1
|
Li Z, Liu X, Tang X, Yang Y. Analysis of gonadal transcriptome reveals core long non-coding RNA-mRNA regulatory network in sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101396. [PMID: 39667089 DOI: 10.1016/j.cbd.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Apostichopus japonicus is a representative temperate sea cucumber species, that mainly inhabits in coastal zone of the continental shelf. With high nutritional value and important medical value, A. japonicus become an important commercial aquaculture species and produce significant economic value in recent years. A. japonicus has no sexual dimorphism that can be used to distinguish female and male individuals by external appearance and morphology. The phenotype sex can be only detected by dissecting and observing gonad tissue, thus the breeding efficiency could be greatly reduced. This limitation has hindered the advancement of selective breeding programs and sea cucumber industry. To investigate the genetic basis of reproductive biology in A. japonicus, advanced sequencing techniques, such as next- and third-generation sequencing, have been employed to explore the roles of non-coding RNAs and other genetic factors, offering new insights into sex determination mechanisms. To further gain a deeper understanding of the knowledge underlying lncRNAs in gonadal differentiation, we conducted a comparative transcriptome sequencing analysis of gonadal tissues from both sexes. In our research, a total of 3990 novel lncRNAs and 1441 differentially expressed lncRNAs were identified between female and male gonads. Additionally, a molecular regulatory network indicating lncRNA-mRNA interactions was constructed based on transcriptional profiles, which provide insights into the potential cis- and trans- target genes of lncRNAs. The gonadal transcriptome analysis identified a number of novel long non-coding RNAs involved in female and male reproduction process. Both cis- and trans-acting regulatory networks indicating lncRNA-mRNA interaction were constructed based on transcriptional profiles. These findings provide new insights into the lncRNA-mediated regulation of reproductive biology in marine invertebrates, indicating the crucial roles of long non-coding sequences in regulating expression profiles. Further, the GO and KEGG enrichment analyses of cis- and trans- targeted mRNA for differentially expressed lncRNA indicated that sexual reproduction (GO:0019953), germ cell development (GO:0007281), and negative regulation of hormone secretion (GO:0046888) are potentially involved in gonadal differentiation through the regulation of long non-coding sequences. Notably, besides the classical reproduction related signaling pathway like Gonadotropin-releasing hormone (GnRH) secretion (ko04929), several regulatory pathways, such as Epidermal growth factor receptor (ErbB) signaling pathway (ko04012), TGF-beta signaling pathway (ko04350), and neurotrophin signaling pathway (ko04722) were also enriched and potentially involved in sex differentiation and gonadal development.
Collapse
Affiliation(s)
- Ziming Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinyue Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Xie Y, Liu Q, Lin W, Ren Y, Xie L. The exposure to nandrolone changed the expression of genes associated with sexual differentiation and disrupted the levels of hormones in the hypothalamic-pituitary-gonadal (HPG) axis, ultimately inducing male differentiation in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126156. [PMID: 40157480 DOI: 10.1016/j.envpol.2025.126156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Various anabolic androgenic steroids (AAS) are frequently detected in aquatic environments, yet the potential ecotoxicological impacts of their increased load have not received adequate attention. This study investigates the effects of exposure to the androgen nandrolone on sex differentiation, gonadal development, and the expression of hormones, enzymes, and proteins related to the hypothalamic-pituitary-gonadal (HPG) axis in zebrafish. The results indicate that exposure to nandrolone at 60 days post-fertilization promotes the maturation of spermatogonia, inhibits the development of oocytes, and induces their apoptosis. Additionally, there were dose-dependent changes in male differentiation and hormone levels within the HPG axis: in the high-dose group (5 μg/L), males constituted 73 % of the population, and levels of E2 hormones in gonadal tissues decreased by 33 %, while T hormone levels increased by 55 %. Furthermore, the expression of genes essential for ovarian differentiation were downregulated, whereas the expression of testicular differentiation-related genes were upregulated. The molecular docking results show that the drug can form hydrogen bonds with key proteins, which have high affinity, and are more likely to cause conformational changes in the proteins, thereby altering their activity. KEGG analysis suggests that the MAPK signaling pathway is likely the target pathway through which nandrolone exposure induces reproductive toxicity.
Collapse
Affiliation(s)
- Yufei Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Qiuyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, Guangzhou, 510006, PR China.
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| |
Collapse
|
3
|
Bashawat M, Schulze M, Müller P, Müller K. Differential impact of the kinase inhibitors ruxolitinib and ceritinib on porcine sperm in vitro. Anim Reprod Sci 2025; 277:107850. [PMID: 40318512 DOI: 10.1016/j.anireprosci.2025.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Small-molecule protein kinase inhibitors are applied for the medical treatment of several diseases (Roskoski Jr, 2016). Given the increasing use of these molecules, particularly in cancer therapy, their influence on sperm is of great importance for a better understanding of the presumed effects on the reproductive potential and fertility of male patients. Therefore, we investigated the influence of the small-molecule kinase inhibitors ruxolitinib and ceritinib on porcine sperm in vitro. Porcine sperm were employed as a substitute for mammalian, especially human sperm, as they are available in large quantities in reproducible quality. Under all conditions, ceritinib at a molar drug/lipid ratio of 1:10 had adverse effects on sperm motility, viability and membrane integrity, while ruxolitinib at highest concentrations showed no or only weak effects on motility parameters. The massive merocyanine 540 binding in all dead and most viable ceritinib treated cells already after a short-term incubation at 38°C qualifies the disturbance of membrane lipid order as the most likely cause for the observed decrease in motility and viability. Therefore, possible damage to human sperm must be considered when administering ceritinib. The attempt to investigate a kinase-mediated influence of the inhibitors on capacitation and acrosome reaction failed because even the low concentration of the solvent DMSO interfered with this function. To test effects of small-molecule kinase inhibitor on selected properties of living cells, porcine sperm has proven to be a useful in vitro model.
Collapse
Affiliation(s)
- Mohammad Bashawat
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin D-10315, Germany; Humboldt University Berlin, Department of Biology, Invalidenstr. 42, Berlin D-10115, Germany.
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schoenow, Bernauer Allee 10, Bernau D-16321, Germany.
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, Berlin D-10115, Germany.
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin D-10315, Germany.
