1
|
Teixeira NA, Amorim Batista LF, Schneider de Mira P, Scremin Miyazaki DM, Grassi MT, Zawadzki SF, Abate G. Modified vermiculite as a sorbent phase for stir-bar sorptive extraction. Anal Chim Acta 2025; 1347:343798. [PMID: 40024657 DOI: 10.1016/j.aca.2025.343798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The presence of emerging contaminants (ECs) is a cause of great concern nowadays, and they are present at very low concentrations in surface waters, requiring a preconcentration process for their reliable quantification. The technique of Stir-Bar Sorptive Extraction (SBSE) is a valuable tool for achieving this purpose, and different sorbents have been developed to produce the bars. In this sense, we propose the use of the clay mineral vermiculite (Vt), modified with alkylammonium salts, aiming the determination of the ECs: bisphenol A, diclofenac, ibuprofen and triclosan in surface water samples. RESULTS The best conditions for sorption and desorption were: 50.0 mL of sample at pH 4.0, under stirring at 600 rpm (120 min), being the desorption carried out under sonication for 20 min using 500 μL of methanol, and the analytes were determined using LC-DAD. A linear range from 0.50 to 2.50 μg L-1 or from 0.50 to 5.00 μg L-1 and R2 higher than 0.9480 were observed, and attractive real enrichment factors between 116 and 177 times, affording a LOD between 0.11 and 0.33 μg L-1. The method was applied to determine the four ECs in samples of tap, river, and lake waters, presenting recovery results between 42.0 and 128.0 %, and RSD from 0.4 to 19.6 %. The bars prepared using Vt presented good chemical and mechanical resistance, even modified using the alkylammonium salts, permitting them to be employed at least 30 times, without memory effects. SIGNIFICANCE The modified Vt, afforded a simple, low-cost, and attractive alternative to work as a sorbent phase for SBSE technique, presenting very appropriate analytical parameters, even employing LC-DAD. Although the sorbent was applied to a limited number of contaminants, it is probable that other analytes could be successfully determined. It is important to notice that this is the first study reported, employing modified Vt for SBSE application.
Collapse
Affiliation(s)
- Natascha Amalio Teixeira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Princys Schneider de Mira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Marco Tadeu Grassi
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Sônia Faria Zawadzki
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Gilberto Abate
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Zhang Z, Joudiazar S, Satpathy A, Fernando E, Rahmati R, Kim J, de Falco G, Datta R, Sarkar D. Removal of Per- and Polyfluoroalkyl Substances Using Commercially Available Sorbents. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1299. [PMID: 40141583 PMCID: PMC11943809 DOI: 10.3390/ma18061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available sorbent materials, granular activated carbon (GAC, Filtrasorb-400) and organoclays (OC-200, and modified organoclays Fluoro-sorb-100 and Fluoro-sorb-200) for the removal of three representative PFAS compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS) from water. Both organoclays and modified organoclays outperformed GAC, likely due to electrostatic interactions between the anionic PFAS compounds and the cationic functional groups of the modified organoclays. A pseudo-second-order kinetic model best described the rapid sorption kinetics of PFOA, PFNA, and PFOS. For PFOA, OC-200 demonstrated the highest adsorption capacities (qmax = 47.17 µg/g). For PFNA and PFOS, Fluoro-sorb-100 was the most effective sorbent, with qmax values at 99.01 µg/g and 65.79 µg/g, respectively. Desorption studies indicated that the sorption of the three PFAS compounds on these commercially available sorbents was largely irreversible. This study highlights the effectiveness and sorption capacities of different types of commercial sorbents for PFAS removal and offers valuable insights into the selection of reactive media for PFAS removal from water under environmentally relevant conditions.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Sevda Joudiazar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Anshuman Satpathy
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Eustace Fernando
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Roxana Rahmati
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Junchul Kim
- Tetra Tech, Inc., King of Prussia, PA 19406, USA;
| | - Giacomo de Falco
- New York City Department of Environmental Protection, New York City, NY 11368, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| |
Collapse
|
3
|
Yang X, Zhou Y, Hu J, Zheng Q, Zhao Y, Lv G, Liao L. Clay minerals and clay-based materials for heavy metals pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176193. [PMID: 39278488 DOI: 10.1016/j.scitotenv.2024.176193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Heavy metal contamination is a huge hazard to the environment and human health, and research into removing heavy metals from their primary sources (industrial and agricultural wastes) has increased significantly. Adsorption has received interest due to its distinct benefits over other treatment approaches. The distinctive qualities of clay minerals, such as their high specific surface area, strong cation exchange capacity, and varied structures, make them particularly ideal for use in the manufacture of adsorbents. The customizable structure and performance of clay minerals allow for unprecedented diversity in adsorbent creation, opening up new possibilities for the development of high-efficiency and functional adsorption technologies. In this review, various approaches for developing optimal adsorbents from raw materials are presented. Then, the correlation between functionalization and performance is investigated, focusing on the effects of structural features and surface properties on adsorption performance. The research progress on the synthesis of adsorbents using clay minerals and other functional materials is systematically reported. Finally, the challenges and opportunities in designing and utilizing innovative clay mineral adsorbents are discussed.
