1
|
Farooq U, Khan F, Mali SN, Ghaffar U, Hussain J, Khan A, Chaudhari SY, Al-Shwaiman HA, Elgorban AM, Jawarkar RD, Islam WU, Al-Harrasi A, Shafiq Z. In vitro and in silico analysis of synthesized N-benzyl indole-derived hydrazones as potential anti-triple negative breast cancer agents. RSC Adv 2025; 15:13284-13299. [PMID: 40290749 PMCID: PMC12022751 DOI: 10.1039/d5ra02194d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer, and it is characterized by a high recurrence rate and the rapid development of drug resistance across various subtypes. Currently, there is no targeted therapy, which is specifically approved for the treatment of TNBC. In this study, we synthesized a series of N-benzyl indole-3-carboxaldehyde-based hydrazones and subjected them to in vitro anticancer studies on MCF-10A and MDA-MB-231 breast cancer (BC) cell lines. Our in vitro results suggested that all the compounds exhibited significant anti-TNBC activity, especially on MDA-MB-231 cells. Compound 5b showed excellent activity on MDA-MB-231 (IC50 = 17.2 ± 0.4 nM). Furthermore, molecular docking analysis revealed that this compound had a higher binding affinity towards the target EGFR (epidermal growth factor receptor) with a docking score of -10.523 kcal mol-1. The molecular dynamics simulation of complex 5b:3W2S showed stable binding over a period of 100 ns. A detailed multi-linear regression (MLR) QSAR denoted the importance of key molecular descriptors, such as com_accminus_2A, fringNlipo6A, and sp3Cplus_AbSA. These analyses indicate that the synthesized compounds deserve further studies for developing novel and more potent candidates against triple-negative breast cancer.
Collapse
Affiliation(s)
- Urva Farooq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Faizullah Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan KPK Pakistan
- Natural and Medical Sciences Research Centre, University of Nizwa P. O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Suraj N Mali
- Department of Pharmaceutical Chemistry, School of Pharmacy, Dr D.Y. Patil Deemed to be University Navi Mumbai India
- Department of Pharmaceutical Chemistry, Birla Institute of Technology Mesra India
| | - Uzma Ghaffar
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa Oman
| | - Ajmal Khan
- Department of Chemical and Biological Engineering, College of Engineering, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
- Natural and Medical Sciences Research Centre, University of Nizwa P. O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy Nigdi Pune India
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Rahul D Jawarkar
- Department of Pharmaceutical Chemistry, Dr Rajendra Gode Institute of Pharmacy, University-Mardi Road Ghatkheda Amravati Maharashtra 444602 India
| | - Waseem Ul Islam
- Department of Pharmacy, Abdul Wali Khan University Mardan KPK Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa P. O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
2
|
Khose GM, Vagolu SK, Aesoy R, Stefánsson ÍM, Ríkharðsson SG, Ísleifsdóttir D, Xu M, Homberset H, Tønjum T, Rongved P, Herfindal L, Viktorsson EÖ. Functionalized regioisomers of the natural product phenazines myxin and iodinin as potent inhibitors of Mycobacterium tuberculosis and human acute myeloid leukemia cells. Eur J Med Chem 2025; 285:117244. [PMID: 39788066 DOI: 10.1016/j.ejmech.2025.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M. tuberculosis (Mtb) strains, a human AML cell line (MOLM-13), and two non-cancerous mammalian cell lines (NRK and H9c2). Highly potent analogs were developed having IC50 values against MTB down to 20 nM and 1.4 μM for human AML cells. 1-OH-3-O-alkyl substituted derivatives demonstrated high efficacy against Mtb and low toxicity in normal cells. 2,3-substituted regioisomers of myxin and iodinin were shown to be inactive, highlighting the importance of oxygen substituent in position 1 of the scaffold. A strong positive correlation between anti-MTB and anti-AML activity was revealed, suggesting a common mechanism of action in bacteria and cancer cells. These findings demonstrate the therapeutic potential of 1,3-O-functionalized phenazine 5,10-dioxides in chemotherapy for Mtb and AML and contribute to the structure-activity understanding of phenazine 5,10-dioxides with respect to their biological activity.
