1
|
Udhayakumari D. Recent Advances in Colorimetric and Fluorescent Chemosensors for Cu 2⁺ Ions: Trends, Challenges, and Future Directions. J Fluoresc 2025:10.1007/s10895-025-04253-7. [PMID: 40095404 DOI: 10.1007/s10895-025-04253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The detection of copper ions (Cu2⁺) through colorimetric and fluorometric methods has garnered significant attention due to the biological, environmental, and medical importance of Cu2⁺. These detection techniques have proven to be highly effective due to their simplicity, cost-efficiency, high sensitivity, and suitability for bioimaging applications. This critical review begins by briefly addressing the sources, applications, and toxicity of copper ion sensors. It then provides an in-depth classification of fluorescent and colorimetric Cu2⁺ sensors based on their receptors, organizing them into various categories such as anthracene, pyridine, pyrazole, pyrrole, naphthalene, imidazole, and quinoline functionalized sensing systems, with a focus on developments since 2016.
Collapse
|
2
|
Mondal A, Manivannan V. A naphthyl appended ninhydrin based colorimetric chemosensor for Cu 2+ ion: Detection of cysteine and ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124734. [PMID: 38986255 DOI: 10.1016/j.saa.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
A ninhydrin-based colorimetric chemosensor (LH) was synthesized using 3-hydroxy-2-naphthoic hydrazide and 11H-indeno[1,2-b]quinoxalin-11-one. It was characterized by spectroscopic and single crystal X-ray diffraction techniques. In a semi-aqueous (MeOH/HEPES) system, LH displayed a characteristic chromogenic change from colorless to yellow upon adding Cu2+ ion, with the appearance of a new peak at λmax = 460 nm. A 1:1 binding stoichiometry between LH and Cu2+ ion has been found, with LOD = 2.3 μM (145 ppb) and LOQ = 8 μM (504 ppb). Based on experimental results the formula of [Cu(L)Cl(H2O)2] (1) was assigned and this in-situ generated 1 was found to exhibit a discoloration of upon gradual addition of cysteine (LOD = 60 nM) as well as ATP (LOD = 130 nM) having 1:2 and 1:1 stoichiometry respectively. The LH was useful for recognition of Cu2+ ion in real water samples and on filter paper strips. A two-input-two-output logic gate circuitry was also constructed by employing 1 and cysteine. The DFT/TDDFT calculations performed on LH and 1 were consistent with experimental findings. The binding affinity of LH towards HSA and BSA were determined with HSA having greater affinity than BSA, which was also supported by theoretical calculations.
Collapse
Affiliation(s)
- Anisha Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vadivelu Manivannan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Udhayakumari D. A review on polycyclic aromatic compounds based chemosensors for toxic ions detection - Present and future perspective. Talanta 2024; 278:126536. [PMID: 39003838 DOI: 10.1016/j.talanta.2024.126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
This comprehensive review delves into the current landscape and future outlook of chemosensors constructed from polycyclic aromatic compounds (PACs) for the detection of toxic ions. PACs, known for their unique molecular properties, have emerged as key building blocks for the development of chemosensors due to their sensitivity, selectivity, and versatility. The review begins by providing an overview of the existing literature on PAC-based chemosensors, detailing their design principles, structural modifications, and mechanisms of ion recognition. The discussion encompasses various toxic ions, including heavy metals, anions, and other environmental pollutants, showcasing the broad applicability of PAC-based chemosensors in diverse analytical contexts. The review also highlights recent advancements in the field, exploring novel strategies and materials for enhancing the performance of PAC-based chemosensors. Furthermore, the review critically evaluates the current challenges and limitations associated with PAC-based chemosensors, offering insights into potential avenues for future research and technological development.
