1
|
Jiang YN, Gao Y, Lai X, Li X, Liu G, Ding M, Wang Z, Guo Z, Qin Y, Li X, Sun L, Wang ZQ, Zhou ZW. Microcephaly Gene Mcph1 Deficiency Induces p19ARF-Dependent Cell Cycle Arrest and Senescence. Int J Mol Sci 2024; 25:4597. [PMID: 38731817 PMCID: PMC11083351 DOI: 10.3390/ijms25094597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.
Collapse
Affiliation(s)
- Yi-Nan Jiang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| | - Yizhen Gao
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (L.S.)
| | - Xianxin Lai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| | - Xinjie Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| | - Gen Liu
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (L.S.)
| | - Mingmei Ding
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| | - Zhiyi Wang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| | - Zixiang Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| | - Yinying Qin
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (L.S.)
| | - Xin Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| | - Litao Sun
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (L.S.)
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Zhong-Wei Zhou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Y.-N.J.); (X.L.)
| |
Collapse
|
2
|
Qi L, Tang Z. Prognostic model revealing pyroptosis-related signatures in oral squamous cell carcinoma based on bioinformatics analysis. Sci Rep 2024; 14:6149. [PMID: 38480853 PMCID: PMC10937718 DOI: 10.1038/s41598-024-56694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
One of the most common oral carcinomas is oral squamous cell carcinoma (OSCC), bringing a heavy burden to global health. Although progresses have been made in the intervention of OSCC, 5 years survival of patients suffering from OSCC is poor like before regarding to the high invasiveness of OSCC, which causes metastasis and recurrence of the tumor. The relationship between pyroptosis and OSCC remains to be further investigated as pyroptosis in carcinomas has gained much attention. Herein, the key pyroptosis-related genes were identified according to The Cancer Genome Atlas (TCGA) dataset. Additionally, a prognostic model was constructed based upon three key genes (CTLA4, CD5, and IL12RB2) through least absolute shrinkage and selection operator (LASSO) analyses, as well as univariate and multivariate COX regression in OSCC. It was discovered that the high expression of these three genes was associated with the low-risk group. We also identified LAIR2 as a hub gene, whose expression negatively correlated with the risk score and the different immune cell infiltration. Finally, we proved that these three genes were independent prognostic factors linked to overall survival (OS), and reliable consequences could be predicted by this model. Our study revealed the relationship between pyroptosis and OSCC, providing insights into new treatment targets for preventing and treating OSCC.
Collapse
Affiliation(s)
- Lu Qi
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
| |
Collapse
|
3
|
Franco-Juárez EX, González-Villasana V, Camacho-Moll ME, Rendón-Garlant L, Ramírez-Flores PN, Silva-Ramírez B, Peñuelas-Urquides K, Cabello-Ruiz ED, Castorena-Torres F, Bermúdez de León M. Mechanistic Insights about Sorafenib-, Valproic Acid- and Metformin-Induced Cell Death in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:1760. [PMID: 38339037 PMCID: PMC10855535 DOI: 10.3390/ijms25031760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the main causes of death by cancer worldwide, representing about 80-90% of all liver cancers. Treatments available for advanced HCC include atezolizumab, bevacizumab, sorafenib, among others. Atezolizumab and bevacizumab are immunological options recently incorporated into first-line treatments, along with sorafenib, for which great treatment achievements have been reached. However, sorafenib resistance is developed in most patients, and therapeutical combinations targeting cancer hallmark mechanisms and intracellular signaling have been proposed. In this review, we compiled evidence of the mechanisms of cell death caused by sorafenib administered alone or in combination with valproic acid and metformin and discussed them from a molecular perspective.
Collapse
Affiliation(s)
- Edgar Xchel Franco-Juárez
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Vianey González-Villasana
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| | - Luisa Rendón-Garlant
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Patricia Nefertari Ramírez-Flores
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico;
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico;
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| | - Ethel Daniela Cabello-Ruiz
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo Leon, Mexico; (V.G.-V.); (L.R.-G.); (E.D.C.-R.)
| | - Fabiola Castorena-Torres
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico;
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo Leon, Mexico; (E.X.F.-J.); (M.E.C.-M.); (P.N.R.-F.); (K.P.-U.)
| |
Collapse
|
4
|
Liang W, Yang M, Wang X, Qian Y, Gao R, Shi Y, Shi X, Shi L, Xu T, Zhang Q. Deubiquitylase USP31 Induces Autophagy and Promotes the Progression in Lung Squamous Cell Carcinoma Cells by Stabilizing E2F1 Expression. Curr Cancer Drug Targets 2024; 24:975-986. [PMID: 38204265 DOI: 10.2174/0115680096264557231124102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Autophagy exerts a vital role in the progression of lung squamous cell carcinoma (LUSC). Ubiquitin-specific peptidase 31 (USP31) has recently been found to be involved in the development of a variety of cancers. However, whether USP31 modulates autophagy in LUSC remains unclear. METHODS This study revealed that high levels of USP31 were discovered in LUSC tissue samples employing the Gene Expression Profiling Interactive Analysis (GEPIA) database, quantitative real- time PCR (qRT-PCR), and Western blot analysis. Cell proliferation was tested via cell counting kit 8 (CCK-8) as well as colony formation, demonstrating that USP31-stable knockdown reduced cell viability. RESULTS Immunofluorescence analysis illustrated that USP31 knockdown blocked the occurrence of LUSC autophagy. Meanwhile, USP31 has been shown to stabilize the expression of E2F transcription factor 1 (E2F1) through the proteasome pathway. Furthermore, overexpressed E2F1 effectively eliminated the effect of USP31 knockdown on LUSC cell proliferation and autophagy. CONCLUSION In summary, this investigation proved that USP31 promoted LUSC cell growth and autophagy, at least in part by stabilizing E2F1 expression, which provided a potential therapeutic gene for the treatment of LUSC.
Collapse
Affiliation(s)
- Wenjun Liang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Mingxia Yang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Xiaohua Wang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Yan Qian
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Ruichen Gao
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Yujia Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Xuejun Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Lei Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Ting Xu
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Qian Zhang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| |
Collapse
|
5
|
Takeuchi H, Koga M, Doi K, Sakurai H. PP2A and its adapter protein IER5 induce the DNA-binding ability and target gene expression of E2F1 via dephosphorylation at serine 375. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194960. [PMID: 37467925 DOI: 10.1016/j.bbagrm.2023.194960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
The transcription factor E2F1 participates in cell cycle control through transcriptional activation of genes that promote S-phase entry. E2F1 is also linked to the expression of proapoptotic genes, and the loss of E2F1 activity facilitates tumor progression by reducing cellular apoptosis. Phosphorylation controlled by protein kinases and phosphatases is the major posttranslational modification and regulates the cellular levels and transactivator function of E2F1. Here, we characterize the regulatory roles of serine-375 (S375), one of the major phosphorylation sites of E2F1. Cyclin-dependent kinases such as CDK8 phosphorylate at S375 of E2F1, which is dephosphorylated by protein phosphatase 2A (PP2A) containing the B55 regulatory subunit. The PP2A adapter protein IER5 binds to both PP2A/B55 and E2F1 and assists dephosphorylation at S375 by PP2A. S375-dephosphorylated E2F1 exhibits higher DNA-binding affinity than the phosphorylated form. Although the promoter regions of proapoptotic genes are less occupied by E2F1 in cells, an increase in S375-dephosphorylated E2F1 induces preferential binding of E2F1 to the proapoptotic gene promoters and their expression. Our data identify PP2A/B55-IER5 as a critical regulator of E2F1 and suggest that the phosphorylation state of E2F1 is an important determinant for the expression of proapoptotic genes.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Mayuko Koga
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kuriko Doi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
6
|
Wang Y, Chen L, Wang L, Pei G, Cheng H, Zhang Q, Wang S, Hu D, He Y, He C, Fu C, Wei Q. Pulsed Electromagnetic Fields Combined With Adipose-Derived Stem Cells Protect Ischemic Myocardium by Regulating miR-20a-5p/E2F1/p73 Signaling. Stem Cells 2023; 41:724-737. [PMID: 37207995 DOI: 10.1093/stmcls/sxad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Myocardial infarction (MI) is a serious threat to human health. Although monotherapy with pulsed electromagnetic fields (PEMFs) or adipose-derived stem cells (ADSCs) has been reported to have positive effect on the treatment of MI, a satisfactory outcome has not yet been achieved. In recent years, combination therapy has attracted widespread interest. Herein, we explored the synergistic therapeutic effect of combination therapy with PEMFs and ADSCs on MI and found that the combination of PEMFs and ADSCs effectively reduced infarct size, inhibited cardiomyocyte apoptosis and protected the cardiac function in mice with MI. In addition, bioinformatics analysis and RT-qPCR showed that the combination therapy could affect apoptosis by regulating the expression of miR-20a-5p. A dual-luciferase reporter gene assay also confirmed that the miR-20a-5p could target E2F transcription factor 1 (E2F1) and inhibit cardiomyocyte apoptosis by regulating the E2F1/p73 signaling pathway. Therefore, our study systematically demonstrated the effectiveness of combination therapy on the inhibition of cardiomyocyte apoptosis by regulating the miR-20a-5p/E2F1/p73 signaling pathway in mice with MI. Thus, our study underscored the effectiveness of the combination of PEMFs and ADSCs and identified miR-20a-5p as a promising therapeutic target for the treatment of MI in the future.