Collapse
Affiliation(s)
- Xiaotong Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhou
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Jingjing Hu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qinwen Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yunpu Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Cai K, Du J, Yan L, Luan Z, He Y, Shen J, Song Z, Zhao Z, Luan W, Liu X, Lam SS. Toxic metal pollution and associated health risk in nonferrous metal smelting soil containing clay minerals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122909. [PMID: 39405840 DOI: 10.1016/j.jenvman.2024.122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Given the research situation of toxic metals (TMs) pollution in farmland soil, it is very critical to study the clay influence on TMs environmental behavior to meet the aim of lowering TMs pollution. This research explores the association among clay minerals and TMs and the health risks in TMs combined polluted farmland of northern China. In this study, agricultural soil, wheat grain, and atmospheric sediments from nonferrous metal smelting (NMS) areas were collected and investigated to determine the effect of clay minerals on TMs. The results show that the content ranges of Cd (0.199 mg/kg ∼1.98 × 102 mg/kg), Pb (0.228 × 102 mg/kg ∼ 4.87 × 103 mg/kg), Cu (0.187 × 102 mg/kg ∼ 4.57 × 103 mg/kg), and Zn (0.559 × 102 mg/kg ∼ 3.04 × 103 mg/kg) in the agricultural soil. In particular, Cd has reached heavy pollution by the high pollution index (6.74). The findings indicate that Cd and Pb in wheat grain were influenced by their exchangeable fractions in soil, according to a significant relationship between Cd and Pb in soil and wheat grain. XRD-SEM suggests that TMs come from atmospheric sediments associated with NMS emissions by microsphere signatures with surface burn marks. Meanwhile, Geographical detector indicated that clay was the primary contributor to spatial distribution of Cd and Pb. In addition, XRD results showed that I/S (a mixed layer of illite and smectite), illite, chlorite, and kaolinite co-existed. Whereas the clay minerals with this ratio did not demonstrate better adsorption capacities for Cd and Pb due to the Cd percentage of the residual fraction being less than 9%. The result of negative correlation between exchangeable Cd and clay minerals implies that illite, chlorite, and kaolinite may preferentially adsorb Cd and Pb. It is similar to the relationship between Cd and Pb in wheat grain and illite, chlorite, and kaolinite. In addition, the health assessment result show that the negative correlation between clay minerals and the noncarcinogenic hazard quotient (HQ) and indicate that clay minerals could reduce the noncarcinogenic risk of Pb and Cd for children. Our findings provide a potential mechanism and application of clay minerals for the remediation of soil contaminated with TMs.
Collapse
Affiliation(s)
- Kui Cai
- Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang, 050031, China; Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Jun Du
- Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang, 050031, China
| | - Lina Yan
- College of Geoscience, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Zhuoran Luan
- College of Geoscience, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Yinhai He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Jiani Shen
- Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zefeng Song
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Zhirui Zhao
- College of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Wenlou Luan
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Chu Q, Liu Z, Feng F, Chen D, Qin J, Bai Y, Feng Y. A novel bio-based fluorescent N, P-CDs@CMC/PEI composite hydrogel for sensitive detection and efficient capture of toxic heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134757. [PMID: 38820759 DOI: 10.1016/j.jhazmat.2024.134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
To address the serious environmental pollution problems of toxic heavy metal ions in water bodies, a novel fluorescent composite hydrogel N, P-CDs@CMC/PEI with a bio-based polymer matrix of carboxylmethyl cellulose (CMC), polyethylenimine (PEI) as a second interpenetrating network and N, P-doped carbon dots (N, P-CDs) as a fluorescent probe was prepared for simultaneous detection and capture of HMIs by a facile and simple one-step approach. The morphology, chemical structure, swelling ratio, mechanical strength and fluorescence property of these composite hydrogels were studied through varied characterization methods. The composite hydrogel showed sensitive and selective fluorescence response with Hg(II) and Fe(III) and the according LOD values were 0.48 and 0.27 mg L-1, respectively. The relationship between the types of the adsorbent, pH value, HMIs concentration and temperature on the adsorption capacity of these composite hydrogels were studied. The pseudo-second-order model and Langmuir model were applicable to explain the adsorption process of CPH2 for Hg(II) and Cr(VI). The maximum calculated adsorption capacities for the above targeted HMIs by Langmuir model were 846.7 and 289.5 mg g-1, respectively. Coexisting inorganic salts and organic acids in low concentration had little effects on Hg(II) and Cr(VI) removal and the composite hydrogel showed good recyclability and stability for Hg(II) and Cr(VI) removal after four cycles. The electrostatic attraction and coordination covalent bonds were responsible for the adsorption process.
Collapse
Affiliation(s)
- Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China; Department of Energy Chemistry and Material Engineering, Shanxi Institute of Energy, Taiyuan 030600, PR China
| | - Danlu Chen
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Jun Qin
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
6
|
Deng R, Yue Z, Wang X, Xu Q, Wang J. Innovative recovery of matrix layered double hydroxide from simulated acid mine wastewater for the removal of copper and cadmium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30196-30211. [PMID: 38600374 DOI: 10.1007/s11356-024-33262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This study innovatively added biochar to optimize regulation in the neutralization process of simulated acid mine drainage (AMD) and recovered a new type of matrix layered double hydroxides (MLDH), which can be used to remove copper (Cu(II)) and cadmium (Cd(II)) from wastewater. A series of batch experiments show that MLDH with strong selective removal ability of Cu(II) and Cd(II) can be successfully obtained by adding biochar (BC) at pH = 5 end in the neutralization process. Kinetic and isotherm modeling studies indicated that the removal of Cu(II) and Cd(II) by the MLDH was a chemical multilayer adsorption process. The removal mechanism of Cu(II) and Cd(II) was further analyzed through related characterization analysis with contribution rate calculation: the removal rates of Cu(II) and Cd(II) by ion exchange were 42.7% and 26%, while that by precipitation were 34.5% and 49.9%, respectively. This study can provide a theoretical reference and experimental basis for the recovery and utilization of valuable by-products in AMD and the treatment of heavy metal wastewater.