Collapse
|
4
|
Tawfik SM, Farag AA, Abd-Elaal AA. Fluorescence Naphthalene Cationic Schiff Base Reusable Paper as a Sensitive and Selective for Heavy Metals Cations Sensor: RSM, Optimization, and DFT Modelling. J Fluoresc 2024; 34:2139-2155. [PMID: 37713015 PMCID: PMC11445315 DOI: 10.1007/s10895-023-03426-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Heavy metals are particularly damaging contaminants in the environment, and even trace concentrations represent a risk to human health due to their toxicity. To detect the heavy metals of Mn2+ and Co2+ ions, a novel selective reusable paper-based Fluorescence naked-eye sensor based on naphthalene cationic Schiff base (NCSB) was synthesized and confirmed using FT-IR, 1 H-NMR, and MS tools. Based on a blue to colorless color change in the aqueous solution, the NCSB sensor is utilized to Mn2+ and Co2+ cations selectively among other metal ions (Fe2+, Cu2+, Mg2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+, Sn2+ and Cr3+). In the aqueous medium, the NCSB sensor displayed high sensitivity, with limits of detection (LOD) values of 0.014 µM (14.08 nM) and 0.041 µM (41.47 nM) for Mn2+ and Co2+ cations, respectively. The paper-based sensor naked-eye detected Mn2+ and Co2+ cations in water at concentrations as low as 0.65 µM (65 nM) and 0.086 µM (86 nM), respectively. It was discovered that 5 min of incubation time and a pH range of 7 to 11 were optimal for the complexation reaction between the Mn2+ and Co2+ ions and the NCSB sensor. Through a static quenching process, the interaction of the different metal ions with the Schiff base group in the NCSB molecule results in the development of a ground-state non-fluorescent complex. NCSB sensor was also successfully applied in analysis of Mn2+ and Co2+ in environmental water with good recoveries of 94.8-105.9%. The theoretical calculations based on density functional theory (DFT) studies are in support of experimental interpretations. The links between the input factors and the anticipated response were evaluated using the quadratic model of the response surface methodology (RSM) modeling.
Collapse
Affiliation(s)
- Salah M Tawfik
- Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Ahmed A Farag
- Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
| | | |
Collapse
|
5
|
Abedin MM, Pal TK, Uddin MN, Alim MA, Sheikh MC, Paul S. Synthesis, quantum chemical calculations, in silico and in vitro bioactivity of a sulfonamide-Schiff base derivative. Heliyon 2024; 10:e34556. [PMID: 39082025 PMCID: PMC11284382 DOI: 10.1016/j.heliyon.2024.e34556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The sulfonamide Schiff base compound (E)-4-((4-(dimethylamino)benzylidene)amino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide was successfully prepared and fully characterized. The foremost objective of this study was to explore the molecular geometry of the aforementioned compound and determine its drug likeness characteristics, docking ability as an insulysin inhibitor, anticancer and antioxidant activities. The molecular structure of this compound was optimized using the B3LYP/6-311G+(d,p) level of theory. The compound was completely characterized utilizing both experimental and DFT approaches. Molecular electrostatic potential, frontier molecular orbitals, Fukui function, drug likeness, and in silico molecular docking analyses of this compound were performed. Wave functional properties such as localized orbital locator, electron localization function and non-covalent interactions were also simulated. The compound was screened for anticancer and antioxidant activities using in vitro technique. The observed FT-IR, UV-Vis, and 1H NMR results compared with simulated data and both results were fairly consistent. The experimental and computational spectral findings confirm the formation of the Schiff base compound. Both π-π* and n-π* transitions were observed in both experimental and computational UV-Vis spectra. The examined compound followed to Pfizer, Golden Triangle, GSK, and Lipinski's rules. Consequently, it possesses a more favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile, making it a suitable candidate for non-toxic oral drug use. Moreover, the compound exhibited promising insulysin inhibition activity in an in silico molecular docking. The compound showed in vitro anticancer activity against A549 cancer cells with an IC50 value of 40.89 μg/mL and moderate antioxidant activity.
Collapse
Affiliation(s)
- Md. Minhazul Abedin
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | - Tarun Kumar Pal
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | - Md. Najem Uddin
- Pharmaceutical Sciences Research Division, BCSIR Laboratories (Dhaka), Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh
| | - Mohammad Abdul Alim
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Subrata Paul
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| |
Collapse
|
6
|
Sambamoorthy S, Thamaraichelvan G, Karikalan A, Kumar SS. Heterocyclic fluorescent Schiff base chemosensors for the detection of Fe(III) and Cu(II) ions. LUMINESCENCE 2024; 39:e4739. [PMID: 38685743 DOI: 10.1002/bio.4739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
Two new Schiff bases were synthesized from 1-(2,4-dihydroxyphenyl)ethanone and pyridine derivatives. Both compounds were characterized using infrared, UV-Vis., 1H NMR, 13C NMR and mass spectral studies. Density functional theory (DFT) calculations were performed for both the Schiff bases with 6-31G(d, p) as the basis set. Vibrational frequencies calculated using the theoretical method were in good agreement with the experimental values. Both the Schiff bases were highly fluorescent in nature. The cation-recognizing profile of the compounds was investigated in aqueous methanol medium. The Schiff base 4-(1-(pyridin-4-ylimino)ethyl)benzene-1,3-diol (PYEB) was found to interact with Fe(III) and Cu(II) ions, whereas the Schiff base 4,4'-((pyridine-2,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol) (PDEB) was found to detect Cu(II) ions. The mechanism of recognition was established as combined excited state intramolecular proton transfer (ESIPT)-chelation-enhanced fluorescence (CHEF) effect and chelation-enhanced quenching (CHEQ) process for the detection of Fe(III) and Cu(II) ions, respectively. The stability constant of the metal complexes formed during the sensing process was determined. The limit of detection for Fe(III) and Cu(II) ions with respect to Schiff base PYEB was found to be 1.64 × 10-6 and 2.16 × 10-7 M, respectively. With respect to Schiff base PDEB, the limit of detection for Cu(II) ion was found to be 4.54 × 10-4 M. The Cu(II) ion sensing property of the Schiff base PDEB was applied in bioimaging studies for the detection of HeLa cells.