Collapse
Affiliation(s)
- Yang Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Li Chen
- Department of Rehabilitation Medicine, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lu Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Gaiqin Pei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Hongxin Cheng
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Qing Zhang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Shiqi Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Danrong Hu
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Quan Wei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Gao Y, Jiao Y, Gong X, Liu J, Xiao H, Zheng Q. Role of transcription factors in apoptotic cells clearance. Front Cell Dev Biol 2023; 11:1110225. [PMID: 36743409 PMCID: PMC9892555 DOI: 10.3389/fcell.2023.1110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis. The genetically controlled, autonomously ordered cell death mainly proceeds by apoptosis. Apoptosis is an important way of programmed cell death in multicellular organisms, timely and effective elimination of apoptotic cells plays a key role in the growth and development of organisms and the maintenance of homeostasis. During the clearance of apoptotic cells, transcription factors bind to specific target promoters and act as activators or repressors to regulate multiple genes expression, how transcription factors regulate apoptosis is an important and poorly understood aspect of normal development. This paper summarizes the regulatory mechanisms of transcription factors in the clearance of apoptotic cells to date.
Collapse
Affiliation(s)
| | | | | | | | - Hui Xiao
- *Correspondence: Hui Xiao, ; Qian Zheng,
| | - Qian Zheng
- *Correspondence: Hui Xiao, ; Qian Zheng,
| |
Collapse
|
8
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Han Z, Wang L, Wang D, Zhang L, Bi Y, Zheng X, Liu W, Bai G, Wang Z, Wan W, Ma Y, Cai X, Liu T, Jia Q. DJ-1 promotes osteosarcoma progression through activating CDK4/RB/E2F1 signaling pathway. Front Oncol 2022; 12:1036401. [PMID: 36408174 PMCID: PMC9671360 DOI: 10.3389/fonc.2022.1036401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of the bone characterized by poor prognosis due to chemotherapy resistance and high recurrence rates. DJ-1 (PARK7) is known as an oncogene and its abnormal expression is related to the poor prognosis of various types of malignant tumors. It was found in this study that upregulated expression of DJ-1 was closely correlated with the prognosis of OS patients by promoting the proliferation, migration and chemotherapy resistance of OS cells in vitro through regulating the activity of CDK4 but not through the oxidation mechanism or AKT pathway. The combination of DJ-1 and CDK4 promoted RB phosphorylation, leading to the dissociation of E2F1 into the nucleus to regulate the expression of cell cycle-related genes. The tumor xenograft mouse model demonstrated that DJ-1 knockout suppressed tumor growth in vivo. All these findings indicate that DJ-1 can affect the occurrence and progression of OS by regulating the CDK/RB/E2F1axis, suggesting a novel therapeutic opportunity for OS patients.
Collapse
Affiliation(s)
- Zhitao Han
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongshuo Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Luosheng Zhang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifeng Bi
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinlei Zheng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weibo Liu
- Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guangjian Bai
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Wan
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yong Ma
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaopan Cai
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tielong Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qi Jia
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
E2F1 Expression and Apoptosis Initiation in Crayfish and Rat Peripheral Neurons and Glial Cells after Axonal Injury. Int J Mol Sci 2022; 23:ijms23084451. [PMID: 35457270 PMCID: PMC9026502 DOI: 10.3390/ijms23084451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrauma is among the main causes of human disability and mortality. The transcription factor E2F1 is one of the key proteins that determine the fate of cells. The involvement of E2F1 in the regulation of survival and death of peripheral nerve cells after axotomy has not been previously studied. We, for the first time, studied axotomy-induced changes in the expression and localization of E2F1 following axonal injury in rats and crayfish. Immunoblotting and immunofluorescence microscopy were used for the analysis of the expression and intracellular localization of E2F1 and its changes after axotomy. To evaluate whether this transcription factor promotes cell apoptosis, we examined the effect of pharmacological inhibition of E2F activity in axotomized rat models. In this work, axotomy caused increased expression of E2F1 as early as 4 h and even 1 h after axotomy of mechanoreceptor neurons and ganglia of crayfish ventral nerve cord (VNC), as well as rat dorsal root ganglia (DRG). The level of E2F1 expression increased both in the cytoplasm and the nuclei of neurons. Pharmacological inhibition of E2F demonstrated a pronounced neuroprotective activity against axotomized DRGs. E2F1 and downstream targets could be considered promising molecular targets for the development of potential neuroprotective agents.
Collapse
|
11
|
Chhichholiya Y, Suryan AK, Suman P, Munshi A, Singh S. SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes. Front Genet 2021; 12:793523. [PMID: 34925466 PMCID: PMC8673831 DOI: 10.3389/fgene.2021.793523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
miRNAs are fascinating molecular players for gene regulation as individual miRNA can control multiple targets and a single target can be regulated by multiple miRNAs. Loss of miRNA regulated gene expression is often reported to be implicated in various human diseases like diabetes and cancer. Recently, geneticists across the world started reporting single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are also reported in various target sequences of these miRNAs. Both the scenarios lead to dysregulated gene expression which may result in the progression of diseases. In the present paper, we explore SNPs in various miRNAs and their target sequences reported in various human cancers as well as diabetes. Similarly, we also present evidence of these mutations in various other human diseases.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Aman Kumar Suryan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
12
|
Zhao Y, Jin LJ, Zhang XY. Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1. Aging (Albany NY) 2021; 13:18498-18514. [PMID: 34292880 PMCID: PMC8351670 DOI: 10.18632/aging.203298] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/19/2021] [Indexed: 01/09/2023]
Abstract
Breast cancer (BC) is a common malignant tumor in females. The challenge in treating BC is overcoming chemoresistance. Exosome-mediated transfer of miRNAs is a molecule-shuttle in intercellular communication. Thus, we aimed to investigate whether exosomal miRNA-205 could affect chemoresistance and tumorigenesis in recipient tumor cells and to elucidate the underlying mechanism in vivo and in vitro. Microarray and qRT-PCR assays demonstrated that miRNA-205 was upregulated in tamoxifen resistance MCF-7/TAMR-1 (M/T) cells and M/T cell-derived exosomes (M/T-Exo). The M/T-Exo was internalized by human BC cells (BCCs), causing increased expression of miRNA-205 in BCCs. Coculturing with M/T-Exo promoted tamoxifen resistance, proliferation, migration, and invasion while suppressed apoptosis in recipient BCCs, which were associated with activating the caspase pathway and phosphorylating Akt. Luciferase reporter assays showed that miRNA-205 directly targeted E2F Transcription Factor 1 (E2F1) in BCCs. Furthermore, knockdown of miRNA-205 or overexpression of E2F1 reversed the roles of M/T-Exo in BCCs. In vivo experiments showed that the intratumoral injection of M/T-Exo caused greater tamoxifen resistance and larger tumor size relative to mice treated with miRNA-205-knockdown or E2F1-overexpressing BCCs. Together, the results suggest that exosomal miRNA-205 may promote tamoxifen resistance and tumorigenesis in BC through targeting E2F1 in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Zhao
- Thyroid and Breast Department, Extra-Thyroid and Breast Neoplasms, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Li-Jun Jin
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiao-Yu Zhang
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
13
|
Reprogramming of microRNA expression via E2F1 downregulation promotes Salmonella infection both in infected and bystander cells. Nat Commun 2021; 12:3392. [PMID: 34099666 PMCID: PMC8184997 DOI: 10.1038/s41467-021-23593-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells’ susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection. Cells infected with pathogens can release signals that instruct neighbouring cells to mount an immune response or that reduce these cells’ susceptibility to infection. Here, Aguilar et al. show the opposite effect: cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells by activating their ER-stress response.
