1
|
Shahabadi N, Ghaffari L. A comprehensive investigation of the nano-[Cu 2-(DIP) 2-EA] effects on HSA through spectroscopic procedures and computer simulations. Heliyon 2024; 10:e38432. [PMID: 39398021 PMCID: PMC11466673 DOI: 10.1016/j.heliyon.2024.e38432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
In this research, the toxicity of nano-[Cu2-(DIP)2-EA], a metal nano-complex consisting of ellagic acid and bathophenanthroline ligands, on human serum albumin (HSA) at a protein level was investigated. Molecular docking simulations and spectral analyses were conducted in a simulated physiological environment at pH 7.4 to explore the interaction of nano-[Cu2-(DIP)2-EA] with HSA. The results represented an increase in albumin absorption upon exposure to nano-[Cu2-(DIP)2-EA], demonstrating significant interaction between the two compounds. Steady-state and time-resolved fluorescence measurements pointed out that nano-[Cu2-(DIP)2-EA] induced static quenching of the albumin's intrinsic fluorescence with a high binding affinity of approximately 106 mol/L in a 1:1 interaction ratio. The thermodynamic variables clarified that binding of nano-[Cu2-(DIP)2-EA] to albumin occurs spontaneously and primarily driven by van der Waals interactions and H-bonds. The results of the computer simulations and the binding displacement experiments utilizing the site markers warfarin and ibuprofen revealed that nano-[Cu2-(DIP)2-EA] binds to site I within the subdomain IIA of albumin. Circular dichroism analysis elaborated that nano-[Cu2-(DIP)2-EA] slightly perturbed the microenvironment around of tryptophan residues and diminished the α-helix structure stability to a negligible amount.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Lida Ghaffari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Ali MS, Al-Lohedan HA, Bhati R, Muthukumaran J. Interaction of the lysozyme with anticoagulant drug warfarin: Spectroscopic and computational analyses. Heliyon 2024; 10:e30818. [PMID: 38784535 PMCID: PMC11112289 DOI: 10.1016/j.heliyon.2024.e30818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Warfarin is a cardiovascular drug, used to treat or inhibit the coagulation of the blood. In this paper, we have studied the interaction of lysozyme with warfarin using several experimental (fluorescence, UV-visible and circular dichroism spectroscopies) and computational (molecular docking, molecular dynamics and DFT) approaches. Experimental studies have suggested that there was a strong interaction between lysozyme and warfarin. Inner filter effect played important role in fluorescence experimental data which show that the emission intensity of lysozyme decreased on the addition of warfarin, however, after inner filter effect correction the actual outcome turned out be the fluorescence enhancement. The extent of binding, increased with temperature rise. The interaction was primarily taken place via the dominance of hydrophobic forces. Small amount of warfarin didn't influence the secondary structure of lysozyme; however, the higher concentration of warfarin caused a decrease in the helicity of the protein and a consequent partial unfolding. Molecular docking studies were also performed which revealed that warfarin binds with lysozyme mainly with hydrophobic forces along with a significant contribution of hydrogen bonding. The flexibility of warfarin played important role in fitting the molecule into the binding pocket of lysozyme. Frontier molecular orbitals of warfarin, using DFT, in free as well as complexed form have also been calculated and discussed. Molecular dynamics simulations of unbound and warfarin bound lysozyme reveal a stable complex with slightly higher RMSD values in the presence of warfarin. Despite slightly increased RMSF values, the overall compactness and folding properties remain consistent, emphasizing strong binding towards lysozyme through the results obtained from intermolecular hydrogen bonding analysis. Essential dynamics analysis suggests warfarin induces slight structural changes without significantly altering the conformation, additionally supported by SASA patterns. Aside from the examination of global and essential motion, the MM/PBSA-based analysis of binding free energy elucidates the significant binding of warfarin to lysozyme, indicating a binding free energy of -13.3471 kcal/mol.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Rittik Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