| |
Collapse
|
4
|
Chatziparasidou A, Sarafidou T, Kyrgiafini MA, Moutou K, Markantoni M, Giannoulis T, Papatheodorou A, Oraiopoulou C, Samolada G, Christoforidis N, Mamuris Z. Unraveling the genetic basis of azoospermia: transcriptome profiling analyses in a Greek population. F&S SCIENCE 2025; 6:16-29. [PMID: 39515755 DOI: 10.1016/j.xfss.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate whether idiopathic nonobstructive azoospermia (iNOA) has its own transcriptomic signature. DESIGN Testicular tissue biopsies were retrieved, processed, and prepared for ribonucleic acid (RNA) extraction from 26 consented patients diagnosed with iNOA. Samples were grouped into four pools based on the presence of testicular spermatozoa: two replicate pools for "No presence" (Null-spz-1 and Null-spz-2 pools), one for "High presence" (High-spz pool), and one for "Rare presence" (Rare-spz pool). A second set of replicate pools (CF-1 and CF-2) were used from patients with obstructive azoospermia (OA) and served as controls. RNA sequencing (RNA-seq) and comparative transcriptomics analysis were performed, followed by differential gene expression analysis focused on protein-coding genes only. Differentially expressed genes (DEGs) exclusively upregulated or downregulated were further analyzed using the Gene Ontology (GO), STRING, and Kyoto Encyclopedia of Genes and Genome bioinformatic platforms. SUBJECTS Males in whom iNOA was diagnosed. EXPOSURE Testicular biopsies from men in whom iNOA was diagnosed. MAIN OUTCOME MEASURES Protein-coding DEGs. RESULTS A significantly altered transcriptomic profile of protein-coding genes was identified in the testicular tissues from men with iNOA. A total of 3,858 genes exhibited dysregulated expression, with 1,994 genes being exclusively downregulated and 1,734 upregulated. Biological processes such as male gamete generation (GO:0048232) and meiotic cycle (GO:0051321) were significantly enriched by the downregulated DEGs whereas the upregulated DEGs enriched BPs such as regulation of cell death (GO:0010941), regulation of cell adhesion (GO:0030155), and defense response (GO:0006952). Interactome analysis identified hub genes among the downregulated DEGs, including PCNA, PLK1, MCM4, CDK1, CCNB1, AURKA, CCNA2, and CDC6, and among the upregulated DEGs, including EGFR, RELA, CTNNB1, MYC, JUN, SMAD3, STAT3 NFKB1, TGFB1, and ACTB. In addition, Kyoto Encyclopedia of Genes and Genome analysis demonstrated that pathways such as cell cycle (hsa04110) and oocyte meiosis (hsa04114) are primarily affected by the downregulated genes, whereas the upregulated genes mainly affected pathways such as the focal adhesion (hsa04510) and the PI3-Akt signaling pathway (hsa04151). CONCLUSION A distinct messenger RNA expression profile and altered transcriptomic activity were identified in the testicular tissues of men with iNOA. CLINICAL TRIAL REGISTRATION NUMBER University of Thessaly 1, 15.04.2016 and the Greek National Authority 701/15.9.2017.
Collapse
Affiliation(s)
- Alexandra Chatziparasidou
- Embryolab Fertility Clinic, Ethnikis Antistaseos 173-175, Thessaloniki, Greece; Embryolab Academy, Ethnikis Antistaseos 173-175, Thessaloniki, Greece.
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry, and Biotechnology, University of Thessaly, Volos, Greece
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry, and Biotechnology, University of Thessaly, Volos, Greece
| | - Katerina Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry, and Biotechnology, University of Thessaly, Volos, Greece
| | - Maria Markantoni
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry, and Biotechnology, University of Thessaly, Volos, Greece
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry, and Biotechnology, University of Thessaly, Volos, Greece
| | - Achilleas Papatheodorou
- Embryolab Fertility Clinic, Ethnikis Antistaseos 173-175, Thessaloniki, Greece; Embryolab Academy, Ethnikis Antistaseos 173-175, Thessaloniki, Greece
| | - Chara Oraiopoulou
- Embryolab Fertility Clinic, Ethnikis Antistaseos 173-175, Thessaloniki, Greece; Embryolab Academy, Ethnikis Antistaseos 173-175, Thessaloniki, Greece
| | - Glykeria Samolada
- Embryolab Fertility Clinic, Ethnikis Antistaseos 173-175, Thessaloniki, Greece; Embryolab Academy, Ethnikis Antistaseos 173-175, Thessaloniki, Greece
| | - Nikos Christoforidis
- Embryolab Fertility Clinic, Ethnikis Antistaseos 173-175, Thessaloniki, Greece; Embryolab Academy, Ethnikis Antistaseos 173-175, Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry, and Biotechnology, University of Thessaly, Volos, Greece
| |
Collapse
|
5
|
Kyrgiafini MA, Katsigianni M, Giannoulis T, Sarafidou T, Chatziparasidou A, Mamuris Z. Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia. Noncoding RNA 2025; 11:4. [PMID: 39846682 PMCID: PMC11755663 DOI: 10.3390/ncrna11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Emerging evidence suggests that noncoding RNAs, particularly long noncoding RNAs (lncRNAs), play a critical role in the regulation of spermatogenesis and sperm function. Coding regions have a well-characterized role and established predictive value in asthenozoospermia. However, this study was designed to complement previous findings and provide a more holistic understanding of asthenozoospermia, this time focusing on noncoding regions. This study aimed to identify and prioritize variants in differentially expressed (DE) lncRNAs found exclusively in asthenozoospermic men, focusing on their impact on lncRNA structure and lncRNA-miRNA-mRNA interactions. Methods: Whole-genome sequencing (WGS) was performed on samples from asthenozoospermic and normozoospermic men. Additionally, an RNA-seq dataset from normozoospermic and asthenozoospermic individuals was analyzed to identify DE lncRNAs. Bioinformatics analyses were conducted to map unique variants on DE lncRNAs, followed by prioritization based on predicted functional impact. The structural impact of the variants and their effects on lncRNA-miRNA interactions were assessed using computational tools. Gene ontology (GO) and KEGG pathway analyses were employed to investigate the affected biological processes and pathways. Results: We identified 4173 unique variants mapped to 258 DE lncRNAs. After prioritization, 5 unique variants in 5 lncRNAs were found to affect lncRNA structure, while 20 variants in 17 lncRNAs were predicted to disrupt miRNA-lncRNA interactions. Enriched pathways included Wnt signaling, phosphatase binding, and cell proliferation, all previously implicated in reproductive health. Conclusions: This study identifies specific variants in DE lncRNAs that may play a role in asthenozoospermia. Given the limited research utilizing WGS to explore the role of noncoding RNAs in male infertility, our findings provide valuable insights and a foundation for future studies.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Maria Katsigianni
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
6
|
Cai H, Lee SM, Choi Y, Lee B, Im SJ, Kim DH, Choi HJ, Kim JH, Kim Y, Shin BA, Jeon S. Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice. Psychiatry Investig 2025; 22:10-25. [PMID: 39885788 PMCID: PMC11788833 DOI: 10.30773/pi.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity. METHODS Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO. RESULTS Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO. CONCLUSION Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
Collapse
Affiliation(s)
- Hua Cai
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Seong Mi Lee
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Yura Choi
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
| | - Bomlee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Soo Jung Im
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Dong Hyeon Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyung Jun Choi
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeni Kim
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
- Dongguk University International Hospital, Institute of Clinical Psychopharmacology, Goyang, Republic of Korea
| | - Boo Ahn Shin
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Abdelnour SA, Khalil WA, Hassan MAE, El-Ratel IT, El-Harairy MA, Dessouki SM, Attia KAA. Protective effect of epidermal growth factor on cryopreservation of dromedary camel epididymal spermatozoa: Evidence from in vitro and in silico studies. Anim Reprod Sci 2025; 272:107662. [PMID: 39644764 DOI: 10.1016/j.anireprosci.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Epidermal growth factor (EGF) plays a crucial role in maintaining male reproductive capacity in mammals, however, its protective effects on cryopreserved dromedary camel epididymal spermatozoa have not been thoroughly investigated. This study aims to investigate the potential protective role of EGF on cryopreserved camel epididymal spermatozoa, supported by evidence from a molecular docking study. We assessed sperm motility, kinematics parameters, oxidative stress, ultrastructural changes, apoptosis, and molecular docking markers in camel epididymal spermatozoa following cryopreservation. Camel epididymal spermatozoa (n = 30 pairs of testes) were collected from local slaughterhouses. The epididymal spermatozoa were diluted with a freezing medium (SHOTOR extender) supplemented with different concentrations of EGF; 0 (EGF0), 50 (EGF50), 100 (EGF100), 200 (EGF200), and 400 (EGF400) ng/mL in SHOTOR extender and cryopreserved using a standard protocol. All EGF groups showed significant improvements in sperm progressive motility, viability, and sperm membrane function after equilibration at 5 °C for 24 hours. Regarding frozen-thawed samples, sperm progressive motility and some kinematic parameters (DAP, VSL, VCL and AHL) were significantly higher in the EFG400 group compared to the other groups (P < 0.01). A significant increase in the percentage of live/acrosome-intact sperm was observed, accompanied by a significant decrease in malondialdehyde levels in all EGF groups (P < 0.05). Both the EGF200 and EGF400 groups showed significantly higher sperm viability and significantly lower percentages of apoptotic and necrotic sperm compared to the other groups (P < 0.05). EGF supplementation preserved the ultrastructural integrity and cryotolerance of epididymal camel spermatozoa. The docking analysis indicated that EGF exhibited higher binding affinity with apoptosis sperm markers, including caspase-3 and bcl-2-associated X (Bax) proteins, with binding energies of -502.0 and -621.0 kcal/mol, respectively. In conclusion, the addition of EGF to SHOTOR extender was found to have beneficial effects on sperm motility, kinematics parameters, sperm viability, acrosome integrity, sperm ultrastructural features, and reduced oxidative stress and apoptosis-like changes in cryopreserved epididymal camel spermatozoa.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Mahmoud A E Hassan
- Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Dokki, Giza 12619, Egypt.