Collapse
|
14
|
Hua B, Li Y, Yang X, Niu X, Zhao Y, Zhu X. MicroRNA-361-3p promotes human breast cancer cell viability by inhibiting the E2F1/P73 signalling pathway. Biomed Pharmacother 2020; 125:109994. [PMID: 32092817 DOI: 10.1016/j.biopha.2020.109994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023] Open
Abstract
Analysis of the microRNA (miRNA) expression signature of breast cancer based on RNA sequencing demonstrated that miR-361-3p was significantly upregulated in breast cancer tissues. miR-361-3p is a novel miRNA, and its role in breast cancer is currently unclear. The aim of the present study was to investigate the functions of miR-361-3p in breast carcinoma. In this study, it was observed that the expression of miR-361-3p in cancer tissues was significantly higher compared with that in para-cancerous tissues and was correlated with advanced TNM stage, Ki-67 overexpression and shorter disease-free survival. Overexpression of miR-361-3p promoted proliferation and inhibited apoptosis of breast cancer cells. Through RNA sequencing, multi-library retrieval, luciferase reporter assays, quantitative polymerase chain reaction analysis, western blotting and other methods, it was verified that E2F1 was directly downregulated by miR-361-3p. The knockdown of E2F1 by siRNA promoted breast cancer cell proliferation and inhibited apoptosis, similar to miR-361-3p. In addition, miR-361-3p was able to decrease the expression of P73 by targeting E2F1, whereas overexpression of P73 reversed the effect of miR-361-3p on the viability of breast cancer cell lines. Thus, the present study demonstrated that miR-361-3p acts as an oncomiR in breast cancer to promote proliferation and inhibit apoptosis through inhibiting the P73 pathway by downregulating E2F1 expression, which may uncover valuable prognostic factors or treatment targets.
Collapse
Affiliation(s)
- Bin Hua
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yao Li
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xin Yang
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xiaojuan Niu
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
15
|
Xu Q, Ge Q, Zhou Y, Yang B, Yang Q, Jiang S, Jiang R, Ai Z, Zhang Z, Teng Y. MELK promotes Endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine 2020; 51:102609. [PMID: 31915116 PMCID: PMC7000338 DOI: 10.1016/j.ebiom.2019.102609] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022] Open
Abstract
Background Endometrial carcinoma (EC) is one of the most common gynecological malignancies among women. Maternal embryonic leucine Zipper Kinase (MELK) is upregulated in a variety of human tumors, where it contributes to malignant phenotype and correlates with a poor prognosis. However, the biological function of MELK in EC progression remains largely unknown. Methods We explored the MELK expression in EC using TCGA and GEO databases and verified it using clinical samples by IHC methods. CCK-8 assay, colony formation assay, cell cycle assay, wound healing assay and subcutaneous xenograft mouse model were generated to estimate the functions of MELK and its inhibitor OTSSP167. qRT-PCR, western blotting, co-immunoprecipitation, chromatin immunoprecipitation and luciferase reporter assay were performed to uncover the underlying mechanism concerning MELK during the progression of EC. Findings MELK was significantly elevated in patients with EC, and high expression of MELK was associated with serous EC, high histological grade, advanced clinical stage and reduced overall survival and disease-free survival. MELK knockdown decreased the ability of cell proliferation and migration in vitro and subcutaneous tumorigenesis in vivo. In addition, high expression of MELK could be regulated by transcription factor E2F1. Moreover, we found that MELK had a direct interaction with MLST8 and then activated mTORC1 and mTORC2 signaling pathway for EC progression. Furthermore, OTSSP167, an effective inhibitor, could inhibit cell proliferation driven by MELK in vivo and vitro assays. Interpretation We have explored the crucial role of the E2F1/MELK/mTORC1/2 axis in the progression of EC, which could be served as potential therapeutic targets for treatment of EC. Funding This research was supported by National Natural Science Foundation of China (No:81672565), the Natural Science Foundation of Shanghai (Grant NO:17ZR1421400 to Dr. Zhihong Ai) and the fundamental research funds for central universities (No: 22120180595).
Collapse
Affiliation(s)
- Qinyang Xu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Qiulin Ge
- Centre of assisted reproduction, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Yang Zhou
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Bikang Yang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Rongzhen Jiang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Zhihong Ai
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China.
| |
Collapse
|
16
|
Chun JN, Cho M, Park S, So I, Jeon JH. The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility? Biochim Biophys Acta Rev Cancer 2019; 1873:188336. [PMID: 31870703 DOI: 10.1016/j.bbcan.2019.188336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The transcription factor E2F1 plays a crucial role in mediating multiple cancer hallmark capabilities that regulate cell cycle, survival, apoptosis, metabolism, and metastasis. Aberrant activation of E2F1 is closely associated with a poor clinical outcome in various human cancers. However, E2F1 has conflictingly been reported to exert tumor suppressive activity, raising a question as to the nature of its substantive role in the control of cell fate. In this review, we summarize deregulated E2F1 activity and its role in prostate cancer. We highlight the recent advances in understanding the molecular mechanism by which E2F1 regulates the development and progression of prostate cancer, providing insight into how cell context or data interpretation shapes the role of E2F1 in prostate cancer. This review will aid in translating biomedical knowledge into therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Minsoo Cho
- Undergraduate Research Program, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
17
|
Pereira SS, Monteiro MP, Antonini SR, Pignatelli D. Apoptosis regulation in adrenocortical carcinoma. Endocr Connect 2019; 8:R91-R104. [PMID: 30978697 PMCID: PMC6510712 DOI: 10.1530/ec-19-0114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Apoptosis evading is a hallmark of cancer. Tumor cells are characterized by having an impaired apoptosis signaling, a fact that deregulates the balance between cell death and survival, leading to tumor development, invasion and resistance to treatment. In general, patients with adrenocortical carcinomas (ACC) have an extremely bad prognosis, which is related to disease progression and significant resistance to treatments. In this report, we performed an integrative review about the disruption of apoptosis in ACC that may underlie the characteristic poor prognosis in these patients. Although the apoptosis has been scarcely studied in ACC, the majority of the deregulation phenomena already described are anti-apoptotic. Most importantly, in a near future, targeting apoptosis modulation in ACC patients may become a promising therapeutic.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Endocrinology, Hospital S. João, Porto, Portugal
- Correspondence should be addressed to D Pignatelli:
| |
Collapse
|
18
|
Goody D, Gupta SK, Engelmann D, Spitschak A, Marquardt S, Mikkat S, Meier C, Hauser C, Gundlach JP, Egberts JH, Martin H, Schumacher T, Trauzold A, Wolkenhauer O, Logotheti S, Pützer BM. Drug Repositioning Inferred from E2F1-Coregulator Interactions Studies for the Prevention and Treatment of Metastatic Cancers. Theranostics 2019; 9:1490-1509. [PMID: 30867845 PMCID: PMC6401510 DOI: 10.7150/thno.29546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Metastasis management remains a long-standing challenge. High abundance of E2F1 triggers tumor progression by developing protein-protein interactions (PPI) with coregulators that enhance its potential to activate a network of prometastatic transcriptional targets. Methods: To identify E2F1-coregulators, we integrated high-throughput Co-immunoprecipitation (IP)/mass spectometry, GST-pull-down assays, and structure modeling. Potential inhibitors of PPI discovered were found by bioinformatics-based pharmacophore modeling, and transcriptome profiling was conducted to screen for coregulated downstream targets. Expression and target gene regulation was validated using qRT-PCR, immunoblotting, chromatin IP, and luciferase assays. Finally, the impact of the E2F1-coregulator complex and its inhibiting drug on metastasis was investigated in vitro in different cancer entities and two mouse metastasis models. Results: We unveiled that E2F1 forms coactivator complexes with metastasis-associated protein 1 (MTA1) which, in turn, is directly upregulated by E2F1. The E2F1:MTA1 complex potentiates hyaluronan synthase 2 (HAS2) expression, increases hyaluronan production and promotes cell motility. Disruption of this prometastatic E2F1:MTA1 interaction reduces hyaluronan synthesis and infiltration of tumor-associated macrophages in the tumor microenvironment, thereby suppressing metastasis. We further demonstrate that E2F1:MTA1 assembly is abrogated by small-molecule, FDA-approved drugs. Treatment of E2F1/MTA1-positive, highly aggressive, circulating melanoma cells and orthotopic pancreatic tumors with argatroban prevents metastasis and cancer relapses in vivo through perturbation of the E2F1:MTA1/HAS2 axis. Conclusion: Our results propose argatroban as an innovative, E2F-coregulator-based, antimetastatic drug. Cancer patients with the infaust E2F1/MTA1/HAS2 signature will likely benefit from drug repositioning.