Collapse
Affiliation(s)
- Goraksha Machhindra Khose
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Siva Krishna Vagolu
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, N-0316, Oslo, Norway
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5021, Bergen, Norway
| | - Ísak Máni Stefánsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Snorri Geir Ríkharðsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Dagmar Ísleifsdóttir
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Maonian Xu
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, N-0316, Oslo, Norway
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, N-0316, Oslo, Norway; Unit for Genome Dynamics, Department of Microbiology, Oslo University Hospital, N-0424, Oslo, Norway
| | - Pål Rongved
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5021, Bergen, Norway
| | - Elvar Örn Viktorsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland.
| |
Collapse
|
3
|
Tafere DA, Gebrezgiabher M, Elemo F, Sani T, Atisme TB, Ashebr TG, Ahmed IN. Hydrazones, hydrazones-based coinage metal complexes, and their biological applications. RSC Adv 2025; 15:6191-6207. [PMID: 40034805 PMCID: PMC11873977 DOI: 10.1039/d4ra07794f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
Hydrazone-based compounds distinguished by their azomethine -NHN[double bond, length as m-dash]CH group and their respective coinage metal complexes have emerged as leading candidates in the search for effective anticancer and antibiotic agents. Because of their varied pharmacological potential and simplicity of synthesis, these compounds have been the subject of substantial research. Hydrazones exhibit versatile coordination chemistry, allowing for the formation of stable complexes with metals such as copper, silver, and gold. Hydrazone derivatives and their metal complexes demonstrate significant biological activities, displaying potent anticancer properties inducing apoptosis, inhibiting cell proliferation, and disrupting angiogenesis. Furthermore, they exhibit vigorous antibiotic activity by compromising microbial cell membranes and inhibiting essential enzymes. This review article highlights the versatility and effectiveness of hydrazone-based compounds and their coinage metal complexes reported for the last five years, underscoring their potential as next-generation diagnostic and therapeutic agents. Ongoing research focuses on optimizing these compounds for more excellent selectivity, potency, and biocompatibility, which is expected to advance their practical biological applications.
Collapse
Affiliation(s)
- Dessie Ashagrie Tafere
- Department of Industrial Chemistry, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Department of Chemistry, College of Natural and Computational Science, Mekdela Amba University P.O. Box 32 Tuluawulia Ethiopia
| | - Mamo Gebrezgiabher
- Department of Industrial Chemistry, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Fikre Elemo
- Department of Industrial Chemistry, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Taju Sani
- Department of Industrial Chemistry, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Tsegaye Belege Atisme
- Department of Industrial Chemistry, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Tesfay G Ashebr
- Department of Industrial Chemistry, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Ibrahim Nasser Ahmed
- Department of Industrial Chemistry, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| |
Collapse
|
4
|
Bhaskar V, Kumar S, Sujathan Nair A, Gokul S, Rajappan Krishnendu P, Benny S, Amrutha CT, Manisha DS, Bhaskar V, Mary Zachariah S, Aneesh TP, Abdelgawad MA, Ghoneim MM, Pappachen LK, Nicolotti O, Mathew B. In silico development of potential InhA inhibitors through 3D-QSAR analysis, virtual screening and molecular dynamics. J Biomol Struct Dyn 2025; 43:1329-1351. [PMID: 38064315 DOI: 10.1080/07391102.2023.2291549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2025]
Abstract
Tuberculosis is one of the most ancient infectious diseases known to mankind predating upper Paleolithic era. In the current scenario, treatment of drug resistance tuberculosis is the major challenge as the treatment options are limited, less efficient and more toxic. In our study we have developed an atom based 3D QSAR model, statistically validated sound with R2 > 0.90 and Q2 > 0.72 using reported direct inhibitors of InhA (2018-2022), validated by enzyme inhibition assay. The model was used to screen a library of 3958 molecules taken from Binding DB and candidates molecules with promising predicted activity value (pIC50) > 5) were selected for further analyzed screening by using molecular docking, ADME profiling and molecular dynamic simulations. The lead molecule, ZINC11536150 exhibited good docking score (glideXP = -11.634 kcal/mol) compared to standard triclosan (glideXP = -7.129 kcal/mol kcal/mol) and through molecular dynamics study it was observed that the 2nv6-complex of ZINC11536150 with Mycobacterium tuberculosis InhA (PDB entry: 2NV6) complex remained stable throughout the entire simulation time of 100 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - S Gokul