| | - Ibrahim T El-Ratel
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt.
| | - Mostafa A El-Harairy
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Sherif M Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Kandil A A Attia
- Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Minufiya 32897, Egypt.
| |
Collapse
|
8
|
Liu L, Lu X, Fan Z, Deng J, Zhang S, Zhang L, Zha X. TPCA-1 compound, inhibiting testis-specific serine/threonine protein kinase 3 for potential male sterile in Bombyx mori. PEST MANAGEMENT SCIENCE 2024; 80:6189-6200. [PMID: 39073281 DOI: 10.1002/ps.8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Protein kinases are a type of transferase enzyme that catalyze the phosphorylation of protein substrates, including receptor proteins. Testis-specific serine/threonine kinases (TSSKs) are a highly conserved group of protein kinases found in various organisms. They play an essential role in male reproduction by influencing sperm development and function. RESULTS In this study, we report on the characterization of BmTSSK3, a TSSK from the silkworm, Bombyx mori. We found that BmTSSK3 is specifically expressed in the testis and localized to the sperm flagella, particularly in the sperm tail cyst. Furthermore, we developed BmTSSK3 inhibitors through molecular docking and binding assays. Small molecules 5-(4-Fluorophenyl)-2-ureidothiophene-3-carboxamide (TPCA-1) and Imidurea were identified to bind to BmTSSK3. Using site-specific mutation technology, we identified amino acid residues R134 and S184 as crucial binding sites for small molecules. RNA interference assay and Western blot analysis showed that knockdown of BmTSSK3 significantly decreased histone 3 phosphorylation. To confirm the inhibitory effect of these small molecules, we treated silkworm testes with TPCA-1 and observed a strong inhibitory effect. CONCLUSION TPCA-1 is an inhibitor of BmTSSK3, which raises its potential as a future candidate for male sterility of the silkworm. Thus, this study may offer a novel strategy for sterile silkworms as well as insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianlian Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiuping Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zeling Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jing Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Surui Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lulu Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Ma MH, Chen PG, He JX, Chen HC, Xu ZH, Lv LY, Li YQ, Liang XY, Liu GH. The addition of 5-aminolevulinic acid to HBSS protects testis grafts during hypothermic transportation: a novel preservation strategy. Asian J Androl 2024:00129336-990000000-00264. [PMID: 39589201 DOI: 10.4103/aja202490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/13/2024] [Indexed: 11/27/2024] Open
Abstract
The aim of this investigation was to determine the optimal storage medium for testicular hypothermic transportation and identify the ideal concentration for the application of the protective agent 5-aminolevulinic acid (5-ALA). Furthermore, this study aimed to explore the underlying mechanism of the protective effects of 5-ALA. First, we collected and stored mouse testicular fragments in different media, including Hank's balanced salt solution (HBSS; n = 5), Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12; n = 5), and alpha-minimum essential medium (αMEM; n = 5). Storage of testicular tissue in HBSS preserved the integrity of testicular morphology better than that in the DMEM/F12 group (P < 0.05) and the αMEM group (P < 0.01). Testicular fragments were subsequently placed in HBSS with various concentrations of 5-ALA (0 [control], 1 mmol l-1, 2 mmol l-1, and 5 mmol l-1) to determine the most effective concentration of 5-ALA. The 2 mmol l-1 5-ALA group (n = 3) presented the highest positive rate of spermatogonial stem cells compared with those in the control, 1 mmol l-1, and 5 mmol l-1 5-ALA groups. Finally, the tissue fragments were preserved in HBSS with control (n = 3) and 2 mmol l-1 5-ALA (n = 3) under low-temperature conditions. A comparative analysis was performed against fresh testes (n = 3) to elucidate the underlying mechanism of 5-ALA. Gene set enrichment analysis (GSEA) for WikiPathways revealed that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated in the 2 mmol l-1 5-ALA group compared with that in the control group (normalized enrichment score [NES] = -1.57, false discovery rate [FDR] = 0.229, and P = 0.019). In conclusion, these data suggest that using 2 mmol l-1 5-ALA in HBSS effectively protected the viability of spermatogonial stem cells upon hypothermic transportation.
Collapse
Affiliation(s)
- Meng-Hui Ma
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Pei-Gen Chen
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Jun-Xian He
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Hai-Cheng Chen
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Zhen-Han Xu
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Lin-Yan Lv
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Yan-Qing Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Xiao-Yan Liang
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| | - Gui-Hua Liu
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510655, China
| |
Collapse
|
10
|
Zhao X, Zhou W, Nie J, Zhang X, Zeng X, Sun X. CABS1 Is Essential for Progressive Motility and the Integrity of Fibrous Sheath in Mouse Epididymal Spermatozoa. Mol Reprod Dev 2024; 91:e23776. [PMID: 39526486 DOI: 10.1002/mrd.23776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
The calcium-binding protein spermatid-associated 1 (CABS1) localizes to the principal piece of mature sperm flagella. Deletion of CABS1 results in subfertility in male mice, possibly due to an impaired annulus in the sperm flagella. However, it is unknown whether there are other mechanisms by which CABS1 affects male fertility. Our current investigation has uncovered that CABS1 is located in the midsection of the flagellum in testicular sperm and the principal piece in epididymal sperm. Moreover, male mice lacking CABS1 exhibit a defect in the progressive motility of sperm. Furthermore, the regulation of calcium levels, which has been reported to have a significant impact on sperm motility, capacitation, and the acrosome reaction, is also affected when sperm are exposed to alkalized high-salt buffer (pH 8.0) and progesterone (100 μM) in Cabs1-null spermatozoa. This alteration in calcium response may contribute to changes in the phosphorylation of PKA substrates and subsequent phosphorylation of tyrosine residues. Additionally, the absence of CABS1 leads to a defective fibrous sheath and abnormal configuration of doublet microtubules in post-testicular sperm. These findings indicate that the absence of CABS1 also disrupts the structural integrity of the fibrous sheath, resulting in male subfertility. The highly conserved nature of CABS1 in humans suggests that it could potentially be a contributing factor to asthenozoospermia in men.