Collapse
Affiliation(s)
- Santhi Sambamoorthy
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Geetha Thamaraichelvan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Abinaya Karikalan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Saranya Srinivasa Kumar
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
7
|
Dathees TJ, Makarios Paul SP, Sanmugam A, Abiram A, Murugan S, Kumar RS, Almansour AI, Arumugam N, Nandhakumar R, Vikraman D. Naphthalene derived Schiff base as a reversible fluorogenic chemosensor for aluminium ions detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123732. [PMID: 38064962 DOI: 10.1016/j.saa.2023.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
Schiff base (HNPD) was achieved by reacting 2-hydroxy-1-naphthaldehyde with N-phenyl-o-phenylenediamine in enthanol medium. The spectroscopic analyses were done to establish the formation of Schiff base apparently. Further, synthesized Schiff base conjugate was successfully used as a fluorogenic chemosensor to detect aluminium ions (Al3+) with high fluorescence amplification among the other interfering various metal ions. The limit of detection of 0.0248 × 10-6 M and a binding constant of 6.19 × 103 M-1 were obtained by the receptor HNPD for Al3+ detection. A high influence of intramolecular charge transfer kinetics was established to realize the selective responsiveness towards Al3+ ions. Density functional theory approximation formulated the band energy modulation and localization and delocalization of electron density for the HNPD and Al3+ complexation. The developed sensor ultimately inspected on the real soil and water samples and ascertained the practical ability of Al3+ ions detection of HNPD chemosensor.
Collapse
Affiliation(s)
- T Johny Dathees
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - S Prince Makarios Paul
- Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumpudur 602 117, India
| | - A Abiram
- Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - S Murugan
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natrajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - R Nandhakumar
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India.
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
8
|
Huang Y, Chen W, Dong M, Li N, Chen L, Ling L, Xu Q, Lin M, Xing Z. A novel fluorescence probe for the recognition of Cd 2+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122979. [PMID: 37295381 DOI: 10.1016/j.saa.2023.122979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
A facile fluorescence probe BQBH was synthesized and investigated on its spectrum property. The result showed that the BQBH had high sensitivity and selectivity for Cd2+ with lowest detection determined as 0.14 μM by fluorescence response. The 1: 1 binding ratio between BQBH and Cd2+ was determined by Job's plot, and the binding details were further confirmed by 1H NMR titration, FT-IR spectrum and HRMS analysis. The applications including on test paper, smart phone and cell image were all also investigated.
Collapse
Affiliation(s)
- Yuntong Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Weizhong Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong 521000, China
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Nana Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Lianghui Chen
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Li Ling
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Min Lin
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong 521000, China
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
9
|
Alharthy RD, Urooj I, Tasleem M, Khalid M, Asghar MA, Khan SI, Ajmal M, Ahmed N, Shafiq Z. Synthesis of novel 3-hydroxy-2-naphthoic hydrazones as selective chemosensors for cyanide ions. RSC Adv 2023; 13:15208-15221. [PMID: 37213331 PMCID: PMC10193203 DOI: 10.1039/d3ra00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
The development of an effective and selective chemosensor for CN- ions has become the need of the hour due to their hazardous impact on the environment and humans. Herein, we report the synthesis of two novel chemosensors, IF-1 and IF-2 based on 3-hydroxy-2-naphthohydrazide and aldehyde derivatives that have shown selective sensing of CN- ions. IF-2 exhibited exclusive binding with CN- ions that is further confirmed by the binding constant value of 4.77 × 104 M-1 with a low detection limit (8.2 μM). The chemosensory potential is attributed to deprotonation of the labile Schiff base center by CN- ions that results in a color change from colorless to yellow as visible by the naked eye. Accompanying this, a DFT study was also performed in order to find the interaction between the sensor (IF-1) and its ions (F-). A notable charge transfer from 3-hydroxy-2-naphthamide to 2,4-di-tert-butyl-6-methylphenol, was indicated by the FMO analysis. The QTAIM analysis revealed that in the complex compound, the strongest pure hydrogen-hydrogen bonding was observed between H53 and H58, indicated by a ρ value of +0.017807. Due to its selective response, IF-2 can be successfully used for making test strips for the detection of CN- ions.