Duan X, Liu W, Liang J, Jing T, Liu Y, Wang X, Liu B. Modulation of protein-ligand interactions in the presence of ZIF-8: Spectroscopy and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124053. [PMID: 38422930 DOI: 10.1016/j.saa.2024.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this paper, we investigated the protein-ligand interactions in the presence of ZIF-8 using multi-spectroscopic approaches and molecular dynamics simulation. Fluorescence experiments and molecular docking results showed that ZIF-8 did not change the type of quenching and interaction force between ciprofloxacin (CIP) and human serum albumin (HSA), but made the binding constant of HSA-CIP to be smaller, suggesting that ZIF-8 maybe accelerate the dissociation of CIP from HSA-CIP complex. Moreover, the effect of ZIF-8 on the physiological function of HSA was explored. Multi-spectroscopic methods revealed that ZIF-8 did not significantly alter the microenvironment of amino acid groups, but cause a slight decrease in the content of α-helical conformation, and a sparse and flexible structure of the protein backbone. These peculiarities might lead to the diminution of HSA's ability to control drugs. In short, ZIF-8 might enhance drug effect due to affecting the binding of drugs to proteins. However, the present study is only a preliminary investigation of the suitability of ZIF-8 as a drug carrier in vitro, and subsequent in vivo experimental studies will be required to further confirm the idea.
Collapse
Affiliation(s)
- Xinyue Duan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Jiaqi Liang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Tingyu Jing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110075, China.
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
4
|
Zhang L, Zhang N, Pang C. The mechanistic interaction, aggregation and neurotoxicity of α-synuclein after interaction with glycyrrhizic acid: Modulation of synucleinopathies. Int J Biol Macromol 2024; 267:131423. [PMID: 38583832 DOI: 10.1016/j.ijbiomac.2024.131423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.
Collapse
Affiliation(s)
- Luyang Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110000, China
| | - Na Zhang
- Medical Education Research Center, Shenyang Medical College, Shenyang 110000, China
| | - Chao Pang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
5
|
Chen Y, Liang W, Huang M, Li C, Song Z, Zheng Y, Yi Z. Exploring the mechanism of interaction between TBG and halogenated thiophenols: Insights from fluorescence analysis and molecular simulation. Int J Biol Macromol 2024; 261:129645. [PMID: 38296143 DOI: 10.1016/j.ijbiomac.2024.129645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Thyroxine-binding globulin (TBG) plays a vital role in regulating metabolism, growth, organ differentiation, and energy homeostasis, exerting significant effects in various key metabolic pathways. Halogenated thiophenols (HTPs) exhibit high toxicity and harmfulness to organisms, and numerous studies have demonstrated their thyroid-disrupting effects. To understand the mechanism of action of HTPs on TBG, a combination of competitive binding experiments, multiple fluorescence spectroscopy techniques, molecular docking, and molecular simulations was employed to investigate the binding mechanism and identify the binding site. The competition binding assay between HTPs and ANS confirmed the competition of HTPs with thyroid hormone T4 for the active site of TBG, resulting in changes in the TBG microenvironment upon the binding of HTPs to the active site. Key amino acid residues involved in the binding process of HTPs and TBG were further investigated through residue energy decomposition. The distribution of high-energy contributing residues was determined. Analysis of root-mean-square deviation (RMSD) demonstrated the stability of the HTPs-TBG complex. These findings confirm the toxic mechanism of HTPs in thyroid disruption, providing a fundamental reference for accurately assessing the ecological risk of pollutants and human health. Providing mechanistic insights into how HTPS causes thyroid diseases.