Collapse
|
19
|
Yao T, Lu R, Zhang J, Fang X, Fan L, Huang C, Lin R, Lin Z. Growth arrest‐specific 5 attenuates cisplatin‐induced apoptosis in cervical cancer by regulating STAT3 signaling via miR‐21. J Cell Physiol 2018; 234:9605-9615. [PMID: 30352127 DOI: 10.1002/jcp.27647] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Yao
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University Guangzhou China
| | - Rongbiao Lu
- Department of Dermatology Third Affiliated Hospital, Sun Yet‐Sen University Guangzhou China
| | - Jun Zhang
- Department of Obstetrics and Gynecology The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University Shenzhen China
| | - Xingyu Fang
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Li Fan
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Chunxian Huang
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Rongchun Lin
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Zhongqiu Lin
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| |
Collapse
|
20
|
Li H, Wang X, Zhang C, Cheng Y, Yu M, Zhao K, Ge W, Cai A, Zhang Y, Han F, Hu Y. HDAC1-induced epigenetic silencing of ASPP2 promotes cell motility, tumour growth and drug resistance in renal cell carcinoma. Cancer Lett 2018; 432:121-131. [DOI: 10.1016/j.canlet.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
|
21
|
TACC3 transcriptionally upregulates E2F1 to promote cell growth and confer sensitivity to cisplatin in bladder cancer. Cell Death Dis 2018; 9:72. [PMID: 29358577 PMCID: PMC5833822 DOI: 10.1038/s41419-017-0112-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has shown that transforming acidic coiled-coil 3 (TACC3) is deregulated in a broad spectrum of cancers. In the present study, we reported that TACC3 was markedly elevated in bladder cancer, especially in muscle-invasive bladder cancers (MIBCs). The upregulation of TACC3 was positively associated with tumor invasiveness, grade, T stage, and progression in patients with bladder cancer. Furthermore, a Kaplan-Meier survival analysis showed that patients with bladder cancer whose tumors had high TACC3 expression experienced a dismal prognosis compared with patients whose tumors had low TACC3 expression. Functional studies have found that TACC3 is a prerequisite for the development of malignant characteristics of bladder cancer cells, including cell proliferation and invasion. Moreover, TACC3 promoted G1/S transition, which was mediated via activation of the transcription of E2F1, eventually enhancing cell proliferation. Notably, the overexpression of TACC3 or E2F1 indicates a high sensitivity to cisplatin. Taken together, these findings define a tumor-supportive role for TACC3, which may also serve as a prognostic and therapeutic indicator in bladder cancers.
Collapse
|
22
|
Idh2 deficiency accelerates renal dysfunction in aged mice. Biochem Biophys Res Commun 2017; 493:34-39. [DOI: 10.1016/j.bbrc.2017.09.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022]
|
23
|
Xie Y, Si J, Wang Y, Li H, Di C, Yan J, Ye Y, Zhang Y, Zhang H. E2F is involved in radioresistance of carbon ion induced apoptosis via Bax/caspase 3 signal pathway in human hepatoma cell. J Cell Physiol 2017; 233:1312-1320. [DOI: 10.1002/jcp.26005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yi Xie
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Jing Si
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Yu‐Pei Wang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | - Hong‐Yan Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | - Cui‐Xia Di
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Jun‐Fang Yan
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | | | | | - Hong Zhang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Gansu Wuwei Tumor HospitalWuweiChina
| |
Collapse
|
24
|
Gao Y, Feng B, Lu L, Han S, Chu X, Chen L, Wang R. MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers. Oncotarget 2017; 8:60624-60639. [PMID: 28947999 PMCID: PMC5601167 DOI: 10.18632/oncotarget.17364] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
E2F transcription factor 3 (E2F3) is oncogenic in tumorigenesis. Alterations in E2F3 functions correspond with poor prognosis in various cancers, underscoring their status for the clinical cancer phenotype. Latest reports discovered intricate networks between microRNAs (miRNAs) and E2F3 in regulating the balance of these events, including proliferation, apoptosis, metastasis, as well as drug resistance. miRNAs are non-coding small RNAs which negatively regulate gene expressions post-transcriptionally mainly through 3′-UTR binding of target mRNAs. Increasing evidence shows that E2F3 can be activated/inhibited by numerous miRNAs whose dysregulation has been implicated in malignancy. In turn, miRNAs themselves can be transcriptionally regulated by E2F3, thus forming a negative feedback loop. These findings add a new challenging layer of complexity to E2F3 network. Current understanding of the reciprocal link between E2F3 and miRNAs in human cancers were summarized, which could help to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanping Gao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
25
|
Lv Y, Xiao J, Liu J, Xing F. E2F8 is a Potential Therapeutic Target for Hepatocellular Carcinoma. J Cancer 2017; 8:1205-1213. [PMID: 28607595 PMCID: PMC5463435 DOI: 10.7150/jca.18255] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
E2F transcriptional factors are widely expressed in a number of tissues and organs, possessing many regulatory functions related to cellular proliferation, differentiation, DNA repair, cell-cycle and cell apoptosis. E2F8 is a recently identified member of the E2F family with a duplicated DNA-binding domain feature discriminated from E2F1-6, controlling gene expression in a dimerization partner-independent manner. It is indispensable for angiogenesis, lymphangiogenesis and embryonic development. Although E2F8 and E2F7 perform complementary and overlapping functions in many cell metabolisms, E2F8, but not E2F7, overexpresses remarkably in hepatocellular carcinoma (HCC) to facilitate the HCC occurrence and development via activating a E2F1/ Cyclin D1 signaling pathway to regulate the G1- to S-phase transition of cell cycle progression or transcriptionally suppressing CDK1 to induce hepatocyte polyploidization. It also involves closely a variety of cellular physiological functions and pathological processes, which may bring a new breakthrough for the treatment of certain diseases, especially the HCC. Here, we summarize the latest progress of E2F8 on its relevant functions and mechanisms as well as potential application.