Collapse
Affiliation(s)
- Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Xinquan Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
7
|
Guo C, Wang Y, You Y, Chen M, Zhang K, Zhang S. Aminopoly(carboxylic acid)-Functionalized PolyHIPE Beads toward Eliminating Trace Heavy Metal Ions from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6107-6117. [PMID: 38466815 DOI: 10.1021/acs.langmuir.3c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Many advanced materials are designed for the removal of heavy metal ions from water. However, materials for eliminating trace heavy metal ions from wastewater to meet drinking water standards remain a major challenge. Herein, epoxy group-functionalized open-cellular beads are synthesized by UV polymerization of a water-in-oil-in-water system. The epoxy groups are further transformed into diethylenetriaminepentaacetic acid (DTPA) with hexamethylene diamine as a bridging agent. The resulting material (DTPA@polyHIPE beads) can eliminate trace Cu(II), Cr(III), Pb(II), Fe(III), or Cd(II) from water. When 0.15 g of DTPA@polyHIPE beads are used to adsorb metal ions of 20 mg in 100 mL of water, the residue concentrations of Cu(II), Cr(III), Pb(II), Fe(III), and Cd(II) are reduced to 0.08, 0.06, 0.02, 0.09, and 0.07 mg/L, respectively. The adsorption efficiencies of the beads for these ions are all higher than 99.55%. The adsorbent is durable and exhibits good recyclability by retaining an adsorption capacity of ≥91% after 5 cycles. The negative values of ΔG in the adsorption process indicate that the adsorption is feasible and spontaneous. The chemical adsorption follows the Freundlich adsorption model, indicating a multilayer heterogeneous adsorption. The DTPA@polyHIPE beads have a great potential application in dealing with trace heavy metal ion polluted water.
Collapse
Affiliation(s)
- Cuicui Guo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiling Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yijing You
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ka Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Igwegbe CA, Kozłowski M, Wąsowicz J, Pęczek E, Białowiec A. Nitrogen Removal from Landfill Leachate Using Biochar Derived from Wheat Straw. MATERIALS (BASEL, SWITZERLAND) 2024; 17:928. [PMID: 38399179 PMCID: PMC10890371 DOI: 10.3390/ma17040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Landfill leachate (LLCH) disposal poses challenges due to high pollutant concentrations. This study investigates the use of biochar (BC) derived from wheat straw for nitrogen content reduction. Laboratory experiments evaluated BC's adsorption capacity (qm) for nitrogen removal from ammonium chloride solution (NH4Cl) and LLCH, along with testing isotherm models. The results demonstrated that BC was more efficient (95.08%) than commercial activated carbon AC (93.11%), the blank, in adsorbing nitrogen from NH4Cl. This superior performance of BC may be attributed to its higher carbon content (57.74%) observed through elemental analysis. Lower results for BC/LLCH may be due to LLCH's complex chemical matrix. The Langmuir isotherm model best described BC/NH4Cl adsorption (qm = 0.5738 mg/g). The AC/NH4Cl data also fitted into the Langmuir (R2 ˃ 0.9) with a qm of 0.9469 mg/g, and 26.667 mg/g (R2 ˂ 0.9) was obtained for BC/LLCH; the BC/LLCH also gave higher qm (R2 ˃ 0.9) using the Jovanovich model (which also follows Langmuir's assumptions). The mean energy of the adsorption values estimated for the AC/NH4Cl, BC/NH4Cl, and BC/LLCH processes were 353.55, 353.55, and 223.61 kJ/mol, respectively, suggesting that they are all chemisorption processes and ion exchange influenced their adsorption processes. The Freundlich constant (1/n) value suggests average adsorption for BC/LLCH. The BC/LLCH data followed the Harkins-Jura model (R2: 0.9992), suggesting multilayered adsorption (or mesopore filling). In conclusion, biochar derived from wheat straw shows promising potential for landfill leachate remediation, offering efficient nitrogen removal capabilities and demonstrating compatibility with various adsorption models. This research also lays the groundwork for further exploration of other biochar-based materials in addressing environmental challenges associated with landfill leachate contamination.
Collapse
Affiliation(s)
- Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria
| | - Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
| | - Jagoda Wąsowicz
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
| | - Edyta Pęczek
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
- Selena Industrial Technologies sp. z o.o., Pieszycka 3 Str., 58-200 Dzierżoniów, Poland
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
| |
Collapse
|
9
|
Ma S, Wei S, Li S, Wei W, Huang Y. Facile activation of natural calcium-rich sepiolite with oxalic acid for selective Pb(II) removal: Highly-efficient performance, mechanisms and site energy distribution. CHEMOSPHERE 2023; 342:140201. [PMID: 37722536 DOI: 10.1016/j.chemosphere.2023.140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The design and development of adsorbents with high efficiency, selectivity, and economy for Pb(II) are essential to environmental governance and ecological safety. Herein, an oxalic acid (OA) activated natural sepiolite (nSEP) composite for highly efficient Pb(II) removal was prepared by a facile impregnation strategy. The OA activated nSEP nanocomposite (OA-nSEP) was characterized by various instrumental techniques and its adsorption performance towards Pb(II) was further evaluated through a series of static and dynamic experiments under various environmental conditions. Results revealed that OA reacted with the calcium impurities in nSEP to form calcium oxalate, causing mesoporous structure and larger specific surface area of OA-nSEP. The obtained OA-nSEP possessed super high Pb(II) adsorption capacities (858.4-1252 mg/g), which were much higher than that of most modified clays or conventional materials. The average adsorption site energy and the standard deviation of the site energy distribution were analyzed to investigate the strength of Pb(II) binding onto OA-nSEP and the adsorption site heterogeneity. Mechanism studies confirmed that oxalate groups exerted a primary role in the adsorption process. X-ray diffraction and X-ray photoelectron spectrometry (XPS) unveiled that the coordination of oxalate with Pb(II) and precipitation of lead oxalate was responsible for the high efficiency and selectivity. Distinguishing feature of high adsorption capacity, specific selective adsorption, abundant availability, and splendid reusability make the OA-nSEP a promising candidate for eliminating Pb(II) in practical scenarios.