Collapse
Affiliation(s)
- Yanting Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wenhui Liang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Cancan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zeyu Song
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yanhong Zheng
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
6
|
Fatima S, Hussain I, Ahmed S, Afaq MA, Tabish M. Insight into the interaction of isochroman with bovine serum albumin: extensive experimental and computational investigations. J Biomol Struct Dyn 2024:1-15. [PMID: 38319026 DOI: 10.1080/07391102.2024.2310203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
The way therapeutic compounds interact with serum protein provides valuable information on their pharmacokinetics, toxicity, effectiveness, and even their structural-related information. Isochroman (IC) is a phytochemical compound obtained from the leaves of Olea europea plant. The derivatives of IC have various pharmacological properties including antidepressants, antihistamines, antiinflammation, anticonvulsants, appetite depressants, etc. The binding of small molecules to bovine serum albumin (BSA) is useful to ensure their efficacy. Thus, in this study, we have found out the binding mode of IC with BSA using several spectroscopic and in silico studies. UV and fluorescence spectroscopy suggested the complex formation between IC and BSA with a binding constant of 103 M-1. IC resulted in fluorescence quenching in BSA through static mechanism. The microenvironmental and conformational changes in BSA were confirmed using synchronous and three-dimensional studies. Site marker experiment revealed the IC binding in site-III of BSA. The influence of vitamins, metals and β-cyclodextrin (β-CD) on binding constant of IC-BSA complex was also examined. Circular dichroism spectra showed that α-helical of BSA decreased upon interaction with IC. Computational and experimental results were complimentary with one another and assisted in determining the binding sites, nature of bonds and amino acids included in the IC-BSA complex formation.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Abuzar Afaq
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
7
|
Daksh S, Gond C, Kumar N, Kaur L, Ojha H, Deep S, Datta A. Binding studies of potential amyloid-β inhibiting chalcone derivative with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123362. [PMID: 37774582 DOI: 10.1016/j.saa.2023.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Chalcones (α-phenyl-β-benzoylethylene) and their natural-source derivatives have been investigated for their remarkable biological activities, like neuroprotective, anti-inflammatory, and anti-tumor properties. A triazole chalcone ligand (E)-3-(4-(dimethylamino)phenyl)-1-(4-((1-(2-(4-((E)-3-(4(dimethylamino)phenyl)acryloyl)phenoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)prop-2-en-1-one (L1) was synthesized by Cu(I)- catalysed click reaction. The mechanistic properties of L1 for therapy were evaluated by analyzing the binding interactions between L1 and bovine serum albumin (BSA) through photophysical and computational studies. The structural elucidation of ligand L1 was carried out by NMR and mass spectrometry. The Aβ inhibitory activity of L1 was studied by thioflavin T assay and transmission electron microscopy. The biomolecular interaction of L1 with bovine serum albumin was examined through multi-spectroscopic techniques in combination with in silico studies. UV-Visible absorption, fluorescence spectroscopy, circular dichroism, Förster resonance energy transfer, and three-dimensional fluorescence studies confirmed the formation of a BSA-L1 complex. The potential binding sites, mechanism of interactions, and variations in the environment of tyrosine and tryptophan amino acid residues of BSA were assessed at different temperatures. The binding constant for the Static quenching mechanism of intrinsic fluorescence of BSA was of the order of 105 M-1. The esterase enzyme activity assay in the presence of L1 revealed an increase in the protein enzyme activity. Molecular docking studies suggested L1 was predominantly bound to BSA by hydrogen bonds and Van der Waals forces.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Chandraprakash Gond
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Lajpreet Kaur
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
8
|
