1
|
Qian Y, Gu Y, Tribukait-Riemenschneider F, Martin I, Shastri VP. Incorporation of Cross-Linked Gelatin Microparticles To Enhance Cell Attachment and Chondrogenesis in Carboxylated Agarose Bioinks for Cartilage Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22293-22307. [PMID: 40194271 PMCID: PMC12012782 DOI: 10.1021/acsami.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Due to the limited regenerative capacity of injured cartilage, surgical intervention using engineered cellular constructs or autologous cell implantation is the best accredited approach to prevent further degeneration and promote a regenerative microenvironment. Advancements in additive manufacturing present opportunities for graft customization through enhanced scaffold design. In bioprinting, an additive manufacturing process, the "bioink" serves as the medium to carry cells but also as a scaffold by imparting form and mechanical attributes to the printed object. In this study, the impact of cross-linked gelatin microparticles (GMPs) on rheological properties and printability of carboxylated agarose (CA) bioink as well as matrix deposition by human nasal chondrocytes (hNCs) was investigated. The introduction of GMPs yielded stiffer bioink formulations, with lower sol-gel transitions that retained the exceptional printability of CA. GMPs served as foci for the attachment of hNCs, improving cellular distribution and bridging the deposited extracellular matrix. After 4 weeks in chondrogenic culture, GMPs containing printed constructs showed enhanced toughness approaching that of the lower end of the spectrum of native cartilage tissue. The incorporation of proteinaceous microparticles might serve as a general concept to promote cellular function in polysaccharide-based bioinks and opens another avenue for engineering 3D-bioprinted microenvironments.
Collapse
Affiliation(s)
- Yi Qian
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg 79104, Germany
| | - Yawei Gu
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg 79104, Germany
| | | | - Ivan Martin
- Department
of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - V. Prasad Shastri
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg 79104, Germany
- BIOSS—Centre
for Biological Signalling Studies, University
of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
2
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
3
|
Nasal Turbinate Mesenchymal Stromal Cells Preserve Characteristics of Their Neural Crest Origin and Exert Distinct Paracrine Activity. J Clin Med 2021; 10:jcm10081792. [PMID: 33924095 PMCID: PMC8074274 DOI: 10.3390/jcm10081792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The sources of mesenchymal stromal cells (MSCs) for cell therapy trials are expanding, increasing the need for their characterization. Here, we characterized multi-donor, turbinate-derived MSCs (TB-MSCs) that develop from the neural crest, and compared them to bone marrow-derived MSCs (BM-MSCs). TB-MSCs had higher proliferation potential and higher self-renewal of colony forming cells, but lower potential for multi-lineage differentiation than BM-MSCs. TB-MSCs expressed higher levels of neural crest markers and lower levels of pericyte-specific markers. These neural crest-like properties of TB-MSCs were reflected by their propensity to differentiate into neuronal cells and proliferative response to nerve growth factors. Proteomics (LC-MS/MS) analysis revealed a distinct secretome profile of TB-MSCs compared to BM and adipose tissue-derived MSCs, exhibiting enrichments of factors for cell-extracellular matrix interaction and neurogenic signaling. However, TB-MSCs and BM-MSCs exhibited comparable suppressive effects on the allo-immune response and comparable stimulatory effects on hematopoietic stem cell self-renewal. In contrast, TB-MSCs stimulated growth and metastasis of breast cancer cells more than BM-MSCs. Altogether, our multi-donor characterization of TB-MSCs reveals distinct cell autonomous and paracrine properties, reflecting their unique developmental origin. These findings support using TB-MSCs as an alternative source of MSCs with distinct biological characteristics for optimal applications in cell therapy.
Collapse
|
4
|
Debnath UK. Mesenchymal Stem Cell Therapy in Chondral Defects of Knee: Current Concept Review. Indian J Orthop 2020; 54:1-9. [PMID: 32952903 PMCID: PMC7474009 DOI: 10.1007/s43465-020-00198-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Full-thickness cartilage defects if left alone would increase the risk of osteoarthritis (OA) with severe associated pain and functional disability. Articular cartilage defect may result from direct trauma or chronic degeneration. The capability of the mesenchymal stem cells (MSCs) to repair and regenerate cartilage has been widely investigated. This review describes current trends in MSC biology, the sourcing, expansion, application and role of MSCs in chondral defects of human knees. METHODS The studies referencing MSCs and knee osteoarthritis were searched (from1998 to 2020) using PubMed, EMBASE, Cochrane Library, Web of Science and the ClinicalTrials.gov with keywords (MSCs, chondral defects or cartilage degeneration of knee, cartilage regeneration, chondrogenesis, tissue engineering, efficacy and safety). The inclusion criteria were based on use of MSCs for treatment of chondral defects and osteoarthritis of the knee, English language and human studies. RESULTS The history of MSC research from the initial discovery of their multipotency to the more recent recognition of their role in cartilage defects of knee is elucidated. Several studies have demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant or independent procedure. Intra-articular MSCs provide improvements in pain and function in knee osteoarthritis at short-term follow-up in many studies. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome is a common issue faced by researchers. CONCLUSION Some efficacy has been shown of MSCs for cartilage repair in osteoarthritis; however, the evidence of efficacy of intra-articular MSCs on both clinical outcomes and cartilage repair remains limited. Despite the high quality of evidence to support, MSC therapy has emerged but further refinement of methodology will be necessary to support its routine clinical use.
Collapse
|
5
|
Casanova MR, Reis RL, Martins A, Neves NM. Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules 2020; 21:1368-1378. [DOI: 10.1021/acs.biomac.9b01546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marta R. Casanova
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
6
|
Maepa M, Ssemakalu CC, Motaung KS. The Potential Chondrogenic Effect of Eucomis autumnalis Aqueous Extracts on Porcine Adipose-Derived Mesenchymal Stem Cells. Tissue Eng Part A 2019; 25:1137-1145. [DOI: 10.1089/ten.tea.2018.0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Makwese Maepa
- Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Cornelius Cano Ssemakalu
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Keolebogile Shirley Motaung
- Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
7
|
Preclinical safety study of a combined therapeutic bone wound dressing for osteoarticular regeneration. Nat Commun 2019; 10:2156. [PMID: 31089136 PMCID: PMC6517440 DOI: 10.1038/s41467-019-10165-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
The extended life expectancy and the raise of accidental trauma call for an increase of osteoarticular surgical procedures. Arthroplasty, the main clinical option to treat osteoarticular lesions, has limitations and drawbacks. In this manuscript, we test the preclinical safety of the innovative implant ARTiCAR for the treatment of osteoarticular lesions. Thanks to the combination of two advanced therapy medicinal products, a polymeric nanofibrous bone wound dressing and bone marrow-derived mesenchymal stem cells, the ARTiCAR promotes both subchondral bone and cartilage regeneration. In this work, the ARTiCAR shows 1) the feasibility in treating osteochondral defects in a large animal model, 2) the possibility to monitor non-invasively the healing process and 3) the overall safety in two animal models under GLP preclinical standards. Our data indicate the preclinical safety of ARTiCAR according to the international regulatory guidelines; the ARTiCAR could therefore undergo phase I clinical trial. Arthroplasty is the main clinical option for the treatment of osteoarticular lesions, but has limited efficacy. Here, the authors use a wound dressing with autologous mesenchymal stromal cells, functionalised for local BMP2 delivery, and show feasibility and safety in standardised preclinical tests in animal models, suggesting suitability for use in clinical trials.