Collapse
Affiliation(s)
- Rima D Alharthy
- Department of Chemistry, Science & Arts College, King Abdulaziz University Rabigh Branch Rabigh 21911 Saudi Arabia
| | - Ifra Urooj
- Institute of Chemical Sciences, Bahauddin Zakariya University 60800 Multan Pakistan
| | - Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University 60800 Multan Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Shaista Ijaz Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University 60800 Multan Pakistan
| | - Muhammad Ajmal
- Institute of Chemical Sciences, Bahauddin Zakariya University 60800 Multan Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University 60800 Multan Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University 60800 Multan Pakistan
| |
Collapse
|
10
|
Irshad R, Asim S, Mansha A, Arooj Y. Naphthalene and its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes. J Fluoresc 2023:10.1007/s10895-023-03153-y. [PMID: 36735102 DOI: 10.1007/s10895-023-03153-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Naphthalene, white crystalline solid having polycyclic aromatic hydrocarbon with characteristic mothball order is naturally present in crucial oils of various plants. Naphthalene derivatives are extensive drug resources and are use as wetting agents, surfactants and as insecticides. These derivatives exhibit unique photo physical and chemical properties. These characteristics make them the most studied group of organic compounds. Naphthalene dyes have rigid plane and large π-electron conjugation. Therefor they have high quantum yield and excellent photostability. Naphthalene based fluorescence probes due to hydrophobic nature exhibit excellent sensing and selectivity properties towards anions and cations and also used as a part of target biomolecules. In conjugated probe system, introducing naphthalene moiety caused improvement in photo-stability. Therefore among various conjugated framework, naphthalene derivatives are considered excellent candidate for the construction of organic electronic appliances. These derivatives are useful for a variety of applications owing to their strong fluorescence, electroactivity and photostability. This article is based upon investigation of photophysical properties of naphthalene derivatives and fluorescence detecting probe of naphthalene. For photophysical properties the techniques under investigation are UV visible spectroscopy and fluorescence spectroscopy. Concentration dependent spectra and solvatochromic shifts on UV visible spectra are also part of discussion.
Collapse
Affiliation(s)
- Ruqaya Irshad
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan.
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Arooj
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
11
|
Gurusamy S, Sankarganesh M, Nandini Asha R, Mathavan A. Biologically active oxovanadium(IV) Schiff base metal complex: antibacterial, antioxidant, biomolecular interaction and molecular docking studies. J Biomol Struct Dyn 2023; 41:599-610. [PMID: 34889705 DOI: 10.1080/07391102.2021.2009916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxovanadium(IV) Schiff base metal complex (ISNPV) have been synthesized as well as characterized by using micro analytical and traditional spectroscopic techniques. The spectral findings were utilized to validate the formation of ISNPV with structure exhibited square pyramidal geometry. The in vitro antibacterial activities of ISNPV were investigated to five different bacterial stains such as S. aureus, S. epidermidis, B. cereus, B. amyloliquefaciens and B. subtilis. The obtained result have suggested that the ISNPV has highest antibacterial activity against S. aureus than the other bacterial stains. The in vitro antioxidant activity like DPPH free radical scavenging assay method was studied by ISNPV in DMSO medium. Because it scavenges all free radicals, the ISNPV possesses higher antioxidant activity than the free ligand. UV-visible absorption and emission spectral techniques were used to investigate the binding of CT-DNA to the ISNPV. Both the spectral data indicate that the ISNPV binds the double helix structure of CT-DNA via an intercalation mode. Additionally, investigate the interactions of ISNPV with the protein molecules like BSA/HAS has been investigated using absorption and emission techniques. The absorption intensity of metal complex increases as well as the emission intensity of protein molecules ability decreases due to the binding nature of ISNPV with BSA/HSA protein molecules. The binding nature of ISNPV with bio molecules such as CT-DNA, BSA and HSA was also validated using molecular docking approach.