Collapse
Affiliation(s)
- Shoucheng Ma
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Song Wei
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Siyuan Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
10
|
Del Sole R, Fogel AA, Somin VA, Vasapollo G, Mergola L. Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5322. [PMID: 37570026 PMCID: PMC10419462 DOI: 10.3390/ma16155322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Bentonitic clay and wood sawdust are natural materials widely available in nature at low cost with high heavy metals sorption properties that, in this work, were combined to achieve an effective composite biosorbent with high sorption properties and enhanced mechanical stability. Pine, aspen, and birch wood sawdust, as well as different bentonite clays and different sawdust modification methods (H3PO4 or HCl) were used for preparing new composite biosorbents. A mixture of wood sawdust and bentonite in a ratio of 2:1 was used. All materials were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) methods and tested for Cu and Ni ions removal from water. The adsorption process for all composite biosorbents was well described from a pseudo-second order kinetic model (R2 > 0.9999) with a very high initial adsorption rate of Cu and Ni ions and a maximum uptake recorded within 2 h. The results have shown that the adsorption capacity depends mainly on the kind of wood and the acid treatment of the wood that enhances the adsorption capacity. At a concentration of 50 mg/L, the biosorbent prepared using birch wood sawdust showed the worst performance, removing barely 30% of Cu and Ni ions, while aspen wood sawdust improved the adsorption of Cu (88.6%) and Ni (52.4%) ions. Finally, composite biosorbent with pine wood sawdust showed the best adsorption be haviour with an efficiency removal of 98.2 and 96.3% of Cu and Ni ions, respectively, making it a good candidate as an inexpensive and effective biosorbent for the removal of heavy metals.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100 Lecce, Italy; (G.V.); (L.M.)
| | - Alena A. Fogel
- Humanitarian Institute, Higher School of Jurisprudence and Forensic Technical Expertise, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya St., 29, 195251 Saint Petersburg, Russia;
| | - Vladimir A. Somin
- Institute of Biotechnology, Food and Chemical Engineering, Polzunov Altai State Technical University, Lenina Avenue, 46, 656038 Barnaul, Russia;
| | - Giuseppe Vasapollo
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100 Lecce, Italy; (G.V.); (L.M.)
| | - Lucia Mergola
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100 Lecce, Italy; (G.V.); (L.M.)
| |
Collapse
|
11
|
Velarde L, Nabavi MS, Escalera E, Antti ML, Akhtar F. Adsorption of heavy metals on natural zeolites: A review. CHEMOSPHERE 2023; 328:138508. [PMID: 36972873 DOI: 10.1016/j.chemosphere.2023.138508] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Water pollution has jeopardized human health, and a safe supply of drinking water has been recognized as a worldwide issue. The increase in the accumulation of heavy metals in water from different sources has led to the search for efficient and environmentally friendly treatment methods and materials for their removal. Natural zeolites are promising materials for removing heavy metals from different sources contaminating the water. It is important to know the structure, chemistry, and performance of the removal of heavy metals from water, of the natural zeolites to design water treatment processes. This review focuses on critical analyses of the application of distinct natural zeolites for the adsorption of heavy metals from water, specifically, arsenic (As(III), As(V)), cadmium (Cd(II)), chromium (Cr(III), Cr(VI)), lead (Pb(II)), mercury(Hg(II)) and nickel (Ni(II)). The reported results of heavy-metal removal by natural zeolites are summarized, and the chemical modification of natural zeolites by acid/base/salt reagent, surfactants, and metallic reagents has been analyzed, compared, and described. Furthermore, the adsorption/desorption capacity, systems, operating parameters, isotherms, and kinetics for natural zeolites were described and compared. According to the analysis, clinoptilolite is the most applied natural zeolite to remove heavy metals. It is effective in removing As, Cd, Cr, Pb, Hg, and Ni. Additionally, an interesting fact is a variation between the natural zeolites from different geological origins regarding the sorption properties and capacities for heavy metals suggesting that natural zeolites from different regions of the world are unique.
Collapse
Affiliation(s)
- Lisbania Velarde
- Department of Chemistry, Faculty of Science and Technology, San Simon University, UMSS, Cochabamba, Bolivia; Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Mohammad Sadegh Nabavi
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Edwin Escalera
- Department of Chemistry, Faculty of Science and Technology, San Simon University, UMSS, Cochabamba, Bolivia
| | - Marta-Lena Antti
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Farid Akhtar
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
12
|
Yang W, Xia X, Liu X, Zhang S. Interlayer structure and dynamic properties of CTMAB-montmorillonite: experiment and molecular dynamics. RSC Adv 2023; 13:13324-13336. [PMID: 37143701 PMCID: PMC10152231 DOI: 10.1039/d3ra01834b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The intercalation of cetyltrimethylammonium bromide (CTMAB) into montmorillonite will cause interlayer expansion and surface charge reversal. In this study, CTMAB-Mt is prepared by adding CTMAB with different multiples of montmorillonite cation exchange capacity (CEC), and the intercalated CTMAB structural arrangement, as well as the dynamics behavior, are investigated by combining molecular dynamics (MD) simulation with experimental characterization. According to RDF analysis of MD simulations, the interaction between CTMA+ and the surface of montmorillonite is mostly electrostatic interaction and hydrogen bond production. At low loading (≤1.00CEC), the XRD profile exhibits a peak value corresponding to one type of intercalation structure and interlayer spacing, but at high loading (>1.00CEC), two peaks are visible, each of which has a fixed value but a varied strength, corresponding to the existence of two types of expanded structures. The d-spacing (d 001) values obtained from MD simulations are quite close to XRD values when CTMAB loading is lower than 1.00CEC. Density distribution profiles obtained from MD analysis reveal that as loading increases, CTMA+ is arranged in the interlayer from a monolayer to a bilayer and then to a pseudo-trilayer. At high loadings (>1.00CEC), due to the fact that the excess loading leads to inhomogenous intercalation, XRD demonstrates the existence of two different arrangements: bilayer and pseudo-trilayer. The self-diffusion coefficients of MD simulations show that the dynamic behavior of CTMA+ is influenced by both the interlayer space and the electrostatic interaction of the montmorillonite clay. The abrupt rise in interlayer spacing increases mobility, whereas the increased interaction between alkyl chains decreases mobility.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, College of Civil Engineering, Hunan University Changsha 410082 China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University Changsha 410082 China