Collapse
|
8
|
Weber C, Gokorsch S, Czermak P. Expansion and Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Int J Artif Organs 2018; 30:611-8. [PMID: 17674338 DOI: 10.1177/039139880703000709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of human mesenchymal stem cells (hMSC) to differentiate into various types of mesenchymal tissue, such as chondrocytes, makes them a potential cell source in cartilage tissue engineering. Because of the requirement of high cell amounts for the generation of cartilage implants or for the extensive experimental studies to investigate the culture parameters, the initial cells have to be expanded, which leads to high population doubling numbers. It is known that hMSC can differentiate into chondrocytes at least up to the 15th population doubling. To monitor the differentiation status, the protein MIA (melanoma inhibitory activity), which is only synthesized by malignant melanomas and chondrocytes, can be used. In this study the chondrogenic differentiation potential of hMSC beyond the 15th population doubling was investigated using MIA as a chondrocyte marker. A chondrogenic potential of hMSC at higher population doubling numbers may be of interest due to the requirement of less frequent isolations of cells. Therefore hMSC were cultured in a monolayer until the 37th population doubling. Cells of different passages were cultured as pellets for two weeks in transforming growth factor (TGF)-β3 containing differentiation medium. The MIA contents in medium on the last three cultivation days were measured for each case using an MIA-ELISA-kit. A significant difference between MIA content in medium of the pellet and non-stimulated monolayer reference cultures was detectable until the 32nd population doubling. In addition, the hMSC were seeded at lower densities to investigate whether the cells may be expanded faster and with less amount of work due to higher population doubling numbers per passage. The reduced inoculation density led to an increased growth rate. (Int J Artif Organs 2007; 30: 611–8)
Collapse
Affiliation(s)
- C Weber
- Department of Biotechnology, University of Applied Sciences Giessen-Friedberg, Giessen, Germany
| | | | | |
Collapse
|
9
|
Juthani N, Howell C, Ledoux H, Sotiri I, Kelso S, Kovalenko Y, Tajik A, Vu TL, Lin JJ, Sutton A, Aizenberg J. Infused polymers for cell sheet release. Sci Rep 2016; 6:26109. [PMID: 27189419 PMCID: PMC4870626 DOI: 10.1038/srep26109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.
Collapse
Affiliation(s)
- Nidhi Juthani
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Caitlin Howell
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department of Chemical and Biological Engineering, University of Maine, 5737 Jenness Hall, Orono, ME 04469, United States
| | - Haylea Ledoux
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Irini Sotiri
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Susan Kelso
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yevgen Kovalenko
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Amanda Tajik
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Thy L. Vu
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jennifer J. Lin
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Amy Sutton
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Kavli Institute for Bionano Science and Technology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Lee S, Nemeño JGE, Lee JI. Repositioning Bevacizumab: A Promising Therapeutic Strategy for Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:341-357. [PMID: 26905221 DOI: 10.1089/ten.teb.2015.0300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug discovery and development has been garnering an increasing trend of research due to the growing incidence of the diverse types of diseases. Recently, drug repositioning, also known as drug repurposing, has been emerging parallel to cancer and tissue engineering studies. Drug repositioning involves the application of currently approved or even abandoned drugs as alternative treatments to other diseases or as biomaterials in other fields including cell therapy and tissue engineering. In this review, the advancement of the antiangiogenesis drugs that were used as treatment for cancer and other diseases, with particular focus on bevacizumab, will be described. This will include an overview of the nature and progression of osteoarthritis (OA), one of the leading global degenerative diseases that cause morbidity, and the development of its therapeutic strategies. In addition, this will also feature the nonsteroidal anti-inflammatory drugs that are commonly prescribed for OA and the benefits of repositioning bevacizumab as alternative treatments for other diseases and as biomaterials for cartilage regeneration. To date, a few number of studies, employing different modes of administration and varying dosages in diverse animal models, have shown that bevacizumab can be used as a signal and can promote both in vitro and in vivo cartilage regeneration. However, other antiangiogenesis drugs and their effects in chondrogenesis and cartilage regeneration are also worth investigating.
Collapse
Affiliation(s)
- Soojung Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Judee Grace E Nemeño
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Jeong Ik Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea.,2 Deparment of Veterinary Medicine, College of Veterinary Medicine, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
11
|
Li L, He ZY, Wei XW, Wei YQ. Recent advances of biomaterials in biotherapy. Regen Biomater 2016; 3:99-105. [PMID: 27047675 PMCID: PMC4817323 DOI: 10.1093/rb/rbw007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 02/05/2023] Open
Abstract
Biotherapy mainly refers to the intervention and the treatment of major diseases with biotechnologies or bio-drugs, which include gene therapy, immunotherapy (vaccines and antibodies), bone marrow transplantation and stem-cell therapy. In recent years, numerous biomaterials have emerged and were utilized in the field of biotherapy due to their biocompatibility and biodegradability. Generally, biomaterials can be classified into natural or synthetic polymers according to their source, both of which have attracted much attention. Notably, biomaterials-based non-viral gene delivery vectors in gene therapy are undergoing rapid development with the emergence of surface-modified or functionalized materials. In immunotherapy, biomaterials appear to be attractive means for enhancing the delivery efficacy and the potency of vaccines. Additionally, hydrogels and scaffolds are ideal candidates in stem-cell therapy and tissue engineering. In this review, we present an introduction of biomaterials used in above biotherapy, including gene therapy, immunotherapy, stem-cell therapy and tissue engineering. We also highlighted the biomaterials which have already entered the clinical evaluation
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhi-Yao He
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
12
|
Park JH, Kim KJ, Rhie JW, Oh IH. Characterization of adipose tissue mesenchymal stromal cell subsets with distinct plastic adherence. Tissue Eng Regen Med 2016; 13:39-46. [PMID: 30603383 DOI: 10.1007/s13770-015-0027-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) established by in-vitro adherence culture have been widely utilized for various cell therapeutic trials, but potential heterogeneity that can be caused by preparation methods are poorly characterized. In this study, we show that at least two distinct subsets of MSCs with different adherence to plastic surface exist in human adipose tissue-derived stromal vascular fraction (SVF); while 69% of total colony forming units in SVF adhere to the surface before 3 hrs of plating, 13-17% of colonogenic cells adhered to the surface at later period of 15 hr to 1 week after plating. Of note, the late adherent MSCs exhibited higher self-renewal of colony forming cells and higher proliferating potential with comparable level of osteogenic or adipogenic differentiation potential to the early adherence subsets. Moreover, late adherent cells exhibited distinct pattern of paracrine secretome including higher level secretion of cytokines than the early adherent subsets. Taken together, these results suggest the possibility that distinct adherence properties of MSCs can be another parameter of clonal heterogeneity in the subpopulations of adipose tissue MSCs and that it can be an important factor for optimization of MSC preparation for cell therapeutic trials.
