized with deep eutectic solvent was utilized for the magnetic solid-phase extraction of organochlorine pesticides prior to gas chromatography-mass spectrometry analysis. Choline chloride and phenol were selected as the hydrogen bond acceptor and donor, respectively, for preparing the deep eutectic solvent-modified magnetic surface. The modified surface possessed superior enrichment capability for organochlorine pesticides. Under optimal extraction conditions, viz., 10 mg sorbent, 5 mL sample solution, and 200 μL acetone (desorption solvent), linearity was obtained in the range 0.005-200 μg/L, with coefficients of determination greater than 0.997. The limits of detection and quantification were as low as 0.6-10 and 5-60 ng/L, respectively, whereas the enrichment factors were in the range of 31-100. The precisions evaluated in terms of the relative standard deviations of the intra- and inter-day experiments were <4.9 and 7.6%, respectively. The developed method was successfully applied for determining the organochlorine residues in agricultural products. Satisfactory recoveries in the range of 71.2-110.3% were obtained, with a relative standard deviation of <8.0%. The proposed material is a promising sorbent for the preconcentration of organochlorine residues.
Collapse
Affiliation(s)
- Preeyaporn Phosiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Rodjana Burakham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Materials Chemistry Research Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
30
|
Hydrophobic liquid-polymer-based deep eutectic solvent for extraction and multi-residue analysis of pesticides in water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Soltani S, Sereshti H, Nouri N. Deep eutectic solvent-based clean-up/vortex-assisted emulsification liquid-liquid microextraction: Application for multi-residue analysis of 16 pesticides in olive oils. Talanta 2021; 225:121983. [DOI: 10.1016/j.talanta.2020.121983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023]
|
32
|
Pan Z, Bo Y, Liang Y, Lu B, Zhan J, Zhang J, Zhang J. Intermolecular interactions in natural deep eutectic solvents and their effects on the ultrasound-assisted extraction of artemisinin from Artemisia annua. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|