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Prayaga Rajappan Krishnendu
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - C T Amrutha
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthi S Manisha
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Vaishnavi Bhaskar
- Department of Electronics and Computer Engineering, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf university, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
5
|
Alkaltham MF, Almansour AI, Arumugam N, Vagolu SK, Tønjum T, Alaqeel SI, Rajaratnam S, Sivaramakrishnan V. Activity against Mycobacterium tuberculosis of a new class of spirooxindolopyrrolidine embedded chromanone hybrid heterocycles. RSC Adv 2024; 14:11604-11613. [PMID: 38605893 PMCID: PMC11008671 DOI: 10.1039/d4ra01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
A new class of structurally intriguing heterocycles embedded with spiropyrrolidine, oxindole and chromanones was prepared by regio- and stereoselectively in quantitative yields using an intermolecular tandem cycloaddition protocol. The compounds synthesized were assayed for their anti-mycobacterial activity against Mycobacterium tuberculosis (Mtb) H37Rv and isoniazid-resistant (katG and inhA promoter mutations) clinical Mtb isolates. Four compounds exhibited significant antimycobacterial activity against Mtb strains tested. In particular, a compound possessing a fluorine substituted derivative displayed potent activity at 0.39 μg mL-1 against H37Rv, while it showed 0.09 μg mL-1 and 0.19 μg mL-1 activity against inhA promoter and katG mutation isolates, respectively. A molecular docking study was conducted with the potent compound, which showed results that were consistent with the in vitro experiments.
Collapse
Affiliation(s)
- Manal Fahad Alkaltham
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Siva Krishna Vagolu
- Department of Microbiology, University of Oslo N-0316 Oslo Norway
- Department of Microbiology, Oslo University Hospital N-0424 Oslo Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo N-0316 Oslo Norway
- Department of Microbiology, Oslo University Hospital N-0424 Oslo Norway
| | - Shatha Ibrahim Alaqeel
- Department of Chemistry, College of Science, King Saud University (034) Riyadh 11495 Saudi Arabia
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning Prasanthi Nilayam Anantapur Andhra Pradesh India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning Prasanthi Nilayam Anantapur Andhra Pradesh India
| |
Collapse
|
6
|
Canales CSC, Pavan AR, Dos Santos JL, Pavan FR. In silico drug design strategies for discovering novel tuberculosis therapeutics. Expert Opin Drug Discov 2024; 19:471-491. [PMID: 38374606 DOI: 10.1080/17460441.2024.2319042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tuberculosis remains a significant concern in global public health due to its intricate biology and propensity for developing antibiotic resistance. Discovering new drugs is a protracted and expensive endeavor, often spanning over a decade and incurring costs in the billions. However, computer-aided drug design (CADD) has surfaced as a nimbler and more cost-effective alternative. CADD tools enable us to decipher the interactions between therapeutic targets and novel drugs, making them invaluable in the quest for new tuberculosis treatments. AREAS COVERED In this review, the authors explore recent advancements in tuberculosis drug discovery enabled by in silico tools. The main objectives of this review article are to highlight emerging drug candidates identified through in silico methods and to provide an update on the therapeutic targets associated with Mycobacterium tuberculosis. EXPERT OPINION These in silico methods have not only streamlined the drug discovery process but also opened up new horizons for finding novel drug candidates and repositioning existing ones. The continued advancements in these fields hold great promise for more efficient, ethical, and successful drug development in the future.