Collapse
Affiliation(s)
- Jung-Hyun Park
- 1Department of Medical Life Science, Catholic High-Performance Cell Therapy Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Joo Kim
- 2Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Won Rhie
- 2Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il-Hoan Oh
- 1Department of Medical Life Science, Catholic High-Performance Cell Therapy Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Feyen DAM, van den Akker F, Noort W, Chamuleau SAJ, Doevendans PA, Sluijter JPG. Isolation of Pig Bone Marrow-Derived Mesenchymal Stem Cells. Methods Mol Biol 2016; 1416:225-232. [PMID: 27236674 DOI: 10.1007/978-1-4939-3584-0_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Large animal models are an important preclinical tool for the evaluation of new interventions and their translation into clinical practice. The pig is a widely used animal model in multiple clinical fields, such as cardiology and orthopedics, and has been at the forefront of testing new therapeutics, including cell-based therapies. In the clinic, mesenchymal stem cells (MSCs) are used autologously, therefore isolated, and administrated into the same patient. For successful clinical translation of autologous approaches, the porcine model needs to test MSC in a similar manner. Since a limited number of MSCs can be isolated directly from the bone marrow, culturing techniques are needed to expand the population in vitro prior to therapeutic application. Here, we describe a protocol specifically tailored for the isolation and propagation of porcine-derived bone marrow MSCs.
Collapse
Affiliation(s)
- Dries A M Feyen
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederieke van den Akker
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willy Noort
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Steven A J Chamuleau
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands.
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht, CX, 3584, The Netherlands.
| |
Collapse
|
14
|
Lepage SI, Nagy K, Sung HK, Kandel RA, Nagy A, Koch TG. Generation, Characterization, and Multilineage Potency of Mesenchymal-Like Progenitors Derived from Equine Induced Pluripotent Stem Cells. Stem Cells Dev 2015; 25:80-9. [PMID: 26414480 DOI: 10.1089/scd.2014.0409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are more and more frequently used to treat orthopedic injuries in horses. However, these cells are limited in their expandability and differentiation capacity. Recently, the first equine-induced pluripotent stem cell (iPSC) lines were reported by us [ 1 ]. In vitro differentiation of iPSCs into MSC-like cells is an attractive alternative to using MSCs derived from other sources, as a much larger quantity of patient-specific cells with broad differentiation potential could be generated. However, the differentiation capacity of iPSCs to MSCs and the potential for use in tissue engineering have yet to be explored. In this study, equine iPSCs were induced to differentiate into an MSC-like population. Upon induction, the iPSCs changed morphology toward spindle-shaped cells similar to MSCs. The ensuing iPSC-MSCs exhibited downregulation of pluripotency-associated genes and an upregulation of MSC-associated genes. In addition, the cells expressed the same surface markers as MSCs derived from equine umbilical cord blood. We then assessed the multilineage differentiation potential of iPSC-MSCs. Although chondrogenesis was not achieved after induction with transforming growth factor-beta 3 (TGFβ3) and/or bone morphogenic protein 4 (BMP-4) in 3D pellet culture, mineralization characteristic of osteogenesis and lipid droplet accumulation characteristic of adipogenesis were observed after chemical induction. We demonstrate a protocol for the derivation of MSC-like progenitor populations from equine iPS cells.
Collapse
Affiliation(s)
- Sarah I Lepage
- 1 Department of Biomedical Sciences, University of Guelph , Guelph, Ontario, Canada
| | - Kristina Nagy
- 2 Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- 2 Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| | - Rita A Kandel
- 3 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada .,4 Pathology and Experimental Medicine, Mount Sinai Hospital , Toronto, Ontario, Canada
| | - Andras Nagy
- 2 Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada .,5 Department of Obstetrics and Gynecology and Institute of Medical Science, University of Toronto , Toronto, Ontario, Canada
| | - Thomas G Koch
- 1 Department of Biomedical Sciences, University of Guelph , Guelph, Ontario, Canada .,6 Department of Clinical Studies, Orthopedic Research Lab, Aarhus University , Aarhus, Denmark
| |
Collapse
|
15
|
Keller L, Wagner Q, Schwinté P, Benkirane-Jessel N. Double compartmented and hybrid implant outfitted with well-organized 3D stem cells for osteochondral regenerative nanomedicine. Nanomedicine (Lond) 2015; 10:2833-45. [PMID: 26377156 DOI: 10.2217/nnm.15.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM Articular cartilage repair remains challenging, because most clinical failures are due to the lack of subchondral bone regeneration. We report an innovative approach improving cartilage repair by regenerating a robust subchondral bone, supporting articular cartilage. MATERIALS & METHODS We developed a compartmented living implant containing triple-3D structure: stem cells as microtissues for embryonic endochondral development mimic, nanofibrous collagen to enhance mineralization for subchondral bone and alginate hydrogel for cartilage regeneration. RESULTS & CONCLUSION This system mimics the natural gradient of the osteochondral unit, using only one kind of stem cell, targeting their ability to express specific bone or cartilage proteins. Mineralization gradient of articular cartilage and the natural 'glue' between subchondral bone and cartilage were reproduced in vitro.
Collapse
Affiliation(s)
- Laetitia Keller
- INSERM UMR1109, Osteoarticular & Dental Regenerative Nanomedicine, Faculté de Médecine, FMTS, F-67085 Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Quentin Wagner
- INSERM UMR1109, Osteoarticular & Dental Regenerative Nanomedicine, Faculté de Médecine, FMTS, F-67085 Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Pascale Schwinté
- INSERM UMR1109, Osteoarticular & Dental Regenerative Nanomedicine, Faculté de Médecine, FMTS, F-67085 Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM UMR1109, Osteoarticular & Dental Regenerative Nanomedicine, Faculté de Médecine, FMTS, F-67085 Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| |
Collapse
|
16
|
Li JJ, Kim K, Roohani-Esfahani SI, Guo J, Kaplan DL, Zreiqat H. A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. J Mater Chem B 2015; 3:5361-5376. [PMID: 26167284 PMCID: PMC4494762 DOI: 10.1039/c5tb00353a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Significant clinical challenges encountered in the effective long-term treatment of osteochondral defects have inspired advancements in scaffold-based tissue engineering techniques to aid repair and regeneration. This study reports the development of a biphasic scaffold produced via a rational combination of silk fibroin and bioactive ceramic with stratified properties to satisfy the complex and diverse regenerative requirements of osteochondral tissue. Structural examination showed that the biphasic scaffold contained two phases with different pore morphologies to match the cartilage and bone segments of osteochondral tissue, which were joined at a continuous interface. Mechanical assessment showed that the two phases of the biphasic scaffold imitated the load-bearing behaviour of native osteochondral tissue and matched its compressive properties. In vitro testing showed that different compositions in the two phases of the biphasic scaffold could direct the preferential differentiation of human mesenchymal stem cells towards the chondrogenic or osteogenic lineage. By featuring simple and reproducible fabrication and a well-integrated interface, the biphasic scaffold strategy established in this study circumvented the common problems experienced with integrated scaffold designs and could provide an effective approach for the regeneration of osteochondral tissue.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia
| | - Kyungsook Kim
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments. Stem Cells Int 2015; 2015:438026. [PMID: 26246809 PMCID: PMC4515346 DOI: 10.1155/2015/438026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 02/06/2023] Open
Abstract
Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.