Collapse
Affiliation(s)
- Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Wenwen Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| |
Collapse
|
11
|
Bush SJ, Goriely A. Can the male germline offer insight into mammalian brain size expansion? Andrology 2024. [PMID: 39291969 DOI: 10.1111/andr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Recent advances in single-cell transcriptomic data have greatly expanded our understanding of both spermatogenesis and the molecular mechanisms of male infertility. However, this growing wealth of data could also shed light on a seemingly unrelated biological problem: the genetic basis of mammalian brain size expansion throughout evolution. It is now increasingly recognized that the testis and brain share many cellular and molecular similarities including pivotal roles for the RAS/MAPK and PI3K/AKT/mTOR pathways, mutations in which are known to have a pronounced impact on cell proliferation. Most notably, in the stem cell lineages of both organs, new mutations have been shown to increase cellular output over time. These include 'selfish' mutations in spermatogonial stem cells, which disproportionately increase the proportion of mutant sperm, and-to draw a parallel-human-specific mutations in neural stem cells which, by increasing the number of neurons, have been implicated in neocortical expansion. Here we speculate that the origin for many 'expansion'-associated mutations is the male germline and that as such, a deeper understanding of the mechanisms controlling testicular turnover may yield fresh insight into the biology and evolution of the brain.
Collapse
Affiliation(s)
- Stephen J Bush
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
12
|
Wood KA, Tong RS, Motta M, Cordeddu V, Scimone ER, Bush SJ, Maxwell DW, Giannoulatou E, Caputo V, Traversa A, Mancini C, Ferrero GB, Benedicenti F, Grammatico P, Melis D, Steindl K, Brunetti-Pierri N, Trevisson E, Wilkie AO, Lin AE, Cormier-Daire V, Twigg SR, Tartaglia M, Goriely A. SMAD4 mutations causing Myhre syndrome are under positive selection in the male germline. Am J Hum Genet 2024; 111:1953-1969. [PMID: 39116879 PMCID: PMC11444041 DOI: 10.1016/j.ajhg.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis. Here, we demonstrate the selfish nature of the SMAD4 DNMs causing Myhre syndrome (MYHRS). By analyzing 16 informative trios, we show that MYHRS-causing DNMs originated on the paternally derived allele in all cases. We document a statistically significant epidemiological paternal age effect of 6.3 years excess for fathers of MYHRS probands. We developed an ultra-sensitive assay to quantify spontaneous MYHRS-causing SMAD4 variants in sperm and show that pathogenic variants at codon 500 are found at elevated level in sperm of most men and exhibit a strong positive correlation with donor's age, indicative of a high apparent germline mutation rate. Finally, we performed in vitro assays to validate the peculiar functional behavior of the clonally selected DNMs and explored the basis of the pathophysiology of the different SMAD4 sperm-enriched variants. Taken together, these data provide compelling evidence that SMAD4, a gene operating outside the canonical RAS-MAPK signaling pathway, is associated with selfish spermatogonial selection and raises the possibility that other genes/pathways are under positive selection in the aging human testis.
Collapse
Affiliation(s)
- Katherine A Wood
- MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK
| | - R Spencer Tong
- MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK
| | - Marialetizia Motta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Eleanor R Scimone
- Medical Genetics, Mass General Brigham, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Stephen J Bush
- MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK
| | - Dale W Maxwell
- MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Alice Traversa
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giovanni B Ferrero
- Department of Clinical and Biological Science, University of Torino, 10126 Turin, Italy
| | | | - Paola Grammatico
- Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, 00152 Rome, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Eva Trevisson
- Department of Women's and Children's Health, University of Padova, 35128 Padua, Italy
| | - Andrew Om Wilkie
- MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK
| | - Angela E Lin
- Medical Genetics, Mass General Brigham, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Valerie Cormier-Daire
- Université Paris Cité, Service de Médecine Génomique des Maladies Rares, INSERM UMR 1163, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Stephen Rf Twigg
- MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK.
| |
Collapse
|
13
|
Thapliyal A, Tomar AK, Naglot S, Dhiman S, Datta SK, Sharma JB, Singh N, Yadav S. Exploring Differentially Expressed Sperm miRNAs in Idiopathic Recurrent Pregnancy Loss and Their Association with Early Embryonic Development. Noncoding RNA 2024; 10:41. [PMID: 39051375 PMCID: PMC11270218 DOI: 10.3390/ncrna10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The high incidence of idiopathic recurrent pregnancy loss (iRPL) may stem from the limited research on male contributory factors. Many studies suggest that sperm DNA fragmentation and oxidative stress contribute to iRPL, but their roles are still debated. MicroRNAs (miRNAs) are short non-coding RNAs that regulate various biological processes by modulating gene expression. While differential expression of specific miRNAs has been observed in women suffering from recurrent miscarriages, paternal miRNAs remain unexplored. We hypothesize that analyzing sperm miRNAs can provide crucial insights into the pathophysiology of iRPL. Therefore, this study aims to identify dysregulated miRNAs in the spermatozoa of male partners of iRPL patients. Total mRNA was extracted from sperm samples of iRPL and control groups, followed by miRNA library preparation and high-output miRNA sequencing. Subsequently, raw sequence reads were processed for differential expression analysis, target prediction, and bioinformatics analysis. Twelve differentially expressed miRNAs were identified in the iRPL group, with eight miRNAs upregulated (hsa-miR-4454, hsa-miR-142-3p, hsa-miR-145-5p, hsa-miR-1290, hsa-miR-1246, hsa-miR-7977, hsa-miR-449c-5p, and hsa-miR-92b-3p) and four downregulated (hsa-miR-29c-3p, hsa-miR-30b-5p, hsa-miR-519a-2-5p, and hsa-miR-520b-5p). Functional enrichment analysis revealed that gene targets of the upregulated miRNAs are involved in various biological processes closely associated with sperm quality and embryonic development.
Collapse
Affiliation(s)
- Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarla Naglot
- Division of Reproductive, Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India
| | - Soniya Dhiman
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
14
|
Georgakopoulos I, Kouloulias V, Ntoumas GN, Desse D, Koukourakis I, Kougioumtzopoulou A, Kanakis G, Zygogianni A. Radiotherapy and Testicular Function: A Comprehensive Review of the Radiation-Induced Effects with an Emphasis on Spermatogenesis. Biomedicines 2024; 12:1492. [PMID: 39062064 PMCID: PMC11274587 DOI: 10.3390/biomedicines12071492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This comprehensive review explores the existing literature on the effects of radiotherapy on testicular function, focusing mainly on spermatogenic effects, but also with a brief report on endocrine abnormalities. Data from animal experiments as well as results on humans either from clinical studies or from accidental radiation exposure are included to demonstrate a complete perspective on the level of vulnerability of the testes and their various cellular components to irradiation. Even relatively low doses of radiation, produced either from direct testicular irradiation or more commonly from scattered doses, may often lead to detrimental effects on sperm count and quality. Leydig cells are more radioresistant; however, they can still be influenced by the doses used in clinical practice. The potential resultant fertility complications of cancer radiotherapy should be always discussed with the patient before treatment initiation, and all available and appropriate fertility preservation measures should be taken to ensure the future reproductive potential of the patient. The topic of potential hereditary effects of germ cell irradiation remains a controversial field with ethical implications, requiring future research.