Collapse
Affiliation(s)
- Yi Lv
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Key Laboratory of Functional Protein Research of Guangdong, Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jia Xiao
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou, China
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Key Laboratory of Functional Protein Research of Guangdong, Higher Education Institutes, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 2016; 17:1516-1531. [PMID: 27702988 PMCID: PMC5090709 DOI: 10.15252/embr.201643030] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Historically, cancers have been treated with chemotherapeutics aimed to have profound effects on tumor cells with only limited effects on normal tissue. This approach was followed by the development of small‐molecule inhibitors that can target oncogenic pathways critical for the survival of tumor cells. The clinical targeting of these so‐called oncogene addictions, however, is in many instances hampered by the outgrowth of resistant clones. More recently, the proper functioning of non‐mutated genes has been shown to enhance the survival of many cancers, a phenomenon called non‐oncogene addiction. In the current review, we will focus on the distinct non‐oncogenic addictions found in cancer cells, including synthetic lethal interactions, the underlying stress phenotypes, and arising therapeutic opportunities.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Evaluating Effects of Hypomorphic Thoc1 Alleles on Embryonic Development in Rb1 Null Mice. Mol Cell Biol 2016; 36:1621-7. [PMID: 27001308 DOI: 10.1128/mcb.01003-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/16/2016] [Indexed: 12/22/2022] Open
Abstract
The Rb1 tumor suppressor protein is a molecular adaptor that physically links transcription factors like E2f with various proteins acting on DNA or RNA to repress gene expression. Loss of Rb1 liberates E2f to activate the expression of genes mediating resulting phenotypes. Most Rb1 binding proteins, including E2f, interact through carboxyl-terminal protein interaction domains, but genetic evidence suggests that an amino-terminal protein interaction domain is also important. One protein that binds Rb1 through the amino-terminal domain is encoded by Thoc1, a required component of the THO ribonucleoprotein complex important for RNA processing and transport. The physiological relevance of this interaction is unknown. Here we tested whether Thoc1 mediates effects of Rb1 loss on mouse embryonic development. We found that Thoc1 deficiency delays embryo death, and this delay correlates with reduced apoptosis in the brain. E2f protein levels are reduced in Rb1:Thoc1-deficient brain tissue. Expression of apoptotic regulatory genes regulated by E2f, like Apaf1 and Bak1, is also reduced. These observations suggest that Thoc1 is required to support increased expression of E2f and apoptotic regulatory genes that trigger apoptosis upon Rb1 loss. These findings implicate Rb1 in the regulation of the THO ribonucleoprotein complex.
Collapse
|
28
|
Ertosun MG, Hapil FZ, Osman Nidai O. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev 2016; 31:17-25. [PMID: 26947516 DOI: 10.1016/j.cytogfr.2016.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Fatma Zehra Hapil
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Ozes Osman Nidai
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey.
| |
Collapse
|
29
|
Zou Z, Chen J, Liu A, Zhou X, Song Q, Jia C, Chen Z, Lin J, Yang C, Li M, Jiang Y, Bai X. mTORC2 promotes cell survival through c-Myc-dependent up-regulation of E2F1. J Cell Biol 2016; 211:105-22. [PMID: 26459601 PMCID: PMC4602034 DOI: 10.1083/jcb.201411128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inactivation of mTORC2 reduces PP2A activity toward c-Myc serine 62 (S62), leading to enhancement of c-Myc phosphorylation and expression and increased transcription of pri-miR-9-2/miR-9-3p, which in turn suppresses E2F1 and enhances apoptosis. Previous studies have reported that mTORC2 promotes cell survival through phosphorylating AKT and enhancing its activity. We reveal another mechanism by which mTORC2 controls apoptosis. Inactivation of mTORC2 promotes binding of CIP2A to PP2A, leading to reduced PP2A activity toward c-Myc serine 62 and, consequently, enhancement of c-Myc phosphorylation and expression. Increased c-Myc activity induces transcription of pri-miR-9-2/miR-9-3p, in turn inhibiting expression of E2F1, a transcriptional factor critical for cancer cell survival and tumor progression, resulting in enhanced apoptosis. In vivo experiments using B cell–specific mTORC2 (rapamycin-insensitive companion of mTOR) deletion mice and a xenograft tumor model confirmed that inactivation of mTORC2 causes up-regulation of c-Myc and miR-9-3p, down-regulation of E2F1, and consequent reduction in cell survival. Conversely, Antagomir-9-3p reversed mTORC1/2 inhibitor–potentiated E2F1 suppression and resultant apoptosis in xenograft tumors. Our in vitro and in vivo findings collectively demonstrate that mTORC2 promotes cell survival by stimulating E2F1 expression through a c-Myc– and miR-9-3p–dependent mechanism.
Collapse
Affiliation(s)
- Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Juan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Anling Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuan Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qiancheng Song
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jun Lin
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cuilan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
30
|
The Prognostic Role and Relationship between E2F1 and SV40 in Diffuse Large B-Cell Lymphoma of Egyptian Patients. Anal Cell Pathol (Amst) 2015; 2015:919834. [PMID: 26601052 PMCID: PMC4639641 DOI: 10.1155/2015/919834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 01/19/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphomas worldwide. The pathogenesis of lymphomas is not yet well understood. SV40 induces malignant transformation by the large T-antigen (L-TAG) and promotes transformation by binding and inactivating p53 and pRb. L-TAG can bind pRb promoting the activation of the E2F1 transcription factor, thus inducing the expression of genes required for the entry to the S phase and leading to cell transformation. This immunohistochemical study was conducted to assess the prognostic role and relationship of SV40 L-TAG and E2F1 in diffuse large B-cell lymphoma (DLBCL) of Egyptian patients. This retrospective study was conducted on 105 tissue specimens including 20 follicular hyperplasia and 85 DLBCL cases. SV40 L-TAG was identified in 3/85 (4%) of DLBCL. High Ki-67 labeling index (Ki-67 LI) and apoptotic count were associated with high E2F1 expression (p<0.001 for all). No significant association was reached between E2F1 and SV40. E2F1 expression proved to be the most and first independent prognostic factor on overall survival of DLBCL patients (HR = 5.79, 95% CI = 2.3–14.6, and p<0.001). Upregulation of E2F1 has been implicated in oncogenesis, prognosis, and prediction of therapeutic response but is not seemingly to have a relationship with the accused SV40.
Collapse
|
31
|
Peche LY, Ladelfa MF, Toledo MF, Mano M, Laiseca JE, Schneider C, Monte M. Human MageB2 Protein Expression Enhances E2F Transcriptional Activity, Cell Proliferation, and Resistance to Ribotoxic Stress. J Biol Chem 2015; 290:29652-62. [PMID: 26468294 DOI: 10.1074/jbc.m115.671982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 12/15/2022] Open
Abstract
MageB2 belongs to the melanoma antigen gene (MAGE-I) family of tumor-specific antigens. Expression of this gene has been detected in human tumors of different origins. However, little is known about the protein function and how its expression affects tumor cell phenotypes. In this work, we found that human MageB2 protein promotes tumor cell proliferation in a p53-independent fashion, as observed both in cultured cells and growing tumors in mice. Gene expression analysis showed that MageB2 enhances the activity of E2F transcription factors. Mechanistically, the activation of E2Fs is related to the ability of MageB2 to interact with the E2F inhibitor HDAC1. Cellular distribution of MageB2 protein includes the nucleoli. Nevertheless, ribotoxic drugs rapidly promote its nucleolar exit. We show that MageB2 counteracts E2F inhibition by ribosomal proteins independently of Mdm2 expression. Importantly, MageB2 plays a critical role in impairing cell cycle arrest in response to Actinomycin D. The data presented here support a relevant function for human MageB2 in cancer cells both under cycling and stressed conditions, presenting a distinct functional feature with respect to other characterized MAGE-I proteins.