Collapse
|
18
|
A thermosensitive chitosan/corn starch/β-glycerol phosphate hydrogel containing TGF-β1 promotes differentiation of MSCs into chondrocyte-like cells. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0030-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
19
|
Greene CA, Green CR, Sherwin T. Transdifferentiation of chondrocytes into neuron-like cells induced by neuronal lineage specifying growth factors. Cell Biol Int 2014; 39:185-91. [PMID: 25183647 DOI: 10.1002/cbin.10358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/06/2014] [Indexed: 12/25/2022]
Abstract
We previously reported that neural-crest-derived stromal cells from adult human and rat corneas can differentiate into neuron-like cells when treated with neuronal lineage specifying growth factors. However, it remains unclear whether this level of cell plasticity is unique to the corneal stromal cell population present in the eye. In this study, non-neural-crest-derived chondrocytes from the xiphosternum of adult rats were subjected to the same differentiation protocol. Cells of the adult rat xiphosternum can also differentiate into neuron-like cells when treated with neurogenic differentiation specifying growth factors. After 1 week in neurogenic differentiation culture conditions, the chondrocytes changed from a round to a stellate morphology and started to express neuron-specific protein neurofilament-200 (NF-200), microtubule associated protein-2 (Map-2), and β-III tubulin. Lineage-specifying growth factors can affect changes in morphology and protein expression of adult cells in culture, findings that challenge the notion of a restricted differentiation potential of adult cell populations and questions the stability of the differentiated state of cells.
Collapse
Affiliation(s)
- Carol Ann Greene
- Department of Ophthalmology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | | | | |
Collapse
|
20
|
Baghaban Eslaminejad M, Malakooty Poor E. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World J Stem Cells 2014; 6:344-354. [PMID: 25126383 PMCID: PMC4131275 DOI: 10.4252/wjsc.v6.i3.344] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/07/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Since articular cartilage possesses only a weak capacity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is associated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechanical properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical procedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morphological features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells (MSCs) to be an appropriate cellular material for articular cartilage repair. These cells were originally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic differentiation is an inherent property of MSCs noticed at the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative properties. Moreover, these cells possess a considerable immunomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.
Collapse
|
21
|
Orive G, Santos E, Pedraz J, Hernández R. Application of cell encapsulation for controlled delivery of biological therapeutics. Adv Drug Deliv Rev 2014; 67-68:3-14. [PMID: 23886766 DOI: 10.1016/j.addr.2013.07.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
Abstract
Cell microencapsulation technology is likely to have an increasingly important role in new approaches rather than the classical and pioneering organ replacement. Apart from becoming a tool for protein and morphogen release and long-term drug delivery, it is becoming a new three-dimensional platform for stem cell research. Recent progress in the field has resulted in biodegradable scaffolds that are able to retain and release the cell content in different anatomical locations. Additional advances include the use biomimetic scaffolds that provide greater control over material-cell interactions and the development of more precise encapsulated cell-tracking systems. This review summarises the state of the art of cell microencapsulation and discusses the main directions and challenges of this field towards the controlled delivery of biological therapeutics.
Collapse
|
22
|
Pak J, Lee JH, Lee SH. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:436029. [PMID: 24592390 PMCID: PMC3925627 DOI: 10.1155/2014/436029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/04/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.
Collapse
Affiliation(s)
- Jaewoo Pak
- Stems Medical Clinic, 32-3 Chungdam-dong, Gangnam-gu, Seoul 135-950, Republic of Korea
| | - Jung Hun Lee
- Stems Medical Clinic, 32-3 Chungdam-dong, Gangnam-gu, Seoul 135-950, Republic of Korea
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Gyeonggido, Yongin 449-728, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Gyeonggido, Yongin 449-728, Republic of Korea
| |
Collapse
|
23
|
Fuhrer R, Hofmann S, Hild N, Vetsch JR, Herrmann IK, Grass RN, Stark WJ. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 2013; 8:e81362. [PMID: 24278427 PMCID: PMC3836961 DOI: 10.1371/journal.pone.0081362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023] Open
Abstract
Movement is a key characteristic of higher organisms. During mammalian embryogenesis fetal movements have been found critical to normal tissue development. On the single cell level, however, our current understanding of stem cell differentiation concentrates on inducing factors through cytokine mediated biochemical signaling. In this study, human mesenchymal stem cells and chondrogenesis were investigated as representative examples. We show that pressureless, soft mechanical stimulation precipitated by the cyclic deformation of soft, magnetic hydrogel scaffolds with an external magnetic field, can induce chondrogenesis in mesenchymal stem cells without any additional chondrogenesis transcription factors (TGF-β1 and dexamethasone). A systematic study on the role of movement frequency revealed a classical dose-response relationship for human mesenchymal stem cells differentiation towards cartilage using mere mechanical stimulation. This effect could even be synergistically amplified when exogenous chondrogenic factors and movement were combined.
Collapse
Affiliation(s)
- Roland Fuhrer
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Nora Hild
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | | | - Inge K. Herrmann
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Robert N. Grass
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Park IH, Kim KH, Choi HK, Shim JS, Whang SY, Hahn SJ, Kwon OJ, Oh IH. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state. Exp Mol Med 2013; 45:e44. [PMID: 24071737 PMCID: PMC3789268 DOI: 10.1038/emm.2013.87] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/12/2022] Open
Abstract
With the increasing use of culture-expanded mesenchymal stromal cells (MSCs) for cell therapies, factors that regulate the cellular characteristics of MSCs have been of major interest. Oxygen concentration has been shown to influence the functions of MSCs, as well as other normal and malignant stem cells. However, the underlying mechanisms of hypoxic responses and the precise role of hypoxia-inducible factor-1α (Hif-1α), the master regulatory protein of hypoxia, in MSCs remain unclear, due to the limited span of Hif-1α stabilization and the complex network of hypoxic responses. In this study, to further define the significance of Hif-1α in MSC function during their self-renewal and terminal differentiation, we established adult bone marrow (BM)-derived MSCs that are able to sustain high level expression of ubiquitin-resistant Hif-1α during such long-term biological processes. Using this model, we show that the stabilization of Hif-1α proteins exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal and proliferation, without affecting the proliferation of the MSC mass population. Moreover, Hif-1α stabilization in MSCs led to the induction of pluripotent genes (oct-4 and klf-4) and the inhibition of their terminal differentiation into osteogenic and adipogenic lineages. These results provide insights into the previously unrecognized roles of Hif-1α proteins in maintaining the primitive state of primary MSCs and on the cellular heterogeneities in hypoxic responses among MSC populations.