Collapse
Affiliation(s)
- Shunmugasundaram Gurusamy
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India.,Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineeing, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India
| | | | - Alagarsamy Mathavan
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India
| |
Collapse
|
12
|
Synthesis and Structural investigation of o-Vanillin scaffold Schiff base metal complexes: Biomolecular interaction and molecular docking studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
A new azo Schiff base probe for detection of Cr3+, HSO4-, and CN-: Computational studies, 4-to-2 encoder, and integrated molecular logic circuits. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Novel organoselenium-based N-mealanilic acid and its zinc (II) chelate: Catalytic, anticancer, antimicrobial, antioxidant, and computational assessments. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Xiao Y, Liu X, Li N, Pang Y, Zheng Z. Central condensed ring changes for manipulating the self-assembly and photophysical behaviors of cyanostilbene-based hexacatenars. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Santra A, Mishra S, Panda SK, Singh AK. ESIPT and PET-based easy-to-synthesize unsymmetrical ligand in the reversible fluorimetric sensing of Al3+ and relay sensing of inorganic and biological phosphates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Hojjati A, Mansournia M. Synthesis, characterization, theoretical study and anticancer application of a new asymmetric ligand, N‐trans‐cinnamylidene‐1,2‐phenylenediamine, and its complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmad Hojjati
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| | - Mohammadreza Mansournia
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| |
Collapse
|
18
|
Gurusamy S, Nandini Asha R, Sankarganesh M, Christopher Jeyakumar T, Mathavan A. Vanillin based colorimetric and fluorometric chemosensor for detection of Cu(II) ion: DFT calculation, DNA / BSA interaction and Molecular docking studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Boček I, Hranjec M, Vianello R. Imidazo[4,5-b]pyridine derived iminocoumarins as potential pH probes: Synthesis, spectroscopic and computational studies of their protonation equilibria. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Dilmen Portakal E, Kaya Y, Demirayak E, Karacan Yeldir E, Erçağ A, Kaya İ. Ni(II), Zn(II), and Fe(III) complexes derived from novel unsymmetrical salen-type ligands: preparation, characterization and some properties. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eylem Dilmen Portakal
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - Yeliz Kaya
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - Emire Demirayak
- Istanbul University, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - Elif Karacan Yeldir
- Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab, Çanakkale, Turkey
| | - Ayşe Erçağ
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - İsmet Kaya
- Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab, Çanakkale, Turkey
| |
Collapse
|
21
|
Krishnaveni K, Gurusamy S, Rajakumar K, Sathish V, Thanasekaran P, Mathavan A. Aggregation induced emission (AIE), selective fluoride ion sensing and lysozyme interaction properties of Julolidinesulphonyl derived Schiff base. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Suzuki−Miyaura coupling and O−arylation reactions catalysed by palladium(II) complexes of bulky ligands bearing naphthalene core, Schiff base functionality and biarylphosphine moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
A novel colorimetric, selective fluorescent “turn-off” chemosensor and biomolecules binding studies based on iodosalicylimine schiff-base derivative. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Nagaraj R, Murugesan S, Jeyaraj DR, Arumugam S, Shunmugasundaram G, Radhakrishnan NA. Spectroscopic studies on DNA interaction and anticancer activities of pharmacologically active pyrimidine derivative mixed ligand Co(II) and Ni(II) complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Synthesis, structural analysis, in vitro antioxidant, antimicrobial activity and molecular docking studies of transition metal complexes derived from Schiff base ligands of 4-(benzyloxy)-2-hydroxybenzaldehyde. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04644-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Gurusamy S, Krishnaveni K, Sankarganesh M, Nandini Asha R, Mathavan A. Synthesis, characterization, DNA interaction, BSA/HSA binding activities of VO(IV), Cu(II) and Zn(II) Schiff base complexes and its molecular docking with biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Immanuel David C, Movuleeshwaran P, Jayaraj H, Prabakaran G, Parimala devi D, Kumar MS, Abiram A, Satheesh Babu T, Prabhu J, Nandhakumar R. Highly selective, reversible and ICT-based fluorescent chemosensor for bismuth ions: Applications in bacterial imaging, logic gate and food sample analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Kapoor A, Rajput JK. Staudinger k
etene–imine
[2+2] cycloaddition of novel azomethines to synthesize biologically active azetidinone derivatives and their in vitro antimicrobial studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Atul Kapoor
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar India
| | - Jaspreet Kaur Rajput
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar India
| |
Collapse
|
29
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. DNA/BSA binding affinity studies of new Pd(II) complex with S-S and N-N donor mixed ligands via experimental insight and molecular simulation: Preliminary antitumor activity, lipophilicity and DFT perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Şahin S, Dege N. Synthesis, characterization, X-ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld surface, ADMET, boiled-egg model properties and molecular docking studies with human cyclophilin D (CypD) of a Schiff base compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|