Collapse
Affiliation(s)
- Leticia Y Peche
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - María F Ladelfa
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - María F Toledo
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Miguel Mano
- the International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34149 Trieste, Italy, and
| | - Julieta E Laiseca
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Claudio Schneider
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Padriciano 99, 34149 Trieste, Italy, the Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Martín Monte
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina,
| |
Collapse
|
32
|
Wang Y, Alla V, Goody D, Gupta SK, Spitschak A, Wolkenhauer O, Pützer BM, Engelmann D. Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures. Nucleic Acids Res 2015; 44:117-33. [PMID: 26350215 PMCID: PMC4705687 DOI: 10.1093/nar/gkv885] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced cancers contributes essentially to cancer cell propagation and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for EPC1 (enhancer of polycomb homolog 1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds to the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin/BIRC5 and inhibits death-inducing targets. The uncovered cooperativity between EPC1 and E2F1 triggers a metastasis-related gene signature in advanced cancers that predicts poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
33
|
Pagliarini V, Giglio P, Bernardoni P, De Zio D, Fimia GM, Piacentini M, Corazzari M. Downregulation of E2F1 during ER stress is required to induce apoptosis. J Cell Sci 2015; 128:1166-79. [PMID: 25616897 DOI: 10.1242/jcs.164103] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The endoplasmic reticulum (ER) has recently emerged as an alternative target to induce cell death in tumours, because prolonged ER stress results in the induction of apoptosis even in chemoresistant transformed cells. Here, we show that the DNA-damage-responsive pro-apoptotic factor E2F1 is unexpectedly downregulated during the ER stress-mediated apoptotic programme. E2F1 decline is a late event during the ER response and is mediated by the two unfolded protein response (UPR) sensors ATF6 and IRE1 (also known as ERN1). Whereas ATF6 directly interacts with the E2F1 promoter, IRE1 requires the involvement of the known E2F1 modulator E2F7, through the activation of its main target Xbp-1. Importantly, inhibition of the E2F1 decrease prevents ER-stress-induced apoptosis, whereas E2F1 knockdown efficiently sensitises cells to ER stress-dependent apoptosis, leading to the upregulation of two main factors in the UPR pro-apoptotic execution phase, Puma and Noxa (also known as BBC3 and PMAIP1, respectively). Our results point to a novel key role of E2F1 in the cell survival/death decision under ER stress, and unveil E2F1 inactivation as a valuable novel potential therapeutic strategy to increase the response of tumour cells to ER stress-based anticancer treatments.
Collapse
Affiliation(s)
- Vittoria Pagliarini
- National Institute for Infectious Disease 'L. Spallanzani' IRCCS, 00149 Rome, Italy
| | - Paola Giglio
- National Institute for Infectious Disease 'L. Spallanzani' IRCCS, 00149 Rome, Italy
| | - Paolo Bernardoni
- National Institute for Infectious Disease 'L. Spallanzani' IRCCS, 00149 Rome, Italy
| | - Daniela De Zio
- Department of Biology, Unit of the Dulbecco Telethon Institute, University of Rome 'Tor Vergata', 00133 Rome, Italy Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen DK-2100, Denmark
| | - Gian Maria Fimia
- National Institute for Infectious Disease 'L. Spallanzani' IRCCS, 00149 Rome, Italy Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Mauro Piacentini
- National Institute for Infectious Disease 'L. Spallanzani' IRCCS, 00149 Rome, Italy Cellular and Developmental Lab, Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
| | - Marco Corazzari
- National Institute for Infectious Disease 'L. Spallanzani' IRCCS, 00149 Rome, Italy Cellular and Developmental Lab, Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
| |
Collapse
|
34
|
CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett 2014; 357:83-104. [PMID: 25449786 DOI: 10.1016/j.canlet.2014.10.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/04/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023]
Abstract
According to the cancer stem-like cell (CSC) hypothesis, neoplastic clones are maintained by a small fraction of cells with stem cell properties. Also, melanoma resistance to chemo- and radiotherapy is thought to be attributed to melanoma stem-like cells (MSCs). Caffeic acid phenethyl ester (CAPE) is a bioactive molecule, whose antitumor activity is approved in different tumor types. CAPE induced both apoptosis and E2F1 expression in CD133(-), but not in CD133(+) melanoma subpopulations. The resistance of CD133(+) melanoma subpopulation is attributed to the enhanced drug efflux mediated by ATP-binding cassette sub-family B member 5 (ABCB5), since the knockdown of ABCB5 was found to sensitize CD133(+) cells to CAPE. CAPE-induced apoptosis is mediated by E2F1 as evidenced by the abrogation of apoptosis induced in response to the knockdown of E2F1. The functional analysis of E2F1 in CD133(+) melanoma subpopulation demonstrated the ability of E2F1 gene transfer to trigger apoptosis of CD133(+) cells and to enhance the activation of apoptosis signal-regulating kinase (ASK1), c-Jun N-terminal kinase and p38, and the DNA-binding activities of the transcription factors AP-1 and p53. Also, the induction of E2F1 expression was found to enhance the expression of the pro-apoptotic proteins Bax, Noxa and Puma, and to suppress the anti-apoptotic protein Mcl-1. Using specific pharmacological inhibitors we could demonstrate that E2F1 overcomes the chemo-resistance of MSCs/CD133(+) cells by a mechanism mediated by both mitochondrial dysregulation and ER-stress-dependent pathways. In conclusion, our data addresses the mechanisms of CAPE/E2F1-induced apoptosis of chemo-resistant CD133(+) melanoma subpopulation.
Collapse
|
35
|
Kumari A, Iwasaki T, Pyndiah S, Cassimere EK, Palani CD, Sakamuro D. Regulation of E2F1-induced apoptosis by poly(ADP-ribosyl)ation. Cell Death Differ 2014; 22:311-22. [PMID: 25257171 DOI: 10.1038/cdd.2014.146] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022] Open
Abstract
The transcription factor adenovirus E2 promoter-binding factor (E2F)-1 normally enhances cell-cycle progression, but it also induces apoptosis under certain conditions, including DNA damage and serum deprivation. Although DNA damage facilitates the phosphorylation and stabilization of E2F1 to trigger apoptosis, how serum starvation renders cells vulnerable to E2F1-induced apoptosis remains unclear. Because poly(ADP-ribose) polymerase 1 (PARP1), a nuclear enzyme essential for genomic stability and chromatin remodeling, interacts directly with E2F1, we investigated the effects of PARP1 on E2F1-mediated functions in the presence and absence of serum. PARP1 attenuation, which increased E2F1 transactivation, induced G2/M cell-cycle arrest under normal growth conditions, but enhanced E2F1-induced apoptosis in serum-starved cells. Interestingly, basal PARP1 activity was sufficient to modify E2F1 by poly(ADP-ribosyl)ation, which stabilized the interaction between E2F1 and the BIN1 tumor suppressor in the nucleus. Accordingly, BIN1 acted as an RB1-independent E2F1 corepressor. Because E2F1 directly activates the BIN1 gene promoter, BIN1 curbed E2F1 activity through a negative-feedback mechanism. Conversely, when the BIN1-E2F1 interaction was abolished by PARP1 suppression, E2F1 continuously increased BIN1 levels. This is functionally germane, as PARP1-depletion-associated G2/M arrest was reversed by the transfection of BIN1 siRNA. Moreover, PARP-inhibitor-associated anti-transformation activity was compromised by the coexpression of dominant-negative BIN1. Because serum starvation massively reduced the E2F1 poly(ADP-ribosyl)ation, we conclude that the release of BIN1 from hypo-poly(ADP-ribosyl)ated E2F1 is a mechanism by which serum starvation promotes E2F1-induced apoptosis.