Peng M, Xu Y, Wu Y, Cai X, Zhang W, Zheng L, Du E, Fu J. Binding Affinity and Mechanism of Six PFAS with Human Serum Albumin: Insights from Multi-Spectroscopy, DFT and Molecular Dynamics Approaches. TOXICS 2024; 12:43. [PMID: 38250999 PMCID: PMC10819430 DOI: 10.3390/toxics12010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: "Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol-1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol-1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol-1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol-1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol-1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol-1)". Thermodynamic analysis suggests that PFNA and PFO3DA's interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA's interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA-PFAS binding site is in the HSA structure's subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (-38.83 kcal/mol) is fund in the HSA-PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA-PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA-PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yang Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Weihua Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Lu Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Erdeng Du
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
| |
Collapse
|
9
|
Guo S, Shi H, Qi Y, Tian G, Wang T, He F, Li X, Liu R. Environmental relevant concentrations of polystyrene nanoplastics and lead co-exposure triggered cellular cytotoxicity responses and underlying mechanisms in Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167264. [PMID: 37741403 DOI: 10.1016/j.scitotenv.2023.167264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Heavy metal pollution of soils and the widespread use of plastics have caused environmental problems worldwide. Nanoplastics (NPs) contaminants in water and soil environments can adsorb heavy metals, thereby affecting the bioavailability and toxicity of heavy metals. In this paper, the effect of co-exposure of polystyrene microspheres with 100 nm particle size and lead acetate (Pb) on the Eisenia fetida coelomocytes was investigated. The environmental concentration of NPs used was 0.01 mg/L and the concentration of Pb ranged from 0.01 to 1 mg/L, and the exposed cells were incubated at 298 k for 24 h. Our study demonstrated that exposure of cells to environmental relevant concentrations of NPs did not significantly affect the cytotoxicity of Pb exposure. It was shown that co-exposure induced cellular production of reactive oxygen species (ROS, increased to 134.4 %) disrupted the antioxidant system of earthworm body cavity cells, activated superoxide dismutase and catalase (CAT), produced reduced glutathione, and inhibited glutathione-dependent enzyme (GST) activity (Reduced to 64 %). Total antioxidant capacity (T-AOC) is first enhanced against ROS due to the stress of NPs and Pb. When the antioxidant reserves of cells are exhausted, the antioxidant capacity will decrease. The level of malondialdehyde, a biomarker of eventual lipid peroxidation, increased to 231.7 %. At the molecular level, due to co-exposure to NPs and Pb, CAT was loosely structured and the secondary structure is misfolded, which was responsible for exacerbating oxidative damage in E. fetida coelomocytes. The findings of this study have significant implications for the toxicological interaction and future risk assessment of co-contamination of NPs and Pb in the environment.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
10
|
Ali MS, Waseem M, Subbarao N, Alahamed AN, Al-Lohedan HA. Probing the interaction of cephalosporin antibiotic "cefoperazone" with lysozyme using spectroscopic and in silico methods: Effect of paracetamol on binding. Int J Biol Macromol 2023; 252:126568. [PMID: 37640184 DOI: 10.1016/j.ijbiomac.2023.126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The interaction of lysozyme with cefoperazone was studied by means of spectroscopic and computational approaches. The change in the UV-visible spectrum of lysozyme in presence of cefoperazone was an indication of the complex formation between them. Fluorescence spectroscopy suggested that there was a fair interaction between the protein and drug which was taken place via dynamic quenching mechanism and the binding ratio was approximately 1:1. The binding was energetically feasible and principally supported by the hydrophobic forces. CD spectroscopic studies have shown that cefoperazone induced the secondary structure of lysozyme by increasing the α-helical contents of the latter. In silico studies revealed that the large nonpolar cavity was the preferred binding site of cefoperazone within lysozyme and the interaction was taken place mainly through hydrophobic forces with small involvement of hydrogen bonding and electrostatic interactions which is in good agreement with the experimental analyses. Effect of paracetamol was also seen on the binding and it was found that paracetamol had a negative influence on the binding between cefoperazone and lysozyme.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Mohd Waseem