Collapse
Affiliation(s)
- In-Ho Park
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pak J, Lee JH, Lee SH. A novel biological approach to treat chondromalacia patellae. PLoS One 2013; 8:e64569. [PMID: 23700485 PMCID: PMC3659098 DOI: 10.1371/journal.pone.0064569] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/16/2013] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells from several sources (bone marrow, synovial tissue, cord blood, and adipose tissue) can differentiate into variable parts (bones, cartilage, muscle, and adipose tissue), representing a promising new therapy in regenerative medicine. In animal models, mesenchymal stem cells have been used successfully to regenerate cartilage and bones. However, there have been no follow-up studies on humans treated with adipose-tissue-derived stem cells (ADSCs) for the chondromalacia patellae. To obtain ADSCs, lipoaspirates were obtained from lower abdominal subcutaneous adipose tissue. The stromal vascular fraction was separated from the lipoaspirates by centrifugation after treatment with collagenase. The stem-cell-containing stromal vascular fraction was mixed with calcium chloride-activated platelet rich plasma and hyaluronic acid, and this ADSCs mixture was then injected under ultrasonic guidance into the retro-patellar joints of all three patients. Patients were subjected to pre- and post-treatment magnetic resonance imaging (MRI) scans. Pre- and post-treatment subjective pain scores and physical therapy assessments measured clinical changes. One month after the injection of autologous ADSCs, each patient's pain improved 50–70%. Three months after the treatment, the patients' pain improved 80–90%. The pain improvement persisted over 1 year, confirmed by telephone follow ups. Also, all three patients did not report any serious side effects. The repeated magnetic resonance imaging scans at three months showed improvement of the damaged tissues (softened cartilages) on the patellae-femoral joints. In patients with chondromalacia patellae who have continuous anterior knee pain, percutaneous injection of autologous ADSCs may play an important role in the restoration of the damaged tissues (softened cartilages). Thus, ADSCs treatment presents a glimpse of a new promising, effective, safe, and non-surgical method of treatment for chondromalacia patellae.
Collapse
Affiliation(s)
- Jaewoo Pak
- Stems Medical Clinic, Seoul, Republic of Korea
| | - Jung Hun Lee
- Stems Medical Clinic, Seoul, Republic of Korea
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Derks M, Sturm T, Haverich A, Hilfiker A. Isolation and Chondrogenic Differentiation of Porcine Perichondrial Progenitor Cells for the Purpose of Cartilage Tissue Engineering. Cells Tissues Organs 2013; 198:179-89. [DOI: 10.1159/000354897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2013] [Indexed: 11/19/2022] Open
|
27
|
Coates EE, Riggin CN, Fisher JP. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. J Biomed Mater Res A 2012; 101:1962-70. [PMID: 23225791 DOI: 10.1002/jbm.a.34499] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 10/16/2012] [Indexed: 01/13/2023]
Abstract
Ionic crosslinking of alginate via divalent cations allows for high viability of an encapsulated cell population, and is an effective biomaterial for supporting a spherical chondrocyte morphology. However, such crosslinking chemistry does not allow for injectable and stable hydrogels which are more appropriate for clinical applications. In this study, the addition of methacrylate groups to the alginate polymer chains was utilized so as to allow the free radical polymerization initiated by a photoinitiator during UV light exposure. This approach establishes covalent crosslinks between methacrylate groups instead of the ionic crosslinks formed by the calcium in unmodified alginate. Although this approach has been well described in the literature, there are currently no reports of stem cell differentiation and subsequent chondrocyte gene expression profiles in photocrosslinked alginate. In this study, we demonstrate the utility of photocrosslinked alginate hydrogels containing interpenetrating hyaluronic acid chains to support stem cell chondrogenesis. We report high cell viability and no statistical difference in metabolic activity between mesenchymal stem cells cultured in calcium crosslinked alginate and photocrosslinked alginate for up to 10 days of culture. Furthermore, chondrogenic gene markers are expressed throughout the study, and indicate robust differentiation up to the day 14 time point. At early time points, days 1 and 7, the addition of hyaluronic acid to the photocrosslinked scaffolds upregulates gene markers for both the chondrocyte and the superficial zone chondrocyte phenotype. Taken together, we show that photocrosslinked, injectable alginate shows significant potential as a delivery mechanism for cell-based cartilage repair therapies.
Collapse
Affiliation(s)
- Emily E Coates
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | | | | |
Collapse
|
28
|
Xia Z, Duan X, Murray D, Triffitt JT, Price AJ. A method of isolating viable chondrocytes with proliferative capacity from cryopreserved human articular cartilage. Cell Tissue Bank 2012; 14:267-76. [PMID: 22802140 DOI: 10.1007/s10561-012-9328-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/06/2012] [Indexed: 11/29/2022]
Abstract
This study aimed to optimise methods of cryopreserving human articular cartilage (AC) tissue for the isolation of late chondrocytes. Human AC specimens from osteoarthritis patients who had undergone total knee replacement were used to optimise the chondrocyte isolation process and the choice of cryoprotective agent (CPA). For AC tissue cryopreservation, intact cored cartilage discs (5 mm diameter) and diced cartilage (0.2-1 mm cubes) from the same sized discs were step cooled and stored in liquid nitrogen for up to 48 h before chondrocyte isolation and in vitro assay of cell viability and proliferative potential. The results showed that 10 % dimethyl sulphoxide in 90 % foetal bovine serum was a successful CPA for chondrocyte cryopreservation. Compared with intact cored discs, dicing of AC tissue into 0.2-1 mm cubes significantly increased the viability and proliferative capacity of surviving chondrocytes after cryopreservation. In situ cross-section imaging using focused ion beam microscopy revealed that dicing of cored AC discs into small cubes reduced the cryo-damage to cartilage tissue matrix. In conclusion, modification of appropriate factors, such as the size of the tissue, cryoprotective agent, and isolation protocol, can allow successful isolation of viable chondrocytes with high proliferative capacity from cryopreserved human articular cartilage tissue. Further studies are required to determine whether these cells may retain cartilage differentiation capacity and provide sufficient chondrocytes for use as implants in clinical applications.