Collapse
Affiliation(s)
- Ioannis Georgakopoulos
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Vassilios Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Rimini 1, 124 62 Athens, Greece; (V.K.); (A.K.)
| | - Georgios-Nikiforos Ntoumas
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Dimitra Desse
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Ioannis Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| | - Andromachi Kougioumtzopoulou
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Rimini 1, 124 62 Athens, Greece; (V.K.); (A.K.)
| | - George Kanakis
- Department of Endocrinology, Athens Naval & VA Hospital, 115 21 Athens, Greece;
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Vas. Sofias 76, 115 28 Athens, Greece; (G.-N.N.); (I.K.); (A.Z.)
| |
Collapse
|
15
|
Carvalho Filho I, Arikawa LM, Mota LFM, Campos GS, Fonseca LFS, Fernandes Júnior GA, Schenkel FS, Lourenco D, Silva DA, Teixeira CS, Silva TL, Albuquerque LG, Carvalheiro R. Genome-wide association study considering genotype-by-environment interaction for productive and reproductive traits using whole-genome sequencing in Nellore cattle. BMC Genomics 2024; 25:623. [PMID: 38902640 PMCID: PMC11188527 DOI: 10.1186/s12864-024-10520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC. RESULTS Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. CONCLUSIONS GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.
Collapse
Affiliation(s)
- Ivan Carvalho Filho
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Leonardo M Arikawa
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
| | - Gabriel S Campos
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Larissa F S Fonseca
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Gerardo A Fernandes Júnior
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Delvan A Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Caio S Teixeira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Thales L Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- National Council for Science and Technological Development, Brasilia, DF, 71605-001, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
16
|
Nguyen TTT, Tokuhiro K, Shimada K, Wang H, Mashiko D, Tonai S, Kiyozumi D, Ikawa M. Gene-deficient mouse model established by CRISPR/Cas9 system reveals 15 reproductive organ-enriched genes dispensable for male fertility. Front Cell Dev Biol 2024; 12:1411162. [PMID: 38835510 PMCID: PMC11148293 DOI: 10.3389/fcell.2024.1411162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Since the advent of gene-targeting technology in embryonic stem cells, mice have become a primary model organism for investigating human gene function due to the striking genomic similarities between the two species. With the introduction of the CRISPR/Cas9 system for genome editing in mice, the pace of loss-of-function analysis has accelerated significantly. This has led to the identification of numerous genes that play crucial roles in male reproductive processes, including meiosis, chromatin condensation, flagellum formation in the testis, sperm maturation in the epididymis, and fertilization in the oviduct. Despite the advancements, the functions of many genes, particularly those enriched in male reproductive tissues, remain largely unknown. In our study, we focused on 15 genes and generated 13 gene-deficient mice [4933411K16Rik, Adam triple (Adam20, Adam25, and Adam39), BC048671, Cfap68, Gm4846, Gm4984, Gm13570, Nt5c1b, Ppp1r42, Saxo4, Sh3d21, Spz1, and Tektl1] to elucidate their roles in male fertility. Surprisingly, all 13 gene-deficient mice exhibited normal fertility in natural breeding experiments, indicating that these genes are not essential for male fertility. These findings have important implications as they may help prevent other research laboratories from duplicating efforts to generate knockout mice for genes that do not demonstrate an apparent phenotype related to male fertility. By shedding light on the dispensability of these genes, our study contributes to a more efficient allocation of research resources in the exploration of male reproductive biology.
Collapse
Affiliation(s)
- Tuyen Thi Thanh Nguyen
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haoting Wang
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Daisuke Mashiko
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shingo Tonai
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daiji Kiyozumi
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Song Y, Ma J, Liu Q, Mabrouk I, Zhou Y, Yu J, Liu F, Wang J, Yu Z, Hu J, Sun Y. Protein profile analysis of Jilin white goose testicles at different stages of the laying cycle by DIA strategy. BMC Genomics 2024; 25:326. [PMID: 38561689 PMCID: PMC10986116 DOI: 10.1186/s12864-024-10166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.
Collapse
Affiliation(s)
- Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Fengshuo Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Zhiye Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
- Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, 130118, Changchun, China.
| |
Collapse
|
18
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
19
|
Kumar L, Solanki S, Jain A, Botts M, Gupta R, Rajput S, Roti Roti E. MAPKs signaling is obligatory for male reproductive function in a development-specific manner. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1330161. [PMID: 38406668 PMCID: PMC10885697 DOI: 10.3389/frph.2024.1330161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Mitogen-activated protein kinases (MAPKs) represent widely expressed and evolutionarily conserved proteins crucial for governing signaling pathways and playing essential roles in mammalian male reproductive processes. These proteins facilitate the transmission of signals through phosphorylation cascades, regulating diverse intracellular functions encompassing germ cell development in testis, physiological maturation of spermatozoa within the epididymis, and motility regulation at ejaculation in the female reproductive tract. The conservation of these mechanisms appears prevalent across species, including humans, mice, and, to a limited extent, livestock species such as bovines. In Sertoli cells (SCs), MAPK signaling not only regulates the proliferation of immature SCs but also determines the appropriate number of SCs in the testes at puberty, thereby maintaining male fertility by ensuring the capacity for sperm cell production. In germ cells, MAPKs play a crucial role in dynamically regulating testicular cell-cell junctions, supporting germ cell proliferation and differentiation. Throughout spermatogenesis, MAPK signaling ensures the appropriate Sertoli-to-germ cell ratio by regulating apoptosis, controlling the metabolism of developing germ cells, and facilitating the maturation of spermatozoa within the cauda epididymis. During ejaculation in the female reproductive tract, MAPKs regulate two pivotal events-capacitation and the acrosome reaction essential for maintaining the fertility potential of sperm cells. Any disruptions in MAPK pathway signaling possibly may disturb the testicular microenvironment homeostasis, sperm physiology in the male body before ejaculation and in the female reproductive tract during fertilization, ultimately compromising male fertility. Despite decades of research, the physiological function of MAPK pathways in male reproductive health remains inadequately understood. The current review attempts to combine recent findings to elucidate the impact of MAPK signaling on male fertility and proposes future directions to enhance our understanding of male reproductive functions.
Collapse
Affiliation(s)
- Lokesh Kumar
- Genus Breeding India Pvt Ltd., Pune, India
- GenusPlc, ABS Global, Windsor, WI, United States
| | - Subhash Solanki
- Genus Breeding India Pvt Ltd., Pune, India
- GenusPlc, ABS Global, Windsor, WI, United States
| | - Ashish Jain
- Department of Microbiology, Smt. CHM College, University of Mumbai, Ulhasnagar, India
| | | | | | | | | |
Collapse
|
20
|
Martín-Manzo MV, Morelos-Castro RM, Munguia-Vega A, Soberanes-Yepiz ML, Cortés-Jacinto E. Transcriptome analysis of reproductive tract tissues of male river prawn Macrobrachium americanum. Mol Biol Rep 2024; 51:259. [PMID: 38302799 DOI: 10.1007/s11033-023-09125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The river prawn, Macrobrachium americanum (M. americanum), is one of the largest prawns of the genus in Latin America and is an amphidromous species distributed along the Pacific coast of America. This prawn has commercial value due to its size and taste, making it a good option for aquaculture production. Its culture has been attempted in ponds and concrete tanks, but no successful technique can still support commercial production. Understanding the mechanisms that regulate reproduction at the molecular level is very important. This knowledge can provide tools for manipulating transcripts, which could increase the number or size of animals in the culture. Our understanding of the mechanism that regulates the reproduction of M. americanum at the molecular level is limited. AIM Perform and analyze the transcriptome assembly of the testes, vas deferens, and terminal ampulla of M. americanum. to provide new molecular information about its reproduction. METHODS AND RESULTS The cDNA library was constructed and sequenced for each tissue to identify novel transcripts. A combined transcriptome with the three tissues was assembled using Trinity software. Unigenes were annotated using BLASTx and BLAST2GO. The transcriptome assembly generated 1,059,447 unigenes, of which 7222 genes had significant hits (e-value < 1 × 10-5) when compared against the Swiss-Prot database. Around 75 genes were related to sex determination, testis development, spermatogenesis, spermiogenesis, fertilization, maturation of testicular cells, neuropeptides, hormones, hormone receptors, and/or embryogenesis. CONCLUSIONS These results provide new molecular information about M. americanum reproduction, representing a reference point for further genetic studies of this species.