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Abdullah Nasser Alahamed
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Peng M, Wang Y, Wu C, Cai X, Wu Y, Du E, Zheng L, Fu J. Investigating sulfonamides - Human serum albumin interactions: A comprehensive approach using multi-spectroscopy, DFT calculations, and molecular docking. Biochem Biophys Res Commun 2023; 683:149108. [PMID: 37862782 DOI: 10.1016/j.bbrc.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA. The order of binding constants at 298 K was as follows: sulfadoxine (SDX): 7.18 × 105 L mol-1 > sulfamethizole (SMT): 6.28 × 105 L mol-1 > sulfamerazine (SMR): 2.70 × 104 L mol-1 > sulfamonomethoxine (SMM): 2.54 × 104 L mol-1 > sulfamethazine (SMZ): 3.06 × 104 L mol-1 > sulfadimethoxine (SDM): 2.50 × 104 L mol-1. During the molecular docking process of the six SAs with HSA, the binding affinity range is from -7.4 kcal mol-1 to -8.6 kcal mol-1. Notably, the docking result of HSA-SDX reached the maximum of -8.6 kcal mol-1, indicating that SDX may possess the highest binding capacity to HSA. HSA-SDX binding, identified as a static quenching and exothermic process, is primarily driven by hydrogen bonds (H bonds) or van der Waals (vdW) interactions. The quenching processes of SMR/SMZ/SMM/SDX/SMT to HSA are a combination of dynamic and static quenching, indicating an endothermic reaction. Hydrophobic interactions are primarily accountable for SMR/SMZ/SMM/SDX/SMT and HSA binding. Competition binding results revealed that the primary HSA-SAs binding sites are in the subdomain IB of the HAS structure, consistent with the results of molecule docking. The correlation analysis based on DFT calculations revealed an inherent relationship between the structural chemical features of SAs and the binding performance of HSA-SAs. The dual descriptor (DD) and the electrophilic Fukui function were found to have a significant relationship (0.71 and -0.71, respectively) with the binding constants of HSA-SAs, predicting the binding performance of SAs and HSA. These insights have substantial scientific value for evaluating the environmental risks of SAs as well as understanding their impact on biological life activities.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Yicui Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunge Wu
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Lu Zheng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
12
|
Serdaroğlu G, Uludag N, Üstün E. An efficient new method of ytterbium(III) triflate catalysis approach to the synthesis of substituted pyrroles: DFT, ADMET, and molecular docking investigations. Comput Biol Chem 2023; 106:107930. [PMID: 37542846 DOI: 10.1016/j.compbiolchem.2023.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
In this study, the one-pot synthetic methodology for the preparation of substituted pyrroles with diethyl acetylene-dicarboxylate is reported for the various pyrrole derivatives via the Trifimow synthesis process from oximes. This method also offers the literature as a cyclization pathway using a ytterbium triflate catalyst. Another importance of this study is the use of pyrrole derivatives in pharmaceuticals, biological processes, and agrochemicals. From this point of view, the development of a new catalyst in synthetic organic chemistry and the difference in the method is also important. The syntheses of the target substituted pyrroles are accomplished in high yields. Also, all synthesized structures were confirmed by 1H NMR, 13C NMR, and IR spectra. The DFT computations were leveraged for structural and spectroscopic validation of the compounds. Then, FMO and NBO analyses were subsequently employed to elucidate the reactivity characteristics and intramolecular interactions within these compounds. Also, ADMET indices were ascertained to assess potential pharmacokinetic properties, drug-like qualities, and possible adverse effects of these compounds. Last, optimized molecules were analyzed by molecular docking methods against crystal structures of Bovine Serum Albumin and Leukemia Inhibitory Factor, and their binding affinities, interaction details, and inhibition constants were determined.
Collapse
Affiliation(s)
- Goncagül Serdaroğlu
- Sivas Cumhuriyet University, Faculty of Education, Math. and Sci. Edu., 58140, Sivas, Turkey.