- College of Civil Engineering, Hunan University Changsha 410082 China
| | - Xiaohui Xia
- College of Civil Engineering, Hunan University Changsha 410082 China
| | - Xueying Liu
- College of Civil Engineering, Hunan University Changsha 410082 China
| | - Shaoqiu Zhang
- College of Civil Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
13
|
Antosik AK, Kucharska E, Mozelewska K. Study of Applying Naturally Occurring Mineral Materials for Silicone Pressure-Sensitive Adhesives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2092. [PMID: 36903207 PMCID: PMC10004305 DOI: 10.3390/ma16052092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Silicones are commonly used as adhesives when high-quality materials are required due to harsh environmental conditions such as high temperature, humidity, etc. To ensure high resistance to environmental conditions, including high temperatures, modifications of silicone adhesives are made using fillers. The characteristics of a modified silicone-based pressure-sensitive adhesive with filler are the focus of this work. Functionalized palygorskite was prepared in this investigation by grafting 3-mercaptopropyltrimethoxysilane (MPTMS) onto palygorskite (palygorskite-MPTMS). The palygorskite was functionalized using MPTMS under dried conditions. FTIR/ATR spectroscopy, thermogravimetric analysis, and elemental analysis were all used to characterize the obtained palygorskite-MPTMS. MPTMS loading onto palygorskite was also proposed. The results demonstrated that palygorskite's initial calcination favors the grafting of functional groups on its surface. New self-adhesive tapes based on palygorskite-modified silicone resins have been obtained. This functionalized filler allows for the improvement of the compatibility of palygorskite with specific resins for application in heat-resistant silicone pressure-sensitive adhesives. The new self-adhesive materials showed increased thermal resistance while maintaining good self-adhesive properties.
Collapse
|
14
|
Bhadra BN, Shrestha LK, Ariga K. Porous Boron Nitride Nanoarchitectonics for Environment: Adsorption in Water. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Mao S, Shen T, Zhao Q, Zhu S, Han T, Jin X, Ding F, Wang H, Gao M. A range of bifunctional vermiculite-based adsorbents for simultaneous removal of Congo red and permanganate. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
16
|
Zhang LL, Zaoui A, Sekkal W, Zheng YY. Interlayer adsorption of cationic dye on cationic surfactant-modified and unmodified montmorillonite. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130107. [PMID: 36303347 DOI: 10.1016/j.jhazmat.2022.130107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Water pollution by toxic organic dyes is one of the most critical health and environmental problems worldwide. By means of molecular dynamics method, the present work aims to evaluate the applicability of montmorillonite (Mt) modified by hexadecyltrimethylammonium cations (HDTMA+) compared to unmodified Na-Mt for the adsorption of cationic methylene blue (MB) dye. The results showed that the adsorption energy of MB on both HDTMA-Mt and Na-Mt absorbent ranged from - 100 to - 250 kJ/mol, indicating the effectiveness of two types of adsorbents in dye water treatment. The highest adsorption energy was found at w = 50% in each adsorbent system. Adsorption mechanisms of MB depend on molecular orientations, which is influenced by the surfactant and water content. The adsorption mechanism of MB is chemisorption dominated by strong electrostatic interaction between CH3 groups of MB and oxygen atoms of Mt surfaces. Besides, physisorption also plays a minor role in MB orientations. It is found that the existence of cationic surfactants can slightly improve the adsorption capacity of MB only at higher water content through enlarging the interlayer space of Mt and reducing mobility of MB. However, there will be a negative impact on the reduction of adsorption sites for dyes especially at low water content. Our results provide a possible application for swelling clay minerals being a promising adsorbent for dyes-surfactants co-existing wastewater treatment.
Collapse
Affiliation(s)
- Li-Lan Zhang
- Univ. Lille, IMT Nord Europe, JUNIA, Univ. Artois, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Ali Zaoui
- Univ. Lille, IMT Nord Europe, JUNIA, Univ. Artois, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Wassila Sekkal
- Univ. Lille, IMT Nord Europe, JUNIA, Univ. Artois, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Yuan-Yuan Zheng
- Univ. Lille, IMT Nord Europe, JUNIA, Univ. Artois, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France; School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China; China & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
17
|
The Application of Mineral Kaolinite for Environment Decontamination: A Review. Catalysts 2023. [DOI: 10.3390/catal13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Kaolinite clay mineral with a layered silicate structure is an abundant resource in China. Due to its advantages of excellent stability, high specific surface area and environmental friendliness, kaolinite is widely used in environment decontamination. By using kaolinite as a carrier, the photocatalytic technology in pure photocatalysts of poor activities, narrow spectral responses, and limited electron transport can be overcome, and the nano-Ag disinfectant’s limitation of the growth and aggregation of nanoparticles is released. Moreover, pure kaolinite used as an adsorbent shows poor surface hydroxyl activity and low cation exchange, leading to the poor adsorption selectivity and easy desorption of heavy metals. Current modification methods including heat treatment, acid modification, metal modification, inorganic salt modification, and organic modification are carried out to obtain better adsorption performance. This review systematically summarizes the application of kaolinite-based nanomaterials in environmental decontamination, such as photocatalytic pollutant degradation and disinfection, nano silver (Ag) disinfection, and heavy metal adsorption. In addition, applications on gas phase pollutant, such as carbon dioxide (CO2), capture and the removal of volatile organic compounds (VOCs) are also discussed. This study is the first comprehensive summary of the application of kaolinite in the environmental field. The review also illustrates the efficiency and mechanisms of coupling naturally/modified kaolinite with nanomaterials, and the limitation of the current use of kaolinite.