Collapse
Affiliation(s)
- Miriam Victoria Martín-Manzo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Playa Palo de Santa Rita Sur, Av. Instituto Politécnico Nacional 195, 23096, La Paz, BCS, Mexico
| | - Rosa María Morelos-Castro
- Centro de Investigaciones Biológicas del Noroeste Tepic, Investigadoras E Investigadores Por México-CONACYT. Unidad Nayarit, Nayarit, Mexico
| | - Adrian Munguia-Vega
- Applied Genomics Lab, Av. Gral. Félix Ortega Aguilar, 23000, La Paz, Baja California Sur, Mexico
- Conservation Genetics Laboratory, The University of Arizona, Tucson, AZ, 85721, USA
| | - Maritza Lourdes Soberanes-Yepiz
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Playa Palo de Santa Rita Sur, Av. Instituto Politécnico Nacional 195, 23096, La Paz, BCS, Mexico
| | - Edilmar Cortés-Jacinto
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Playa Palo de Santa Rita Sur, Av. Instituto Politécnico Nacional 195, 23096, La Paz, BCS, Mexico.
| |
Collapse
|
21
|
Mancini F, Di Nicuolo F, Teveroni E, Vergani E, Bianchetti G, Bruno C, Grande G, Iavarone F, Maulucci G, De Spirito M, Urbani A, Pontecorvi A, Milardi D. Combined evaluation of prolactin-induced peptide (PIP) and extracellular signal-regulated kinase (ERK) as new sperm biomarkers of FSH treatment efficacy in normogonadotropic idiopathic infertile men. J Endocrinol Invest 2024; 47:455-468. [PMID: 37480475 DOI: 10.1007/s40618-023-02161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Nearly, 40% of the causes of male infertility remain idiopathic. The only suggested treatment in idiopathic oligo- and/or asthenozoospermia in normogonadotropic patients is the FSH. In the current clinical practice, efficacy is exclusively assessable through semen analysis after 3 months of treatment. No molecular markers of treatment efficacy are appliable in clinical practice. The aim of the present work is to evaluate the combination of extracellular signal regulated kinase (ERK) 1 and 2 and prolactin inducible peptide (PIP) as potential markers of idiopathic infertility and FSH treatment efficacy. METHODS Western blot and confocal microscopy were performed to analyze the modulation of PIP and ERK1/2 in idiopathic infertile patients (IIP) sperm cells. Taking advantage of mass spectrometry analysis, we identified these proteins unequivocally in sperm cells. RESULTS We demonstrated a significant decrease of both PIP protein and of ERK1/2 levels in spermatozoa obtained from IIP in comparison to healthy fertile patients (HFP). Conversely, we reported a significant increase of these markers comparing infertile patients before and after 3 months of FSH treatment. Importantly, this correlated with an increase in total number of sperm and sperm motility after FSH treatment. Finally, we identified of PIP and ERK2 proteins in sperm samples by proteomic analysis. CONCLUSIONS The combined evaluation of ERK1/2 and PIP proteins might represent a useful molecular marker to tailor FSH treatment in the management of male normogonadotropic idiopathic infertility.
Collapse
Affiliation(s)
- F Mancini
- International Scientific Institute Paul VI, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - F Di Nicuolo
- International Scientific Institute Paul VI, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E Teveroni
- International Scientific Institute Paul VI, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E Vergani
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G Bianchetti
- Department of Neuroscience, Section of Biophysics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - C Bruno
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G Grande
- Unit of Andrology and Reproductive Medicine, University Hospital Padua, Padua, Italy
| | - F Iavarone
- Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G Maulucci
- Department of Neuroscience, Section of Biophysics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - M De Spirito
- Department of Neuroscience, Section of Biophysics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A Urbani
- Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A Pontecorvi
- International Scientific Institute Paul VI, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - D Milardi
- International Scientific Institute Paul VI, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
22
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Christoforidis N, Mamuris Z. Unveiling the Genetic Complexity of Teratozoospermia: Integrated Genomic Analysis Reveals Novel Insights into lncRNAs' Role in Male Infertility. Int J Mol Sci 2023; 24:15002. [PMID: 37834450 PMCID: PMC10573971 DOI: 10.3390/ijms241915002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Male infertility is a global health issue, affecting over 20 million men worldwide. Genetic factors are crucial in various male infertility forms, including teratozoospermia. Nonetheless, the genetic causes of male infertility remain largely unexplored. In this study, we employed whole-genome sequencing and RNA expression analysis to detect differentially expressed (DE) long-noncoding RNAs (lncRNAs) in teratozoospermia, along with mutations that are exclusive to teratozoospermic individuals within these DE lncRNAs regions. Bioinformatic tools were used to assess variants' impact on lncRNA structure, function, and lncRNA-miRNA interactions. Our analysis identified 1166 unique mutations in teratozoospermic men within DE lncRNAs, distinguishing them from normozoospermic men. Among these, 64 variants in 23 lncRNAs showed potential regulatory roles, 7 variants affected 4 lncRNA structures, while 37 variants in 17 lncRNAs caused miRNA target loss or gain. Pathway Enrichment and Gene Ontology analyses of the genes targeted by the affected miRNAs revealed dysregulated pathways in teratozoospermia and a link between male infertility and cancer. This study lists novel variants and lncRNAs associated for the first time with teratozoospermia. These findings pave the way for future studies aiming to enhance diagnosis and therapy in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | | | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
23
|
Barrachina F, Ottino K, Elizagaray ML, Gervasi MG, Tu LJ, Markoulaki S, Spallanzani RG, Capen D, Brown D, Battistone MA. Regulatory T cells play a crucial role in maintaining sperm tolerance and male fertility. Proc Natl Acad Sci U S A 2023; 120:e2306797120. [PMID: 37676910 PMCID: PMC10500189 DOI: 10.1073/pnas.2306797120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.