| | - Nesimi Uludag
- Department of Chemistry, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| |
Collapse
|
13
|
Sajid Ali M, Singh E, Muthukumaran J, Al-Lohedan HA. Non-Steroidal Anti-Inflammatory Drug Effect on the Binding of Plasma Protein with Antibiotic Drug Ceftazidime: Spectroscopic and In Silico Investigation. Int J Mol Sci 2023; 24:14811. [PMID: 37834259 PMCID: PMC10573175 DOI: 10.3390/ijms241914811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The coexistence of ceftazidime, which is a popular third-generation of cephalosporin antibiotic, with ubiquitous paracetamol or acetaminophen, is very likely because the latter is given to the patients to reduce fever due to bacterial infection along with an antibiotic such as the former. Therefore, in this study, we investigated the detailed binding of ceftazidime with plasma protein, human serum albumin (HSA), in the absence and presence of paracetamol using spectroscopic techniques such as fluorescence, UV-visible, and circular dichroism, along with in silico methods such as molecular docking, molecular dynamics simulations, and MM/PBSA-based binding free energy analysis. The basic idea of the interaction was attained by using UV-visible spectroscopy. Further, fluorescence spectroscopy revealed that there was a fair interaction between ceftazidime and HSA, and the mechanism of the quenching was a dynamic one, i.e., the quenching constant increased with increasing temperature. The interaction was, primarily, reinforced by hydrophobic forces, which resulted in the partial unfolding of the protein. Low concentrations of paracetamol were ineffective in affecting the binding of ceftazidime with has; although, a decrease in the quenching and binding constants was observed in the presence of high concentrations of the former. Competitive binding site experiments using warfarin and ibuprofen as site markers revealed that ceftazidime neither binds at drug site 1 or at drug site 2, articulating another binding site, which was confirmed by molecular docking simulations.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (E.S.); (J.M.)
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (E.S.); (J.M.)
| | - Hamad A. Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
14
|
Jiang SL, Hu ZY, Wang WJ, Hu L, Li L, Kou SB, Shi JH. Investigation on the binding behavior of human α1-acid glycoprotein with Janus Kinase inhibitor baricitinib: Multi-spectroscopic and molecular simulation methodologies. Int J Biol Macromol 2023:125096. [PMID: 37285878 DOI: 10.1016/j.ijbiomac.2023.125096] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
Baricitinib is a Janus Kinase (JAK) inhibitor that is primarily used to treat moderately to severely active rheumatoid arthritis in adults and has recently been reported for the treatment of patients with severe COVID-19. This paper describes the investigation of the binding behavior of baricitinib to human α1-acid glycoprotein (HAG) employing a variety of spectroscopic techniques, molecular docking and dynamics simulations. Baricitinib can quench the fluorescence from amino acids in HAG through a mix of dynamic and static quenching, according to steady-state fluorescence and UV spectra observations, but it is mainly static quenching at low concentration. The binding constant (Kb) of baricitinib to HAG at 298 K was at the level of 104 M-1, indicating a moderate affinity of baricitinib to HAG. Hydrogen bonding and hydrophobic interactions conducted the main effect, according to thermodynamic characteristics, competition studies between ANS and sucrose, and molecular dynamics simulations. For the change in HAG conformation, the results of multiple spectra showed that baricitinib was able to alter the secondary structure of HAG as well as increase the polarity of the microenvironment around the Trp amino acid. Furthermore, the binding behavior of baricitinib to HAG was investigated by molecular docking and molecular dynamics simulations, which validated experimental results. Also explored is the influence of K+, Co2+, Ni2+, Ca2+, Fe3+, Zn2+, Mg2+ and Cu2+plasma on binding affinity.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wan-Jun Wang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Li
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song-Bo Kou
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
15
|