Collapse
|
18
|
Preparation of Copper Ion Adsorbed Modified Montmorillonite/Cellulose Acetate Porous Composite Fiber Membrane by Centrifugal Spinning. Polymers (Basel) 2022; 14:polym14245458. [PMID: 36559826 PMCID: PMC9785991 DOI: 10.3390/polym14245458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The natural adsorption material montmorillonite (MMT) was selected, and cellulose acetate (CA) was used as the loading substrate to design and prepare a kind of green and environment-friendly recyclable porous composite fiber membrane with good heavy metal ion adsorption performance. Acetic acid modified montmorillonite (HCl-MMT), sodium dodecyl sulfonate modified montmorillonite (SDS-MMT), and chitosan modified montmorillonite (CTS-MMT) were prepared by inorganic modification and organic modification, and the porous MMT/CA composite fiber membrane was constructed by centrifugal spinning equipment. The morphological and structural changes of MMT before and after modification and their effects on porous composite fiber membranes were investigated. The morphology, structure, and adsorption properties of the composite fibers were characterized by scanning electron microscopy (SEM) and atomic absorption spectrometry (ASS). The experimental results showed that the maximum adsorption capacity of Cu2+ on the prepared 5 wt% CTS-MMT composite fiber membrane was 60.272 mg/g after 10 h static adsorption. The adsorption of Cu2+ by a porous composite fiber membrane conforms to the quasi-second-order kinetic model and Langmuir isothermal adsorption model. The main factor of the Cu2+ adsorption rate is chemical adsorption, and the adsorption mechanism is mainly monolayer adsorption.
Collapse
|
19
|
Qi C, Xu X, Chen Q, Liu H, Min X, Fourie A, Chai L. Ab initio calculation of the adsorption of As, Cd, Cr, and Hg heavy metal atoms onto the illite(001) surface: Implications for soil pollution and reclamation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120072. [PMID: 36064056 DOI: 10.1016/j.envpol.2022.120072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Elucidating the mechanisms of heavy metal (HM) adsorption on clay minerals is key to solving HM pollution in soil. In this study, the adsorption of four HM atoms (As, Cd, Cr, and Hg) on the illite(001) surface was investigated using density functional theory calculations. Different adsorption configurations were investigated and the electronic properties (i.e., adsorption energy (Ead) and electron transfer) were analyzed. The Ead values of the four HM atoms on the illite(001) surface were found to be As > Cr > Cd > Hg. The Ead values for the most stable adsorption configurations of As, Cr, Cd, and Hg were -1.8554, -0.7982, -0.3358, and -0.2678 eV, respectively. The As atoms show effective chemisorption at all six adsorption sites, while Cd, Cr, and Hg atoms mainly exhibited physisorption. The hollow and top (O) sites were more favorable than the top (K) sites for the adsorption of HM atoms. The Gibbs free energy results show that the illite(001) surface was energetically favorable for the adsorption of As and Cr atoms under the influence of 298 K and 1 atm. After adsorption, there was a redistribution of positions and reconfiguration of the chemical bonding of the surface atoms, with a non-negligible influence around the upper surface atoms. Bader charge analysis shows electrons were transferred from the surface to the HM atoms, and a strong correlation between the valence electron variations and the adsorption energy was observed. HM atoms had a high electronic state overlap with the surface O atoms near the Fermi energy level, indicating that the surface O atoms, though not the topmost atoms around the surface, significantly influence HM adsorption. The above results show illite(001) preferentially adsorbed As among all four investigated HM atoms, indicating that soils containing a high proportion of illite might be more prone to As pollution.
Collapse
Affiliation(s)
- Chongchong Qi
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China; School of Molecular Science, University of Western Australia, Perth, 6009, Australia; School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xinhang Xu
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Qiusong Chen
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Andy Fourie
- School of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, 6009, Australia
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
20
|
Hasan MS, Karmakar AK. Removal of car battery heavy metals from wastewater by activated carbons: a brief review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73675-73717. [PMID: 36085225 DOI: 10.1007/s11356-022-22715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Spent automobile batteries are one of the most significant secondary sources of harmful heavy metals for the environment. After being incorporated into the aquatic ecosystems, these metals disseminate to various plants, microorganisms, and the human body and cause multiple adverse effects. Activated carbons (ACs) have long been used as an effective adsorbent for different heavy metals in wastewater treatment processes. Although numerous research works have been published to date on this topic, they are scattered in the literature. In this review, we have assembled these works and provided an extensive overview of the application of ACs for treating spent car battery heavy metals (CBHMs) from aquatic systems. The preparation of ACs from different precursor materials, their application in the adsorption of CBHMs, the adsorption mechanism, kinetics, adsorption isotherms and various parameters that may affect the adsorption processes have been discussed in detail. A brief comparative analysis of the adsorption performances of ACs prepared from different precursor materials is also provided. Finally, recommendations for future research works are also offered.
Collapse
Affiliation(s)
- Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
21
|
Multi-hydroxyl containing organo-vermiculites for enhanced adsorption of coexisting methyl blue and Pb(II) and their adsorption mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Mao S, Shen T, Zhao Q, Han T, Ding F, Jin X, Gao M. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Bihain MFR, Gomes EJCM, Macedo VS, Cavallini GS, Pereira DH. Theoretical insights into the possibility of removing CH3Hg+ using different adsorptive matrices: g-C3N4, cellulose xanthate, and vanillin-derived modified monomer. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Yi S, Bao B, Song W, Liu M. Removal of Zn(II) by magnetic composite adsorbent: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57823-57834. [PMID: 35355190 DOI: 10.1007/s11356-022-19830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
In this study, L-methionine and nano-Fe3O4 were encapsulated and cured on sodium alginate by the ionic cross-linking method to form magnetic composite gel spheres (SML) as an adsorbent for the removal of Zn(II) from water. The influence of adsorbent dosages, pH, reaction time, and initial ion concentration on the ability of the gel spheres to adsorb Zn(II) was investigated, and the adsorption mechanism was identified. The experimental results showed that under the optimum conditions (pH = 5, t = 60 min, dosage of SML is 0.7 g·L-1), the maximum amount of Zn(II) adsorbed by the adsorbent gel spheres reached 86.84 mgˑg-1. The reaction process of this adsorbent fits well with the Langmuir and pseudo-second-order kinetic models and is a heat absorption reaction. The adsorbent would preferentially adsorb Pb(II), and the adsorption efficiency of Zn(II) decreased when the concentration of interfering ions increased in the coexistence system. Further mechanistic research showed that this magnetic composite adsorbent is a mesoporous material with superior adsorption performance, and the amino and carboxyl groups on it react with Zn(II) via ligand chelation; the ion exchange effect of Ca(II) also plays a role. The adsorption amount of Zn(II) was maintained at a higher level after 5 cycles, and the loss of Fe was approximately 0.2%. In summary, SML, which is environmentally friendly, efficient, and recyclable, is an ideal adsorbent for Zn(II) removal.