Collapse
Affiliation(s)
- Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maia Lina Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Leona J. Tu
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Styliani Markoulaki
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Raul G. Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA02115
| | - Diane Capen
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Dennis Brown
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| |
Collapse
|
24
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
25
|
Zhang X, Peng J, Wu M, Sun A, Wu X, Zheng J, Shi W, Gao G. Broad phosphorylation mediated by testis-specific serine/threonine kinases contributes to spermiogenesis and male fertility. Nat Commun 2023; 14:2629. [PMID: 37149634 PMCID: PMC10164148 DOI: 10.1038/s41467-023-38357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Genetic studies elucidate a link between testis-specific serine/threonine kinases (TSSKs) and male infertility in mammals, but the underlying mechanisms are unclear. Here, we identify a TSSK homolog in Drosophila, CG14305 (termed dTSSK), whose mutation impairs the histone-to-protamine transition during spermiogenesis and causes multiple phenotypic defects in nuclear shaping, DNA condensation, and flagellar organization in spermatids. Genetic analysis demonstrates that kinase catalytic activity of dTSSK, which is functionally conserved with human TSSKs, is essential for male fertility. Phosphoproteomics identify 828 phosphopeptides/449 proteins as potential substrates of dTSSK enriched primarily in microtubule-based processes, flagellar organization and mobility, and spermatid differentiation and development, suggesting that dTSSK phosphorylates various proteins to orchestrate postmeiotic spermiogenesis. Among them, the two substrates, protamine-like protein Mst77F/Ser9 and transition protein Mst33A/Ser237, are biochemically validated to be phosphorylated by dTSSK in vitro, and are genetically demonstrated to be involved in spermiogenesis in vivo. Collectively, our findings demonstrate that broad phosphorylation mediated by TSSKs plays an indispensable role in spermiogenesis.
Collapse
Affiliation(s)
- Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ju Peng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Menghua Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Angyang Sun
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiangyu Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Zheng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wangfei Shi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
26
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
27
|
Ranade AV, Khan AA, Gul MT, Jose J, Ramachandran G, Qaisar R, Karim A, Ahmad F, Abdel-Rahman WM. Pharmacological inhibition of endoplasmic reticulum stress mitigates testicular pathology in a mouse model of simulated microgravity. ACTA ASTRONAUTICA 2023; 204:466-476. [DOI: 10.1016/j.actaastro.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
|
28
|
Singh R, Deb R, Sengar GS, Raja TV, Kumar S, Singh U, Das AK, Alex R, Kumar A, Tyagi S, Pal P, Patil NV. Differentially expressed microRNAs in biochemically characterized Frieswal TM crossbred bull semen. Anim Biotechnol 2023; 34:25-38. [PMID: 34106815 DOI: 10.1080/10495398.2021.1932519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In addition to the transmission of paternal genome, spermatozoa also carry coding as well as noncoding microRNAs (miRNAs) into the female oocyte during the process of biological fertilization. Based on RNA deep sequencing, a total 28 number of differentially expressed miRNAs were cataloged in categorized FrieswalTM crossbred (Holstein Friesian X Sahiwal) bull semen on the basis of conception rate (CR) in field progeny testing program. Validation of selected miRNAs viz. bta-mir-182, bta-let-7b, bta-mir-34c and bta-mir-20a revealed that, superior bull semen having comparatively (p < .05) lower level of all the miRNAs in contrast to inferior bull semen. Additionally, it was illustrated that, bta-mir-20a and bta-mir-34c miRNAs are negatively (p < .01) correlated with seminal plasma catalase (CAT) activity and glutathione peroxidase (GPx) level. Interactome studies identified that bta-mir-140, bta-mir-342, bta-mir-1306 and bta-mir-217 can target few of the important solute carrier (SLC) proteins viz. SLC30A3, SLC39A9, SLC31A1 and SLC38A2, respectively. Interestingly, it was noticed that all the SLCs were significantly (p < .05) expressed at higher level in superior quality bull semen and they are negatively correlated (p < .01) with their corresponding miRNAs as mentioned. This study may reflect the role of miRNAs in regulating few of the candidate genes and thus may influence the bull semen quality traits.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Amod Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Prasanna Pal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - N V Patil
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
29
|
Single-Cell RNA Sequencing of the Testis of Ciona intestinalis Reveals the Dynamic Transcriptional Profile of Spermatogenesis in Protochordates. Cells 2022; 11:cells11243978. [PMID: 36552742 PMCID: PMC9776925 DOI: 10.3390/cells11243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a complex and continuous process of germ-cell differentiation. This complex process is regulated by many factors, of which gene regulation in spermatogenic cells plays a decisive role. Spermatogenesis has been widely studied in vertebrates, but little is known about spermatogenesis in protochordates. Here, for the first time, we performed single-cell RNA sequencing (scRNA-seq) on 6832 germ cells from the testis of adult Ciona intestinalis. We identified six germ cell populations and revealed dynamic gene expression as well as transcriptional regulation during spermatogenesis. In particular, we identified four spermatocyte subtypes and key genes involved in meiosis in C. intestinalis. There were remarkable similarities and differences in gene expression during spermatogenesis between C. intestinalis and two other vertebrates (Chinese tongue sole and human). We identified many spermatogenic-cell-specific genes with functions that need to be verified. These findings will help to further improve research on spermatogenesis in chordates.
Collapse
|
30
|
Wang HY, Liu X, Chen JY, Huang Y, Lu Y, Tan F, Liu Q, Yang M, Li S, Zhang X, Qin Y, Ma W, Yang Y, Meng L, Liu K, Wang Q, Fan G, Nóbrega RH, Liu S, Piferrer F, Shao C. Single-cell-resolution transcriptome map revealed novel genes involved in testicular germ cell progression and somatic cells specification in Chinese tongue sole with sex reversal. SCIENCE CHINA LIFE SCIENCES 2022; 66:1151-1169. [PMID: 36437386 DOI: 10.1007/s11427-021-2236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Female-to-male sex reversals (pseudomales) are common in lower vertebrates and have been found in natural populations, which is a concern under rapid changes in environmental conditions. Pseudomales can exhibit altered spermatogenesis. However, the regulatory mechanisms underlying pseudomale spermatogenesis remain unclear. Here, we characterized spermatogenesis in Chinese tongue sole (Cynoglossus semilaevis), a species with genetic and environmental sex determination, based on a high-resolution single-cell RNA-seq atlas of cells derived from the testes of genotypic males and pseudomales. We identified five germ cell types and six somatic cell types and obtained a single-cell atlas of dynamic changes in gene expression during spermatogenesis in Chinese tongue sole, including alterations in pseudomales. We detected decreased levels of Ca2+ signaling pathway-related genes in spermatogonia, insufficient meiotic initiation in spermatocytes, and a malfunction of somatic niche cells in pseudomales. However, a cluster of CaSR genes and MAPK signaling factors were upregulated in undifferentiated spermatogonia of pseudomales. Additionally, we revealed that Z chromosome-specific genes, such as piwil2, dhx37, and ehmt1, were important for spermatogenesis. These results improve our understanding of reproduction after female-to-male sex-reversal and provide new insights into the adaptability of reproductive strategies in lower vertebrates.