Collapse
Affiliation(s)
- Zhidao Xia
- Nuffield Department of Orthopaedic Surgery, Botnar Research Centre, Oxford University Institute of Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | | | | | | | | |
Collapse
|
29
|
Venugopal J, Rajeswari R, Shayanti M, Low S, Bongso A, R. Giri Dev V, Deepika G, Choon AT, Ramakrishna S. Electrosprayed Hydroxyapatite on Polymer Nanofibers to Differentiate Mesenchymal Stem Cells to Osteogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:170-84. [DOI: 10.1163/156856212x629845] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J. Venugopal
- a Healthcare and Energy Materials Laboratory, Faculty of Engineering, National University of Singapore , Singapore
| | - R. Rajeswari
- a Healthcare and Energy Materials Laboratory, Faculty of Engineering, National University of Singapore , Singapore
| | - M. Shayanti
- a Healthcare and Energy Materials Laboratory, Faculty of Engineering, National University of Singapore , Singapore
| | - Sharon Low
- b StemLife Sdn BhD , 50450 , Kuala Lumpur , Malaysia
| | - Ariff Bongso
- c Department of Obstetrics & Gynaecology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - V. R. Giri Dev
- d Department of Textile Technology , Anna University , Chennai , India
| | - G. Deepika
- a Healthcare and Energy Materials Laboratory, Faculty of Engineering, National University of Singapore , Singapore
| | - Aw Tar Choon
- b StemLife Sdn BhD , 50450 , Kuala Lumpur , Malaysia
| | - S. Ramakrishna
- a Healthcare and Energy Materials Laboratory, Faculty of Engineering, National University of Singapore , Singapore
| |
Collapse
|
30
|
Portron S, Merceron C, Maillard N, Weiss P, Grimandi G, Vinatier C, Guicheux J, Gauthier O. Cellules souches et biomatériaux injectables pour la médecine régénératrice du cartilage : le consortium « chondrograft ». Ing Rech Biomed 2012. [DOI: 10.1016/j.irbm.2012.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Faikrua A, Wittaya-areekul S, Oonkhanond B, Viyoch J. In vivo chondrocyte and transforming growth factor-β1 delivery using the thermosensitive chitosan/starch/β-glycerol phosphate hydrogel. J Biomater Appl 2012; 28:175-86. [DOI: 10.1177/0885328212441847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In present study, the chitosan/starch/β-glycerol phosphate hydrogel was investigated as an effective carrier for chondrocytes and delivery of transforming growth factor-β1. In vitro study indicated that transforming growth factor-β1 was released sustainably for 14 days with its biological activity to stimulate chondrocyte functions, as indicated by the strong expression of type II collagen protein. Subcutaneous implantation to rats revealed the strong expressions of type II collagen and aggrecan messenger ribonucleic acids, and also type II collagen protein was observed in the hydrogel in combination with transforming growth factor-β1 within 2 weeks. Our collective results showed the potential of chitosan/starch/β-glycerol phosphate hydrogel for effective delivery of chondrocytes and transforming growth factor-β1, and preserve chondrocytes’ phenotype and functions in vitro.
Collapse
Affiliation(s)
- Atchariya Faikrua
- Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, Thailand
| | | | | | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
32
|
de Valence S, Tille JC, Mugnai D, Mrowczynski W, Gurny R, Möller M, Walpoth BH. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 2012; 33:38-47. [DOI: 10.1016/j.biomaterials.2011.09.024] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/08/2011] [Indexed: 11/25/2022]
|
33
|
|
34
|
Fujio M, Yamamoto A, Ando Y, Shohara R, Kinoshita K, Kaneko T, Hibi H, Ueda M. Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the recruitment of endothelial precursors. Bone 2011; 49:693-700. [PMID: 21741502 DOI: 10.1016/j.bone.2011.06.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/21/2022]
Abstract
Distraction osteogenesis (DO) is a unique therapy that induces skeletal tissue regeneration without stem/progenitor cell transplantation. Although the self-regeneration property of DO provides many clinical benefits, the long treatment period required is a major drawback. A high-speed DO mouse model (H-DO), in which the distraction was done two times faster than in control DO (C-DO) mice, failed to generate new bone callus in the DO gap. We found that this was caused by the unsuccessful recruitment of bone marrow endothelial cells (BM-ECs)/endothelial progenitor cells (EPCs) into the gap. We then tested the ability of a local application of stromal cell-derived factor-1 (SDF-1), a major chemo-attractant for BM-ECs/EPCs, to accelerate the bone regeneration in H-DO. Our data showed that, in H-DO, SDF-1 induced callus formation in the gap through the recruitment of BM-ECs/EPCs, the maturation of neo-blood vessels, and increased blood flow. These results indicate that the active recruitment of endogenous BM-ECs/EPCs may provide a substantial clinical benefit for shortening the treatment period of DO.
Collapse
Affiliation(s)
- Masahito Fujio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Advanced and Prospective Technologies for Potential Use in Craniofacial Tissues Regeneration by Stem Cells and Growth Factors. J Craniofac Surg 2011; 22:342-8. [PMID: 21239932 DOI: 10.1097/scs.0b013e3181f7e185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Khan WS, Johnson DS, Hardingham TE. The potential of stem cells in the treatment of knee cartilage defects. Knee 2010; 17:369-374. [PMID: 20051319 DOI: 10.1016/j.knee.2009.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 12/06/2009] [Accepted: 12/07/2009] [Indexed: 02/02/2023]
Abstract
Cartilage is frequently damaged but only shows a limited capacity for repair. There are a number of treatment strategies currently available for the repair of articular cartilage defects including abrasion chondroplasty, subchondral drilling, microfracture and mosaicplasty but these show variable results. For the younger patients, there is great interest in the potential of cell-based strategies to provide a biological replacement of damaged cartilage using autologous chondrocytes. The results of clinical studies using these cell-based techniques do not conclusively show improvement over conventional techniques. These techniques also do not consistently result in the formation of the desired hyaline cartilage rather than fibrocartilage. Mesenchymal stem cells present a promising cell source for cartilage repair. Mesenchymal stem cells have been isolated from a number of adult tissues including the bone marrow and the synovial fat pad. These cells have the ability to proliferate in culture and differentiate down different pathways including the chondrogenic pathway. In the first instance, differentiated stem cells can be used for the repair of localised cartilage defects by producing hyaline cartilage. In the future, this strategy has the potential to be extended to treat more generalised cartilage defects, especially as the cell source is not a limiting factor. The use of cell-based therapies also allows the versatility of using scaffolds and growth factors, with recombinant proteins or gene therapy. A number of challenges however still need to be overcome including further work on identifying the optimal source of stem cells, along with refining the conditions that enhance expansion and chondrogenesis.
Collapse
Affiliation(s)
- Wasim S Khan
- UK Centre for Tissue Engineering, University of Manchester, Oxford Road, M13 9PL UK.
| | | | | |
Collapse
|
37
|
Jiang YZ, Zhang SF, Qi YY, Wang LL, Ouyang HW. Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant 2010; 20:593-607. [PMID: 20887665 DOI: 10.3727/096368910x532738] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As articular cartilage has very limited self-repair capability, the repair and regeneration of damaged cartilage is a major challenge. This review aims to outline the past, present, and future of cell therapies for articular cartilage defect repair. Autologous chondrocyte implantation (ACI) has been used clinically for more than 20 years, and the short, medium, and long-term clinical outcomes of three generation of ACI are extensively overviewed. Also, strategies of clinical outcome evaluation, ACI limitations, and the comparison of ACI clinical outcomes with those of other surgical techniques are discussed. Moreover, mesenchymal stem cells and pluripotent stem cells for cartilage regeneration in vitro, in vivo, and in a few clinical studies are reviewed. This review not only comprehensively analyzes the ACI clinical data but also considers the findings from state-of-the-art stem cell research on cartilage repair from bench and bedside. The conclusion provides clues for the future development of strategies for cartilage regeneration.