Collapse
Affiliation(s)
- A Kumari
- 1] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA [2] Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - T Iwasaki
- 1] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA [2] Laboratory of Molecular Biology, Research Center for Environmental Genomics, Kobe University, Kobe 657, Japan
| | - S Pyndiah
- Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - E K Cassimere
- Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - C D Palani
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| | - D Sakamuro
- 1] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA [2] Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
36
|
Frau M, Feo CF, Feo F, Pascale RM. New insights on the role of epigenetic alterations in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:65-83. [PMID: 27508177 PMCID: PMC4918272 DOI: 10.2147/jhc.s44506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence assigns to epigenetic mechanisms heritable differences in gene function that come into being during cell development or via the effect of environmental factors. Epigenetic deregulation is strongly involved in the development of hepatocellular carcinoma (HCC). It includes changes in methionine metabolism, promoter hypermethylation, or increased proteasomal degradation of oncosuppressors, as well as posttranscriptional deregulation by microRNA or messenger RNA (mRNA) binding proteins. Alterations in the methylation of the promoter of methyl adenosyltransferase MAT1A and MAT2A genes in HCC result in decreased S-adenosylmethionine levels, global DNA hypomethylation, and deregulation of signal transduction pathways linked to methionine metabolism and methyl adenosyltransferases activity. Changes in S-adenosylmethionine levels may also depend on MAT1A mRNA destabilization associated with MAT2A mRNA stabilization by specific proteins. Decrease in MAT1A expression has also been attributed to miRNA upregulation in HCC. A complex deregulation of miRNAs is also strongly involved in hepatocarcinogenesis, with up-regulation of different miRNAs targeting oncosuppressor genes and down-regulation of miRNAs targeting genes involved in cell-cycle and signal transduction control. Oncosuppressor gene down-regulation in HCC is also induced by promoter hypermethylation or posttranslational deregulation, leading to proteasomal degradation. The role of epigenetic changes in hepatocarcinogenesis has recently suggested new promising therapeutic approaches for HCC on the basis of the administration of methylating agents, inhibition of methyl adenosyltransferases, and restoration of the expression of tumor-suppressor miRNAs.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
37
|
Al-Sharif I, Remmal A, Aboussekhra A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer 2013; 13:600. [PMID: 24330704 PMCID: PMC3931838 DOI: 10.1186/1471-2407-13-600] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/28/2013] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer is a major health problem that threatens the lives of millions of women worldwide each year. Most of the chemotherapeutic agents that are currently used to treat this complex disease are highly toxic with long-term side effects. Therefore, novel generation of anti-cancer drugs with higher efficiency and specificity are urgently needed. Methods Breast cancer cell lines were treated with eugenol and cytotoxicity was measured using the WST-1 reagent, while propidium iodide/annexinV associated with flow cytometry was utilized in order to determine the induced cell death pathway. The effect of eugenol on apoptotic and pro-carcinogenic proteins, both in vitro and in tumor xenografts was assessed by immunoblotting. While RT-PCR was used to determine eugenol effect on the E2F1 and survivin mRNA levels. In addition, we tested the effect of eugenol on cell proliferation using the real-time cell electronic sensing system. Results Eugenol at low dose (2 μM) has specific toxicity against different breast cancer cells. This killing effect was mediated mainly through inducing the internal apoptotic pathway and strong down-regulation of E2F1 and its downstream antiapoptosis target survivin, independently of the status of p53 and ERα. Eugenol inhibited also several other breast cancer related oncogenes, such as NF-κB and cyclin D1. Moreover, eugenol up-regulated the versatile cyclin-dependent kinase inhibitor p21WAF1 protein, and inhibited the proliferation of breast cancer cells in a p53-independent manner. Importantly, these anti-proliferative and pro-apoptotic effects were also observed in vivo in xenografted human breast tumors. Conclusion Eugenol exhibits anti-breast cancer properties both in vitro and in vivo, indicating that it could be used to consolidate the adjuvant treatment of breast cancer through targeting the E2F1/survivin pathway, especially for the less responsive triple-negative subtype of the disease.
Collapse
Affiliation(s)
| | | | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, MBC # 03-66, PO BOX 3354, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
38
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 PMCID: PMC3799232 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
39
|
Hsu TH, Chu CC, Hung MW, Lee HJ, Hsu HJ, Chang TC. Caffeic acid phenethyl ester induces E2F-1-mediated growth inhibition and cell-cycle arrest in human cervical cancer cells. FEBS J 2013; 280:2581-93. [DOI: 10.1111/febs.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Tzu-Hui Hsu
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei; Taiwan
| | | | - Mei-Whey Hung
- Department of Research and Education; Veteran General Hospital; Taipei; Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry; National Defense Medical Center; Taipei; Taiwan
| | - Hsien-Jun Hsu
- Department of Biochemistry; National Defense Medical Center; Taipei; Taiwan
| | | |
Collapse
|
40
|
Calvisi DF, Frau M, Tomasi ML, Feo F, Pascale RM. Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: novel insights from interspecies comparison. Biochim Biophys Acta Rev Cancer 2013; 1826:215-37. [PMID: 23393659 DOI: 10.1016/j.bbcan.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, P13K/AKT, IKK/NF-kB, WNT, TGF-ß, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
41
|
Vera J, Schmitz U, Lai X, Engelmann D, Khan FM, Wolkenhauer O, Pützer BM. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Res 2013; 73:3511-24. [PMID: 23447575 DOI: 10.1158/0008-5472.can-12-4095] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug resistance is a major cause of deaths from cancer. E2F1 is a transcription factor involved in cell proliferation, apoptosis. and metastasis through an intricate regulatory network, which includes other transcription factors like p73 and cancer-related microRNAs like miR-205. To investigate the emergence of drug resistance, we developed a methodology that integrates experimental data with a network biology and kinetic modeling. Using a regulatory map developed to summarize knowledge on E2F1 and its interplay with p73/DNp73 and miR-205 in cancer drug responses, we derived a kinetic model that represents the network response to certain genotoxic and cytostatic anticancer drugs. By perturbing the model parameters, we simulated heterogeneous cell configurations referred to as in silico cell lines. These were used to detect genetic signatures characteristic for single or double drug resistance. We identified a signature composed of high E2F1 and low miR-205 expression that promotes resistance to genotoxic drugs. In this signature, downregulation of miR-205, can be mediated by an imbalance in the p73/DNp73 ratio or by dysregulation of other cancer-related regulators of miR-205 expression such as TGFβ-1 or TWIST1. In addition, we found that a genetic signature composed of high E2F1, low miR-205, and high ERBB3 can render tumor cells insensitive to both cytostatic and genotoxic drugs. Our model simulations also suggested that conventional genotoxic drug treatment favors selection of chemoresistant cells in genetically heterogeneous tumors, in a manner requiring dysregulation of incoherent feedforward loops that involve E2F1, p73/DNp73, and miR-205.
Collapse
Affiliation(s)
- Julio Vera
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock.
| | | | | | | | | | | | | |
Collapse
|
42
|
E2F1 apoptosis counterattacked: evil strikes back. Trends Mol Med 2013; 19:89-98. [DOI: 10.1016/j.molmed.2012.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 12/15/2022]
|
43
|
Li Y, Shao J, Shen K, Xu Y, Liu J, Qian X. E2F1-dependent pathways are involved in amonafide analogue 7-d-induced DNA damage, G2/M arrest, and apoptosis in p53-deficient K562 cells. J Cell Biochem 2013; 113:3165-77. [PMID: 22593008 DOI: 10.1002/jcb.24194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up- and down-stream events involved in the activation of the E2F1-dependent pro-apoptotic pathway. For this purpose, a amonafide analogue, 7-d (2-(3-(2-(Dimethylamino)ethylamino)propyl)-6-(dodecylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione) was screened, which exhibited high antitumor activity against p53-deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7-d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time-dependent manner via p53-independent pathway. A striking increase in "Comet tail" formation and γ-H2AX expression showed that DNA double strand breaks (DSB) were caused by 7-d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7-d-induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7-d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf-1 and p73 dissociation from HDM2 was induced by 7-d treatment, however, knockout of E2F1 expression reversed p73, Apaf-1, and p21(Cip1/WAF1) expression, reactivated cell cycle progression, and inhibited 7-d-induced apoptosis. Altogether our results for the first time indicate that 7-d mediates its growth inhibitory effects on CML p53-deficient cells via the activation of an E2F1-dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf-1, and p21(Cip1/WAF1).
Collapse
Affiliation(s)
- Yiquan Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Knoll S, Emmrich S, Pützer BM. The E2F1-miRNA Cancer Progression Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:135-47. [DOI: 10.1007/978-94-007-5590-1_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Abstract
The p53 tumor suppressor is activated in response to cellular stresses to induce cell-cycle arrest, cellular senescence, and apoptosis. The p53 gene is inactivated by mutations in more than 50% of human tumors. In addition, tumor cells dampen p53 activities via overexpression of p53-negative regulators, in particular 2 structurally related proteins, Mdm2 and Mdm4. And yet, Mdm2 and Mdm4 possess p53-independent activities, which also contribute to tumor formation and progression. Given that Mdm2 and Mdm4 inhibit p53 activities to promote tumor development, small molecules and peptides were developed to abrogate the inhibition of p53 by Mdm proteins. Antitumor activities of these molecules have already been confirmed in preclinical studies and early-phase clinical trials. These research endeavors and clinical advances constitute the main focus of this review.