Ali MS, Muthukumaran J, Jain M, Tariq M, Al-Lohedan HA, Al-Sanea ASS. Detailed Experimental and In Silico Investigation of Indomethacin Binding with Human Serum Albumin Considering Primary and Secondary Binding Sites. Molecules 2023; 28:molecules28072979. [PMID: 37049745 PMCID: PMC10095894 DOI: 10.3390/molecules28072979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The interaction of indomethacin with human serum albumin (HSA) has been studied here considering the primary and secondary binding sites. The Stern–Volmer plots were linear in the lower concentration range of indomethacin while a downward curvature was observed in the higher concentration range, suggesting the presence of more than one binding site for indomethacin inside HSA due to which the microenvironment of the fluorophore changed slightly and some of its fraction was not accessible to the quencher. The Stern–Volmer quenching constants (KSV) for the primary and secondary sites were calculated from the two linear portions of the Stern–Volmer plots. There was around a two-fold decrease in the quenching constants for the low-affinity site as compared to the primary binding site. The interaction takes place via a static quenching mechanism and the KSV decreases at both primary and secondary sites upon increasing the temperature. The binding constants were also evaluated, which show strong binding at the primary site and fair binding at the secondary site. The binding was thermodynamically favorable with the liberation of heat and the ordering of the system. In principle, hydrogen bonding and Van der Waals forces were involved in the binding at the primary site while the low-affinity site interacted through hydrophobic forces only. The competitive binding was also evaluated using warfarin, ibuprofen, hemin, and a warfarin + hemin combination as site markers. The binding profile remained unchanged in the presence of ibuprofen, whereas it decreased in the presence of both warfarin and hemin with a straight line in the Stern–Volmer plots. The reduction in the binding was at a maximum when both warfarin and hemin were present simultaneously with the downward curvature in the Stern–Volmer plots at higher concentrations of indomethacin. The secondary structure of HSA also changes slightly in the presence of higher concentrations of indomethacin. Molecular dynamics simulations were performed at the primary and secondary binding sites of HSA which are drug site 1 (located in the subdomain IIA of the protein) and the hemin binding site (located in subdomain IB), respectively. From the results obtained from molecular docking and MD simulation, the indomethacin molecule showed more binding affinity towards drug site 1 followed by the other two sites.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Mohammad Tariq
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saad S. Al-Sanea
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Li X, Han L, Song Z, Xu R, Wang L. Comparative study on the interaction between transferrin and flavonols: Experimental and computational modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122128. [PMID: 36455462 DOI: 10.1016/j.saa.2022.122128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Transferrin is the indispensable component in the body fluids and has been explored as a potential drug carrier for target drugs to cancer cells. Flavonols are widely distributed in plants and shown a wide range of biological activities. In the present study, the interaction between flavonols (including galangin, kaempferol, quercetin, and myricetin) and transferrin under physiological conditions was investigated by using experimental as well as computational approaches. Fluorescence data reveal that the fluorescence quenching mechanism of transferrin by flavonols is static quenching. Transferrin has moderate affinity with flavonols, and the binding constants (Ka) are 103-104 L/mol. In addition, there are two different binding sites for the interaction between kaempferol and transferrin. Thermodynamic parameter analysis shows that the interaction of flavonols and transferrin is synergistically driven by enthalpy and entropy. Hydrophobic interaction, electrostatic force and hydrogen bonds are the main force types. Synchronous fluorescence spectroscopy shows that flavonols decrease the hydrophobicity of the microenvironment around tryptophan (Trp) and have no effect on the microenvironment around tyrosine (Tyr). UV-vis and CD spectra show that the interaction between transferrin and flavonols leads to the loosening and unfolding of transferrin backbone. The increase of β-sheet is accompanied by the decrease of α-helix and β-turn. The specific binding sites of flavonols to transferrin are confirmed by molecular docking. Molecular dynamic simulation suggests that the transferrin-flavonols docked complex is stable throughout the simulation trajectory.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Linyu Han
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Lixia Wang
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| |
Collapse
|
17
|
Yang P, Wang W, Xu Z, Rao L, Zhao L, Wang Y, Liao X. New insights into the pH dependence of anthocyanin-protein interactions by a case study of cyanidin-3-O-glucoside and bovine serum albumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
18
|