Collapse
Affiliation(s)
- Yang Zi Jiang
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
38
|
Gong G, Ferrari D, Dealy CN, Kosher RA. Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. J Cell Physiol 2010; 224:664-71. [PMID: 20432462 DOI: 10.1002/jcp.22166] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self-repair. Because of their unlimited capacity for self-renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF-beta1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC-derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC-derived progenitors in different phases of the chondrogenic lineage for cartilage repair.
Collapse
Affiliation(s)
- Guochun Gong
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
39
|
Ji YH, Ji JL, Sun FY, Zeng YY, He XH, Zhao JX, Yu Y, Yu SH, Wu W. Quantitative proteomics analysis of chondrogenic differentiation of C3H10T1/2 mesenchymal stem cells by iTRAQ labeling coupled with on-line two-dimensional LC/MS/MS. Mol Cell Proteomics 2010; 9:550-64. [PMID: 20008835 PMCID: PMC2849707 DOI: 10.1074/mcp.m900243-mcp200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 12/14/2009] [Indexed: 11/06/2022] Open
Abstract
The chondrogenic potential of multipotent mesenchymal stem cells (MSCs) makes them a promising source for cell-based therapy of cartilage defects; however, the exact intracellular molecular mechanisms of chondrogenesis as well as self-renewal of MSCs remain largely unknown. To gain more insight into the underlying molecular mechanisms, we applied isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with on-line two-dimensional LC/MS/MS technology to identify proteins differentially expressed in an in vitro model for chondrogenesis: chondrogenic differentiation of C3H10T1/2 cells, a murine embryonic mesenchymal cell line, was induced by micromass culture and 100 ng/ml bone morphogenetic protein 2 treatment for 6 days. A total of 1756 proteins were identified with an average false discovery rate <0.21%. Linear regression analysis of the quantitative data gave strong correlation coefficients: 0.948 and 0.923 for two replicate two-dimensional LC/MS/MS analyses and 0.881, 0.869, and 0.927 for three independent iTRAQ experiments, respectively (p < 0.0001). Among 1753 quantified proteins, 100 were significantly altered (95% confidence interval), and six of them were further validated by Western blotting. Functional categorization revealed that the 17 up-regulated proteins mainly comprised hallmarks of mature chondrocytes and enzymes participating in cartilage extracellular matrix synthesis, whereas the 83 down-regulated were predominantly involved in energy metabolism, chromatin organization, transcription, mRNA processing, signaling transduction, and cytoskeleton; except for a number of well documented proteins, the majority of these altered proteins were novel for chondrogenesis. Finally, the biological roles of BTF3l4 and fibulin-5, two novel chondrogenesis-related proteins identified in the present study, were verified in the context of chondrogenic differentiation. These data will provide valuable clues for our better understanding of the underlying mechanisms that modulate these complex biological processes and assist in the application of MSCs in cell-based therapy for cartilage regeneration.
Collapse
Affiliation(s)
- Yu-hua Ji
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Ministry of Education for Genetic Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alves da Silva M, Crawford A, Mundy J, Correlo V, Sol P, Bhattacharya M, Hatton P, Reis R, Neves N. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater 2010; 6:1149-57. [PMID: 19788942 DOI: 10.1016/j.actbio.2009.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/21/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Naturally derived polymers have been extensively used in scaffold production for cartilage tissue engineering. The present work aims to evaluate and characterize extracellular matrix (ECM) formation in two types of chitosan-based scaffolds, using bovine articular chondrocytes (BACs). The influence of these scaffolds' porosity, as well as pore size and geometry, on the formation of cartilagineous tissue was studied. The effect of stirred conditions on ECM formation was also assessed. Chitosan-poly(butylene succinate) (CPBS) scaffolds were produced by compression moulding and salt leaching, using a blend of 50% of each material. Different porosities and pore size structures were obtained. BACs were seeded onto CPBS scaffolds using spinner flasks. Constructs were then transferred to the incubator, where half were cultured under stirred conditions, and the other half under static conditions for 4 weeks. Constructs were characterized by scanning electron microscopy, histology procedures, immunolocalization of collagen type I and collagen type II, and dimethylmethylene blue assay for glycosaminoglycan (GAG) quantification. Both materials showed good affinity for cell attachment. Cells colonized the entire scaffolds and were able to produce ECM. Large pores with random geometry improved proteoglycans and collagen type II production. However, that structure has the opposite effect on GAG production. Stirred culture conditions indicate enhancement of GAG production in both types of scaffold.
Collapse
|
41
|
Cultured autologous bone marrow stem cells inhibit bony fusion in a rabbit model of posterolateral lumbar fusion with autologous bone graft. J Clin Neurosci 2010; 17:481-5. [PMID: 20171892 DOI: 10.1016/j.jocn.2009.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/26/2009] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from various tissues and expanded in culture. MSCs add osteogenic potential to ceramic scaffolds when used together. A spinal fusion rabbit model was used to evaluate whether a pellet of cultured, autologous bone marrow MSCs (BMSCs) with osteogenic differentiation could increase the fusion rate when co-grafted with an autologous bone graft compared to autograft alone. Thirty rabbits were randomly assigned to two groups. Group 1 received bone autograft alone and Group 2 received bone autograft plus a pellet of cultured and differentiated BMSCs. Group 2 rabbits had a bone marrow puncture, after which the BMSC were cultured and osteoblastic differentiation was induced. BMSC cultures were obtained from 12 of 15 rabbits. The 27 rabbits underwent a bilateral, L4-L5 intertransverse fusion with an autograft and in Group 2 rabbits a pellet of differentiated BMSCs was added to the autograft. In Group 1, the fusion rate was 53% (8 of 15 rabbits) and in Group 2 the fusion rate was 0% (p<0.05). Adding differentiated BMSCs in a pellet without a scaffold not only failed to increase fusion rate, but completely inhibited bony growth.
Collapse
|
42
|
Choi YH, Burdick MD, Strieter RM. Human circulating fibrocytes have the capacity to differentiate osteoblasts and chondrocytes. Int J Biochem Cell Biol 2009; 42:662-71. [PMID: 20034590 DOI: 10.1016/j.biocel.2009.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/22/2009] [Accepted: 12/11/2009] [Indexed: 01/12/2023]
Abstract
Fibrocytes are bone marrow-derived cells. Fibrocytes can differentiate into adipocyte- and myofibroblast-like cells. Since fibrocytes can behave like mesenchymal progenitor cells, we hypothesized that fibrocytes have the potential to differentiate into other mesenchymal lineage cells, such as osteoblasts and chondrocytes. In this study, we found that fibrocytes differentiated into osteoblast-like cells when cultured in osteogenic media in a manner similar to osteoblast precursor cells. Under these conditions, fibrocytes and osteoblast precursor cells displayed increased calcium deposition, and increased expression of specific osteogenic genes. In addition, dephosphorylation of cAMP-responsive element binding protein was associated with the increased ratio of receptor activator of the NF-kappaB Ligand/osteoprotegerin gene expression and enhanced gene expression of osterix in these cells under these conditions. Both events are important in promoting osteogenesis. In contrast, fibrocytes and mesenchymal stem cells cultured in chondrogenic media in the presence of transforming growth factor-beta3 were found to differentiate to chondrocyte-like cells. Fibrocytes and mesenchymal stem cells under these conditions were found to express increased levels of aggrecan and type II collagen genes. Transcription factor genes associated with chondrogenesis were also found to be induced in fibrocytes and mesenchymal stem cells under these conditions. In contrast, beta-catenin protein and the core binding factor alpha1 subunit protein transcription factor were decreased in expression under these conditions. These data indicate that human fibrocytes have the capability to differentiate into osteoblast- and chondrocyte-like cells. These findings suggest that such cells could be used in cell-based tissue-regenerative therapy.