Collapse
Affiliation(s)
- Qin Li
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
46
|
de Olano N, Koo CY, Monteiro LJ, Pinto PH, Gomes AR, Aligue R, Lam EWF. The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment. Mol Cancer Res 2012; 10:1189-202. [PMID: 22802261 DOI: 10.1158/1541-7786.mcr-11-0559] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
E2F1 is responsible for the regulation of FOXM1 expression, which plays a key role in epirubicin resistance. Here, we examined the role and regulation of E2F1 in response to epirubicin in cancer cells. We first showed that E2F1 plays a key role in promoting FOXM1 expression, cell survival, and epirubicin resistance as its depletion by siRNA attenuated FOXM1 induction and cell viability in response to epirubicin. We also found that the p38-MAPK activity mirrors the expression patterns of E2F1 and FOXM1 in both epirubicin-sensitive and -resistant MCF-7 breast cancer cells, suggesting that p38 has a role in regulating E2F1 expression and epirubicin resistance. Consistently, studies using pharmacologic inhibitors, siRNA knockdown, and knockout mouse embryonic fibroblasts (MEF) revealed that p38 mediates the E2F1 induction by epirubicin and that the induction of E2F1 by p38 is, in turn, mediated through its downstream kinase MK2 [mitogen-activated protein kinase (MAPK)-activated protein kinase 2; MAPKAPK2]. In agreement, in vitro phosphorylation assays showed that MK2 can directly phosphorylate E2F1 at Ser-364. Transfection assays also showed that E2F1 phosphorylation at Ser-364 participates in its induction by epirubicin but also suggests that other phosphorylation events are also involved. In addition, the p38-MK2 axis can also limit c-jun-NH(2)-kinase (JNK) induction by epirubicin and, notably, JNK represses FOXM1 expression. Collectively, these findings underscore the importance of p38-MK2 signaling in the control of E2F1 and FOXM1 expression as well as epirubicin sensitivity.
Collapse
Affiliation(s)
- Natalia de Olano
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Alinari L, Prince CJ, Edwards RB, Towns WH, Mani R, Lehman A, Zhang X, Jarjoura D, Pan L, Kinghorn AD, Grever MR, Baiocchi RA, Lucas DM. Dual targeting of the cyclin/Rb/E2F and mitochondrial pathways in mantle cell lymphoma with the translation inhibitor silvestrol. Clin Cancer Res 2012; 18:4600-11. [PMID: 22791882 DOI: 10.1158/1078-0432.ccr-12-0839] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE During cell-cycle progression, D-cyclins activate cyclin-dependent kinases (CDKs) 4/6 to inactivate Rb, permitting E2F1-mediated S-phase gene transcription. This critical pathway is typically deregulated in cancer, and novel inhibitory strategies would be effective in a variety of tumors. The protein synthesis inhibitor silvestrol has potent activity in B-cell leukemias via the mitochondrial pathway of apoptosis, and also reduces cyclin D1 expression in breast cancer and lymphoma cell lines. We hypothesized that this dual activity of silvestrol would make it especially effective in malignancies driven by aberrant cyclin D1 expression. EXPERIMENTAL DESIGN Mantle cell lymphoma (MCL), characterized by elevated cyclin D1, was used as a model to test this approach. The cyclin D/Rb/E2F1 pathway was investigated in vitro using MCL cell lines and primary tumor cells. Silvestrol was also evaluated in vivo using an aggressive model of MCL. RESULTS Silvestrol showed low nanomolar potency both in MCL cell lines and primary MCL tumor cells. D-cyclins were depleted with just 10 nmol/L silvestrol at 16 hours, with subsequent reductions of phosphorylated Rb, E2F1 protein, and E2F1 target transcription. As showed in other leukemias, silvestrol caused Mcl-1 depletion followed by mitochondrial depolarization and caspase-dependent apoptosis, effects not related to inhibition of CDK4/6. Silvestrol significantly (P < 0.0001) prolonged survival in a MCL xenograft model without detectable toxicity. CONCLUSIONS These data indicate that silvestrol effectively targets the cyclin/CDK/Rb pathway, and additionally induces cytotoxicity via intrinsic apoptosis. This dual activity may be an effective therapeutic strategy in MCL and other malignancies.
Collapse
Affiliation(s)
- Lapo Alinari
- Department of Internal Medicine, College of Medicine, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Arginine methylation controls growth regulation by E2F-1. EMBO J 2012; 31:1785-97. [PMID: 22327218 DOI: 10.1038/emboj.2012.17] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 01/04/2012] [Indexed: 01/19/2023] Open
Abstract
E2F transcription factors are implicated in diverse cellular functions. The founding member, E2F-1, is endowed with contradictory activities, being able to promote cell-cycle progression and induce apoptosis. However, the mechanisms that underlie the opposing outcomes of E2F-1 activation remain largely unknown. We show here that E2F-1 is directly methylated by PRMT5 (protein arginine methyltransferase 5), and that arginine methylation is responsible for regulating its biochemical and functional properties, which impacts on E2F-1-dependent growth control. Thus, depleting PRMT5 causes increased E2F-1 protein levels, which coincides with decreased growth rate and associated apoptosis. Arginine methylation influences E2F-1 protein stability, and the enhanced transcription of a variety of downstream target genes reflects increased E2F-1 DNA-binding activity. Importantly, E2F-1 is methylated in tumour cells, and a reduced level of methylation is evident under DNA damage conditions that allow E2F-1 stabilization and give rise to apoptosis. Significantly, in a subgroup of colorectal cancer, high levels of PRMT5 frequently coincide with low levels of E2F-1 and reflect a poor clinical outcome. Our results establish that arginine methylation regulates the biological activity of E2F-1 activity, and raise the possibility that arginine methylation contributes to tumourigenesis by influencing the E2F pathway.
Collapse
|
49
|
Bisso A, Collavin L, Del Sal G. p73 as a pharmaceutical target for cancer therapy. Curr Pharm Des 2011; 17:578-90. [PMID: 21391908 PMCID: PMC3267157 DOI: 10.2174/138161211795222667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 02/07/2023]
Abstract
About half of all human tumors contain an inactivating mutation of p53, while in the remaining tumors, the p53 pathway is frequently abrogated by alterations of other components of its signaling pathway. In humans, the p53 tumor suppressor is part of a small gene family that includes two other members, p73 and p63, structurally and functionally related to p53. Accumulating evidences indicate that all p53-family proteins function as molecular hubs of a highly interconnected signaling network that coordinates cell proliferation, differentiation and death in response to physiological inputs and oncogenic stress. Therefore, not only the p53-pathway but the entire “p53-family pathway” is a primary target for cancer drug development. In particular, the p53-related protein p73 has a crucial role in determining cellular responses to chemotherapy, and can vicariate p53 functions in triggering cell death after DNA damage in multiple experimental models. The biology and regulation of p73 is complex, since the TP73 gene incorporates both tumor-suppressive and proto-oncogenic functions. However, the p73 gene is rarely mutated in tumors, so appropriate pharmacological manipulation of the p73 pathway is a very promising approach for cancer therapy. Here we provide an overview of the principal mechanism of p73 regulation, and describe several examples of pharmacological tools that can induce p73 accumulation and function by acting on upstream p73 modulators or displacing inhibitory p73 interactors. A better understanding of how the p73 pathway works is mandatory to discover additional players intervening in this pathway and has important implications for the improvement of cancer treatment with the development of new molecules or with the reposition of currently available drugs.
Collapse
Affiliation(s)
- Andrea Bisso
- Laboratorio Nazionale CIB, AREA Science Park, Padriciano 99, Trieste, TS 34149, Italy
| | | | | |
Collapse
|
50
|
Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, Pallàs M, Camins A. Role of Cell Cycle Re-Entry in Neurons: A Common Apoptotic Mechanism of Neuronal Cell Death. Neurotox Res 2011; 22:195-207. [DOI: 10.1007/s12640-011-9277-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/24/2023]
|