Insight into binding mechanism between three whey proteins and mogroside V by multi-spectroscopic and silico methods: Impacts on structure and foaming properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Ali MS, Rehman MT, Al-Lohedan HA, AlAjmi MF. Exploration of the binding between cuminol and bovine serum albumin through spectroscopic, molecular docking and molecular dynamics methods. J Biomol Struct Dyn 2022; 40:12404-12412. [PMID: 34488560 DOI: 10.1080/07391102.2021.1971560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cuminol (4-Isopropylbenzyl alcohol), found in the essential oils of several plant sources, is an important constituent of several cosmetics formulations. The interaction of cuminol with model plasma protein bovine serum albumin was studied in this paper. The experimental studies were mainly carried out using fluorescence spectrophotometry aided with UV visible and CD spectroscopies. Intrinsic fluorescence measurements showed that there was a weak binding between cuminol and BSA. The mechanism of binding involved static quenching with around 1:1 binding. The binding was chiefly supported by hydrophobic forces although a little contribution of hydrogen bonding was also found in the interaction and the values of enthalpy change were negative with positive entropy change. The secondary structure of BSA didn't change significantly in presence of low concentrations of cuminol, however, partial unfolding of the former taken place when the concentration of the latter increased. Molecular docking analyses showed cuminol binds at the intersection of subdomains IIA and IIIA, i.e. its binding site is in between Sudlow sites I and II. Molecular dynamics simulations results have shown that BSA forms a stable complex with cuminol and the structure of the former didn't change much in presence of later. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Khalili L, Dehghan G, Akbar Moosavi-Movahedi A, Yoon Y, Khataee A. In vitro and in silico insights into the molecular interaction mechanism of acetylshikonin with bovine serum albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Simulation-guided relationships and interaction characteristics of human CtBP1 in complex with protocatechualdehyde. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
23
|
Naik R, Seetharamappa J. Elucidating the binding mechanism of an antimigraine agent with a model protein: insights from molecular spectroscopic, calorimetric and computational approaches. J Biomol Struct Dyn 2022; 41:3686-3701. [PMID: 35322751 DOI: 10.1080/07391102.2022.2053747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sumatriptan (SUM), a serotonin activator used to treat migraines and cluster headaches. Molecular spectroscopic methods including fluorescence quenching, time dependent fluorescence, FRET, absorption, circular dichroism, differential scanning calorimetric and computational approaches were employed to unravel the interaction between sumatriptan and bovine serum albumin (BSA). The fluorescence quenching studies suggested the interaction between SUM and BSA with a moderate binding with the binding constant (Kb) in the order of 104. The findings of temperature and time dependent fluorescence quenching studies confirmed the role of static quenching mechanism. Thermodynamic parameters suggested the key role of electrostatic force in the interaction of SUM with BSA. Absorption and CD spectral studies revealed the bioenvironmental changes around the Trp in BSA upon binding of SUM. Calorimetric based thermal denaturation results confirmed that the thermal stability of BSA was improved in the presence of SUM. resulted in the this decreased flexibility of protein chain. Site competitive studies indicated SUM was located in the hydrophobic cavity of site I which was further confirmed by the docking and dynamic simulation studies. Additionally, molecular dynamics simulations inferred the microenvironmental condition around the SUM and the amino acids and forces involved in the binding of SUM with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roopa Naik
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - J Seetharamappa
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
24
|
Jing M, Han G, Li Y, Zong W, Liu R. Cellular and molecular responses of earthworm coelomocytes and antioxidant enzymes to naphthalene and a major metabolite (1-naphthol). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Exploring the binding mode between potassium bromate and Bovine serum Albumin: Multi-Spectroscopic and molecular modeling analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Fu JJ, Zhang GY, Zhang ZH, Shao ZW, Xu XB, Song L. Formation mechanism of nanocomplex of resveratrol and glycated bovine serum albumin and their glycation-enhanced stability showing glycation extent. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Hu Y, Guo C, Lin Q, Hu J, Li X, Sang S, McClements DJ, Long J, Jin ZY, Wang J, Qiu C. Complexation of curcumin with cyclodextrins adjusts its binding to plasma proteins. Food Funct 2022; 13:8920-8929. [DOI: 10.1039/d2fo01531e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin shows poor bioaccessibility due to its poor water solubility that limiting its application in aqueous formulations, and the weak binding to plasma proteins that hindering its transportation to targeted...
Collapse
|
28
|
Experimental and in silico investigation on the interaction of indomethacin with bovine serum albumin: Effect of sodium dodecyl sulfate surfactant monomers on the binding. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|