Collapse
Affiliation(s)
- Young H Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | | | | |
Collapse
|
43
|
From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today 2009; 14:913-25. [DOI: 10.1016/j.drudis.2009.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 11/20/2022]
|
44
|
Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 2009; 180:1122-30. [PMID: 19713447 DOI: 10.1164/rccm.200902-0242oc] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Neonatal chronic lung disease, known as bronchopulmonary dysplasia (BPD), remains a serious complication of prematurity despite advances in the treatment of extremely low birth weight infants. OBJECTIVES Given the reported protective actions of bone marrow stromal cells (BMSCs; mesenchymal stem cells) in models of lung and cardiovascular injury, we tested their therapeutic potential in a murine model of BPD. METHODS Neonatal mice exposed to hyperoxia (75% O(2)) were injected intravenously on Day 4 with either BMSCs or BMSC-conditioned media (CM) and assessed on Day 14 for lung morphometry, vascular changes associated with pulmonary hypertension, and lung cytokine profile. MEASUREMENTS AND MAIN RESULTS Injection of BMSCs but not pulmonary artery smooth muscle cells (PASMCs) reduced alveolar loss and lung inflammation, and prevented pulmonary hypertension. Although more donor BMSCs engrafted in hyperoxic lungs compared with normoxic controls, the overall low numbers suggest protective mechanisms other than direct tissue repair. Injection of BMSC-CM had a more pronounced effect than BMSCs, preventing both vessel remodeling and alveolar injury. Treated animals had normal alveolar numbers at Day 14 of hyperoxia and a drastically reduced lung neutrophil and macrophage accumulation compared with PASMC-CM-treated controls. Macrophage stimulating factor 1 and osteopontin, both present at high levels in BMSC-CM, may be involved in this immunomodulation. CONCLUSIONS BMSCs act in a paracrine manner via the release of immunomodulatory factors to ameliorate the parenchymal and vascular injury of BPD in vivo. Our study suggests that BMSCs and factor(s) they secrete offer new therapeutic approaches for lung diseases currently lacking effective treatment.
Collapse
Affiliation(s)
- Muhammad Aslam
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
As the cellular component of articular cartilage, chondrocytes are responsible for maintaining in a low-turnover state the unique composition and organization of the matrix that was determined during embryonic and postnatal development. In joint diseases, cartilage homeostasis is disrupted by mechanisms that are driven by combinations of biological mediators that vary according to the disease process, including contributions from other joint tissues. In osteoarthritis (OA), biomechanical stimuli predominate with up-regulation of both catabolic and anabolic cytokines and recapitulation of developmental phenotypes, whereas in rheumatoid arthritis (RA), inflammation and catabolism drive cartilage loss. In vitro studies in chondrocytes have elucidated signaling pathways and transcription factors that orchestrate specific functions that promote cartilage damage in both OA and RA. Thus, understanding how the adult articular chondrocyte functions within its unique environment will aid in the development of rational strategies to protect cartilage from damage resulting from joint disease. This review will cover current knowledge about the specific cellular and biochemical mechanisms that regulate cartilage homeostasis and pathology.
Collapse
Affiliation(s)
- Mary B Goldring
- Research Division, Hospital for Special Surgery, Affiliated with Weill College of Medicine of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
46
|
Jung J, Moon N, Ahn JY, Oh EJ, Kim M, Cho CS, Shin JC, Oh IH. Mesenchymal Stromal Cells Expanded in Human Allogenic Cord Blood Serum Display Higher Self-Renewal and Enhanced Osteogenic Potential. Stem Cells Dev 2009; 18:559-71. [DOI: 10.1089/scd.2008.0105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jooyoung Jung
- Department of Cellular Medicine, Catholic High-Performance Cell Therapy Center, The Catholic University of Korea, Seoul, Korea
| | - Noory Moon
- Department of Cellular Medicine, Catholic High-Performance Cell Therapy Center, The Catholic University of Korea, Seoul, Korea
| | - Ji-Yeon Ahn
- Department of Cellular Medicine, Catholic High-Performance Cell Therapy Center, The Catholic University of Korea, Seoul, Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine,The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine,The Catholic University of Korea, Seoul, Korea
| | - Chul-Soo Cho
- Department of Internal Medicine, Division of Rheumatology, The Catholic University of Korea, Seoul, Korea
| | - Jong-Chul Shin
- Department of Gynecology and Obstetrics, The Catholic University of Korea, Seoul, Korea
| | - Il-Hoan Oh
- Department of Cellular Medicine, Catholic High-Performance Cell Therapy Center, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
47
|
Abstract
Articular cartilage repair and regeneration continue to be largely intractable because of the poor regenerative properties of this tissue. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased articular cartilage functionality, has evoked intense interest and holds great potential for improving articular cartilage therapy. This review provides an overall description of the current state of and progress in articular cartilage repair and regeneration. Traditional therapies and related problems are introduced. More importantly, a variety of promising cell sources, biocompatible tissue engineered scaffolds, scaffoldless techniques, growth factors, and mechanical stimuli used in current articular cartilage tissue engineering are reviewed. Finally, the technical and regulatory challenges of articular cartilage tissue engineering and possible future directions are also discussed.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jerry Hu
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
48
|
Merceron C, Vinatier C, Clouet J, Colliec-Jouault S, Weiss P, Guicheux J. Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering. Joint Bone Spine 2008; 75:672-4. [PMID: 18990603 DOI: 10.1016/j.jbspin.2008.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Affiliation(s)
- Christophe Merceron
- Inserm U791, Université de Nantes, Laboratoire d'Ingénierie des Tissus Ostéoarticulaires et Dentaires, Equipe "Physiopathologie des Tissus Squelettiques et Ingénierie du Cartilage", 1 Place Alexis Ricordeau, 44042 Nantes cedex 1, France
| | | | | | | | | | | |
Collapse
|
49
|
Cegielski M, Dziewiszek W, Zabel M, Dzięgiel P, Iżycki D, Zatoński M, Bochnia M. Experimental application of xenogenous antlerogenic cells in replacement of auricular cartilage in rabbits. Xenotransplantation 2008; 15:374-83. [DOI: 10.1111/j.1399-3089.2008.00497.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 2008; 190:395-412. [DOI: 10.1016/j.aanat.2008.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 01/13/2023]
|