Collapse
Affiliation(s)
- Shuang Yi
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Institute of Resources Comprehensive Utilization, Guangzhou, 510651, China
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangzhou, 510651, China
| | - Binqin Bao
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Institute of Resources Comprehensive Utilization, Guangzhou, 510651, China
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangzhou, 510651, China
| | - Weifeng Song
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, 510006, China.
| | - MuDdan Liu
- Guangdong Institute of Resources Comprehensive Utilization, Guangzhou, 510651, China
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangzhou, 510651, China
| |
Collapse
|
25
|
Węgrzyn A, Tsurtsumia A, Witkowski S, Freitas O, Figueiredo S, Cybińska J, Stawiński W. Vermiculite as a potential functional additive for water treatment bioreactors inhibiting toxic action of heavy metal cations upsetting the microbial balance. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128812. [PMID: 35398796 DOI: 10.1016/j.jhazmat.2022.128812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
A new adsorbent that combines mineral vermiculite with the yeast Saccharomyces cerevisiae, was used for Cd2+ removal. The influence of vermiculite presence on the toxic effects of Cd2+ to Saccharomyces cerevisiae yeast was evaluated as a function of the microorganisms' respiratory activity (CO2 production). The Cd2+ toxicity increased with prolonged exposure time reaching the LC50 value of 857 and 489 mg L-1 after 30 and 120 min, respectively. The yeast managed to bioaccumulate 25.0 ± 0.6 mg g-1 of Cd2+ at the initial Cd2+ concentration of 741.9 mg L-1; the maximum Cd2+ adsorption capacity of vermiculite reached 25 ± 5 mg g-1. The addition of the mineral decreased the cations toxic effect; the LC20 value in vermiculite absence attained approximately 200 mg L-1 after 30 min and decreased to 80 mg L-1 after 2 h, while in the bio-mineral system it was at the level of 435 ± 50 mg L-1 without a significant change in time. The mineral provided a superior living environment for the yeast by removing part of the cations, releasing essential microelements and providing a protective, clay hutch-like habitat for the cells.
Collapse
Affiliation(s)
- Agnieszka Węgrzyn
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Avtandil Tsurtsumia
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Ilia State University, School of Natural Since and Engineering, Sustainable Natural And Forest Resources Management (MBA), Kakutsa Cholokashvili Ave 3/5, Tbilisi 0162, Georgia.
| | - Stefan Witkowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Olga Freitas
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| | - Sónia Figueiredo
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| | - Joanna Cybińska
- Faculty of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Łukasiewicz Research Network, PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Wojciech Stawiński
- Łukasiewicz Research Network, PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| |
Collapse
|
26
|
Dash B, Jena SK, Rath SS. Adsorption of Cr (III) and Cr (VI) ions on muscovite mica: Experimental and molecular modeling studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
TiO2 nanoarrays modification by a novel Cobalt-heteroatom doped graphene complex for photoelectrochemical water splitting: An experimental and theoretical study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Organic pollutant collection and electrochemical CO2 reduction promoted by pH-Responsive surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Huang H, Yang Q, Zhang L, Huang C, Liang Y. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Pei P, Xu Y, Wang L, Liang X, Sun Y. Thiol-functionalized montmorillonite prepared by one-step mechanochemical grafting and its adsorption performance for mercury and methylmercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150510. [PMID: 34844321 DOI: 10.1016/j.scitotenv.2021.150510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/22/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The preparation of low-cost and highly efficient functional materials for the cleanup of mercury-contaminated water by adsorption in an environmentally friendly way is of great significance. In this study, thiol-functionalized montmorillonite (BSH-MMT) was prepared by a novel one-step mechanochemical grafting method and applied to aqueous Hg2+ and CH3Hg+ adsorption. Characterization results showed that thiol groups were successfully grafted by chemical bonding with Si-OH or broken SiO bonds. The maximum adsorption capacities of BSH-MMT for Hg2+ and CH3Hg+ were 104.79 mg g-1 and 39.27 mg g-1, which were approximately seven- and nine-fold that of pristine MMT, respectively. Adsorption kinetics and isotherm fitting indicated that Hg2+ adsorbs heterogeneously, while CH3Hg+ proceeds through monolayer adsorption, both with chemical adsorption as the rate-limiting step. BSH-MMT maintained high adsorption performance over a wide pH range and in the presence of humic acid because of the high affinity of thiol groups toward mercury. The primary adsorption mechanism of thiol-ligand complexation was confirmed by the results of X-ray photoelectron spectroscopy and X-ray absorption spectra, in which a complex structure of bis-coordinated S-Hg-S (2.30 Å distance) was observed. These results demonstrated that mechanochemical grafting is a promising one-step method to prepare thiol-functionalized montmorillonite for effective cleanup of Hg2+/CH3Hg+ contamination in water.