Collapse
Affiliation(s)
- Christian S Carnero Canales
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- School of Pharmacy, biochemistry and biotechnology, Santa Maria Catholic University, Arequipa, Perú
| | - Aline Renata Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Teneva Y, Simeonova R, Valcheva V, Angelova VT. Recent Advances in Anti-Tuberculosis Drug Discovery Based on Hydrazide-Hydrazone and Thiadiazole Derivatives Targeting InhA. Pharmaceuticals (Basel) 2023; 16:ph16040484. [PMID: 37111241 PMCID: PMC10140854 DOI: 10.3390/ph16040484] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis is an extremely serious problem of global public health. Its incidence is worsened by the presence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. More serious forms of drug resistance have been observed in recent years. Therefore, the discovery and/or synthesis of new potent and less toxic anti-tubercular compounds is very critical, especially having in mind the consequences and the delays in treatment caused by the COVID-19 pandemic. Enoyl-acyl carrier protein reductase (InhA) is an important enzyme involved in the biosynthesis of mycolic acid, a major component of the M. tuberculosis cell wall. At the same time, it is a key enzyme in the development of drug resistance, making it an important target for the discovery of new antimycobacterial agents. Many different chemical scaffolds, including hydrazide hydrazones and thiadiazoles, have been evaluated for their InhA inhibitory activity. The aim of this review is to evaluate recently described hydrazide-hydrazone- and thiadiazole-containing derivatives that inhibit InhA activity, resulting in antimycobacterial effects. In addition, a brief review of the mechanisms of action of currently available anti-tuberculosis drugs is provided, including recently approved agents and molecules in clinical trials.
Collapse
Affiliation(s)
- Yoanna Teneva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Rumyana Simeonova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | |
Collapse
|
8
|
Indole-based hydrazone derivatives: Synthesis, cytotoxicity assessment, and molecular modeling studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Koçak Aslan E, Han Mİ, Krishna VS, Tamhaev R, Dengiz C, Doğan ŞD, Lherbet C, Mourey L, Tønjum T, Gündüz MG. Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity. Pharmaceuticals (Basel) 2022; 15:ph15101301. [PMID: 36297413 PMCID: PMC9609273 DOI: 10.3390/ph15101301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Isoniazid (INH) is one of the key molecules employed in the treatment of tuberculosis (TB), the most deadly infectious disease worldwide. However, the efficacy of this cornerstone drug has seriously decreased due to emerging INH-resistant strains of Mycobacterium tuberculosis (Mtb). In the present study, we aimed to chemically tailor INH to overcome this resistance. We obtained thirteen novel compounds by linking INH to in-house synthesized sulfonate esters via a hydrazone bridge (SIH1-SIH13). Following structural characterization by FTIR, 1H NMR, 13C NMR, and HRMS, all compounds were screened for their antitubercular activity against Mtb H37Rv strain and INH-resistant clinical isolates carrying katG and inhA mutations. Additionally, the cytotoxic effects of SIH1-SIH13 were assessed on three different healthy host cell lines; HEK293, IMR-90, and BEAS-2B. Based on the obtained data, the synthesized compounds appeared as attractive antimycobacterial drug candidates with low cytotoxicity. Moreover, the stability of the hydrazone moiety in the chemical structure of the final compounds was confirmed by using UV/Vis spectroscopy in both aqueous medium and DMSO. Subsequently, the compounds were tested for their inhibitory activities against enoyl acyl carrier protein reductase (InhA), the primary target enzyme of INH. Although most of the synthesized compounds are hosted by the InhA binding pocket, SIH1-SIH13 do not primarily show their antitubercular activities by direct InhA inhibition. Finally, in silico determination of important physicochemical parameters of the molecules showed that SIH1-SIH13 adhered to Lipinski's rule of five. Overall, our study revealed a new strategy for modifying INH to cope with the emerging drug-resistant strains of Mtb.
Collapse
Affiliation(s)
- Ebru Koçak Aslan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| | - Muhammed İhsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Vagolu Siva Krishna
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, 0316 Oslo, Norway
| | - Rasoul Tamhaev
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France
| | - Cagatay Dengiz
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Şengül Dilem Doğan
- Department of Basic Sciences, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Christian Lherbet
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, 0316 Oslo, Norway
- Unit for Genome Dynamics, Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
- Correspondence:
| |
Collapse
|