Collapse
Affiliation(s)
- Penggang Pei
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Lin Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuefeng Liang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
31
|
Güçoğlu M, Şatıroğlu N. Adsorption of Pb(II), Cu(II), Cd(II), Ni(II), and Co(II) ions by newly synthesized 2-(2′-Hydroxyphenyl)Benzothiazole-functionalized silica. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C. Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. ENVIRONMENTAL RESEARCH 2022; 203:111753. [PMID: 34331923 DOI: 10.1016/j.envres.2021.111753] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 05/02/2023]
Abstract
In this study, a magnetic chitosan/Al2O3/Fe3O4 (M-Cs) nanocomposite was developed by ethylenediaminetetraacetic acid (EDTA) functionalization to enhance its adsorption behavior for the removal of Cd(II), Cu(II) and Zn(II) metal ions from aqueous solution. The results revealed that the EDTA functionalization of M-Cs increased its adsorption capacity ~9.1, ~5.6 and ~14.3 times toward Cu, Cd and Zn ions. The maximum adsorption capacity followed the order of Cd(II) > Cu(II) > Zn(II) and the maximum adsorption efficiency was achieved at pH of 5.3 with the removal percentage of 99.98, 93.69 and 83.81 %, respectively, for the removal of Cu, Cd and Zn ions. The metal ions adsorption kinetic obeyed pseudo-second-order equation and the Langmuir isothermal was found the most fitted model for their adsorption isothermal experimental data. In addition, the thermodynamic study illustrated that the adsorption process was exothermic and spontaneous in nature.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Alireza Kardan
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| |
Collapse
|
33
|
Chi C, Bai F, Xu X, Qu P, Xian J, Li L, Zhang D. Silica-templated photonic crystal sensors for specific detection of Cu 2+. Analyst 2022; 147:3486-3493. [DOI: 10.1039/d2an00619g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cu-IOPC sensor was developed by combining the SiO2-based inverse opals with imidazolyl. Such mechanism is based on the specific binding of imidazole with copper ions, then the copper ions can be detected with high accuracy and efficiency.
Collapse
Affiliation(s)
- Congcong Chi
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Feifei Bai
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Xu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Panpan Qu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiarong Xian
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lu Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Danjie Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
34
|
Das TK, Poater A. Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int J Mol Sci 2021; 22:13383. [PMID: 34948184 PMCID: PMC8706456 DOI: 10.3390/ijms222413383] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
The toxicity and persistence of heavy metals has become a serious problem for humans. These heavy metals accumulate mainly in wastewater from various industries' discharged effluents. The recent trends in research are now focused not only on the removal efficiency of toxic metal particles, but also on their effective reuse as catalysts. This review discusses the types of heavy metals obtained from wastewater and their recovery through commonly practiced physico-chemical pathways. In addition, it covers the advantages of the new system for capturing heavy metals from wastewater, as compared to older conventional technologies. The discussion also includes the various structural aspects of trapping systems and their hypothesized mechanistic approaches to immobilization and further rejuvenation of catalysts. Finally, it concludes with the challenges and future prospects of this research to help protect the ecosystem.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
35
|
Jiang K, Liu K, Peng Q, Zhou M. Adsorption of Pb(II) and Zn(II) ions on humus-like substances modified montmorillonite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Queiroga LN, Nunes Filho FG, França D, Rodrigues F, Jaber M, Fonseca MG. Aminopropyl bentonites obtained by microwave-assisted silylation for copper removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Mao S, Shen T, Han T, Ding F, Zhao Q, Gao M. Adsorption and co-adsorption of chlorophenols and Cr(VI) by functional organo-vermiculite: Experiment and theoretical calculation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Organobeidellites for Removal of Anti-Inflammatory Drugs from Aqueous Solutions. NANOMATERIALS 2021; 11:nano11113102. [PMID: 34835867 PMCID: PMC8619786 DOI: 10.3390/nano11113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022]
Abstract
Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55–86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g−1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.
Collapse
|
39
|
Hisarlı G, Atun G, Ortaboy S, Tüzün E. A systematic study for the removal of anionic dyes by sepiolites modified with a homologous series of trimethylammonium-surfactants from single and binary component solutions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1977825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gül Hisarlı
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| | - Gülten Atun
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| | - Sinem Ortaboy
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| | - Elif Tüzün
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| |
Collapse
|
40
|
Li Y, Shi Z, Zhang C, Wu X, Liu L, Guo C, Li CM. Highly stable branched cationic polymer-functionalized black phosphorus electrochemical sensor for fast and direct ultratrace detection of copper ion. J Colloid Interface Sci 2021; 603:131-140. [PMID: 34186390 DOI: 10.1016/j.jcis.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Copper ions (Cu2+) is an indispensable trace element in the process of metabolism and intake of excessive Cu2+ may lead to fatal diseases such as Alzheimer's disease. It is highly demanding to develop a sensitive, selective and convenient method for Cu2+ detection. In this work, thin-layer structured polyethyleneimine (PEI) decorated black phosphorus (BP) nanocomposite is one-step synthesized for an electrochemical sensor toward direct detection of Cu2+. This sensor achieves a wide detection range of 0.25-177 μM, a low detection limit of 0.02 μM much below the Environmental Protection Agency (EPA) maximum contaminant levels for drinking water (20 μM for Cu2+), and much faster response (1.5 s response time) and simpler operation than the conventional tedious anodic stripping voltammetry, ranking one of the best among all reported Cu2+ sensor. The great sensing enhancement is mainly due to a synergistic effect of BP and PEI of the composite, of which the former offers the reactivity while the latter splits the thick BP to thin-layer structured PEI-BP composite for larger reaction area. Meanwhile, a flexible sensor has been successfully fabricated and applied in detecting of Cu2+ in real samples of river, confirming the application feasibility of PEI-BP sensor in water environment control.
Collapse
Affiliation(s)
- Yuan Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Zhuanzhuan Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Chunmei Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Xiaoshuai Wu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Liang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China; Institute of Clean Energy and Advanced Materials, School of Materials and Energy, Chongqing 400715, China; Institute for Advanced Cross‑field Science, College of Life Science, Qingdao University, Qingdao 200671, China.
| |
Collapse
|