Collapse
|
31
|
Pascucci FA, Escalada MC, Suberbordes M, Vidal C, Ladelfa MF, Monte M. MAGE-I proteins and cancer-pathways: A bidirectional relationship. Biochimie 2022; 208:31-37. [PMID: 36403755 DOI: 10.1016/j.biochi.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Data emerged from the last 20 years of basic research on tumor antigens positioned the type I MAGE (Melanoma Antigen GEnes - I or MAGE-I) family as cancer driver factors. MAGE-I gene expression is mainly restricted to normal reproductive tissues. However, abnormal re-expression in cancer unbalances the cell status towards enhanced oncogenic activity or reduced tumor suppression. Anomalous MAGE-I gene re-expression in cancer is attributed to altered epigenetic-mediated chromatin silencing. Still, emerging data indicate that MAGE-I can be regulated at protein level. Results from different laboratories suggest that after its anomalous re-expression, specific MAGE-I proteins can be regulated by well-known signaling pathways or key cellular processes that finally potentiate the cancer cell phenotype. Thus, MAGE-I proteins both regulate and are regulated by cancer-related pathways. Here, we present an updated review highlighting the recent findings on the regulation of MAGE-I by oncogenic pathways and the potential consequences in the tumor cell behavior.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Candela Vidal
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Martín Monte
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Ma H, Zhang H, Yu J, Wang Z, Zeng X, Ye J, Wang C. Integrated analysis of microRNA expression profiles and function network in mice testes after low dose lead exposure from early puberty. Toxicol Appl Pharmacol 2022; 454:116260. [PMID: 36183778 DOI: 10.1016/j.taap.2022.116260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
Abstract
There is evidence suggesting the participation of non-coding RNAs in male reproductive dysfunction induced by lead, and the significance of microRNAs has been highlighted recently because of their essential roles in gene regulatory networks. To comprehensively understand the functions of miRNA and the regulatory networks, RNA sequencing was carried out to obtain miRNA expression profiles in mice testes exposed to low dose Pb for 90 days at the onset of puberty. In total, 44 differentially expressed miRNAs with 26 up-regulated and 18 down-regulated were identified between 200 mg/L Pb group and control group (p < 0.05). Enrichment analysis confirmed that the target genes of DE miRNAs might participate in the metabolism of testicular cells. Furthermore, a miRNA-mRNA co-expression network consisting of 19 miRNAs and 106 mRNAs and a competing endogenous RNA network of lncRNA-miRNA-mRNA including 179 genes were established. Finally, the expressions of 4 miRNAs (mmu-miR-451a, mmu-miR-133a-3p, mmu-miR-1a-3p and mmu-miR-486a-3p) and 4 mRNAs (Gramd1b, Tcf7l2, Mov10 and Srcin1) involved in regulatory networks were verified by RT-qPCR. In conclusion, our research might provide targets for the mechanism studies of miRNAs in reproductive toxicity of Pb.
Collapse
Affiliation(s)
- Haitao Ma
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Haoran Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jun Yu
- Department of Preventive Medicine, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Ziqiong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiangchao Zeng
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jingping Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, Hubei Province, China.
| | - Chunhong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
33
|
Johnson C, Kiefer H, Chaulot-Talmon A, Dance A, Sellem E, Jouneau L, Jammes H, Kastelic J, Thundathil J. Prepubertal nutritional modulation in the bull and its impact on sperm DNA methylation. Cell Tissue Res 2022; 389:587-601. [PMID: 35779136 DOI: 10.1007/s00441-022-03659-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Enhanced pre-pubertal nutrition in Holstein bulls increased reproductive hormone production and sperm production potential with no negative effects on sperm quality. However, recent trends in human epigenetic research have identified pre-pubertal period to be critical for epigenetic reprogramming in males. Our objective was to evaluate the methylation changes in sperm of bulls exposed to different pre-pubertal diets. One-week-old Holstein bull calves (n = 9), randomly allocated to 3 groups, were fed either a high, medium or low diet (20%, 17% or 12.2% crude protein and 67.9%, 66% or 62.9% total digestible nutrients, respectively) from 2 to 32 weeks of age, followed by medium nutrition. Semen collected from bulls at two specific time points, i.e. 55-59 and 69-71 weeks, was diluted, cryopreserved and used for reduced representation bisulfite sequencing. Differential methylation was detected for dietary treatment, but minimal differences were detected with age. The gene ontology term, "regulation of Rho protein signal transduction", implicated in sperm motility and acrosome reaction, was enriched in both low-vs-high and low-vs-medium datasets. Furthermore, several genes implicated in early embryo and foetal development showed differential methylation for diet. Our results therefore suggest that sperm epigenome keeps the memory of diet during pre-pubertal period in genes important for spermatogenesis, sperm function and early embryo development.
Collapse
Affiliation(s)
- Chinju Johnson
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Hélène Kiefer
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | | | - Alysha Dance
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - Hélène Jammes
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - John Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
34
|
Bai X, Liu Z, Tang T, Yu S, Liu D, Liu G, Fan X, Tang Y, Liu Z. An integrative approach to uncover the components, mechanisms, and functions of traditional Chinese medicine prescriptions on male infertility. Front Pharmacol 2022; 13:794448. [PMID: 36034828 PMCID: PMC9403420 DOI: 10.3389/fphar.2022.794448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is a major and growing health problem with an estimated global prevalence of 4.2%. The current therapy is limited by the unknown etiology of MI, emphasizing the critical requirement forward to a more efficient method or medication. Through thousands of years, Traditional Chinese Medicine (TCM) has been shown to be effective in treating MI effectively. However, the components, mechanisms and functions of TCM prescriptions on MI are still obscure, severely limiting its clinical application. In order to discover the molecular mechanism of TCM against MI, our study presents a comprehensive approach integrated data mining, network pharmacology, molecular docking, UHPLC-Q-Orbitrap HRMS, and experimental validation. Here, we begin to acquire 289 clinical TCM prescriptions for MI from a TCM hospital's outpatient department. Then, Core Chinese Materia Medica (CCMM) was then retrieved from the TCM Inheritance Support System (TCMISS), which was utilized to discover the underlying rules and connections in clinical prescriptions. After that, 98 CCMM components and 816 MI targets were obtained from ten distinct databases. Additionally, the network pharmacology methods, including network construction, GO and KEGG pathway enrichment, PPI analysis, were utilized to reveal that kaempferol, quercetin, isorhamnetin, and beta-sitosterol are the core components of CCMM in treating MI. The mechanisms and functions of CCMM against MI are hormone regulation, anti-apoptosis, anti-oxidant stress, and anti-inflammatory. Furthermore, the strong connections between four core components and six key targets were verified using a molecular docking method. Following that, the core components of the CCMM extract were identified using UHPLC-Q-Orbitrap HRMS analysis. Finally, in vivo experiments demonstrated that CCMM and four core components could improve the density, motility, viability of sperm, lecithin corpuscle density, decrease the rate of sperm malformation and testis tissue damage, and regulate the protein expressions of AKT1, MAPK3/1, EGFR, and TNF-α in a mouse model of MI. UHPLC-Q-Orbitrap HRMS analysis and in vivo experiments further validated the results of data mining, network pharmacology, and molecular docking. Our study could uncover the components, mechanisms, and functions of TCM prescriptions against MI and develop a new integrative approach to demonstrate TCM's multi-component, multi-target, and multi-pathway approach to disease treatment.
Collapse
Affiliation(s)
- Xue Bai
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shujun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Yawer A, Sychrová E, Raška J, Babica P, Sovadinová I. Endocrine-disrupting chemicals affect sertoli TM4 cell functionality through dysregulation of gap junctional intercellular communication in vitro. Food Chem Toxicol 2022; 164:113004. [PMID: 35413382 DOI: 10.1016/j.fct.2022.113004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 04/06/2022] [Indexed: 01/10/2023]
Abstract
The frequencies of adverse outcomes associated with male reproductive health, including infertility and testicular cancer, are increasing. These adverse trends are partially attributed to increased exposure to environmental agents such as endocrine-disrupting chemicals (EDCs). This study addresses effects on EDCs on adjacent prepubertal Sertoli TM4 cells, specifically on 1) testicular gap junctional intercellular communication (GJIC), one of the hallmarks of non-genotoxic carcinogenicity, 2) GJIC building blocks connexins (Cx), and 3) mitogen-activated protein kinases MAPKs. We selected eight representatives of EDCs: bisphenol A and organochlorine chemicals such as pesticides dichlorodiphenyltrichloroethane, lindane, methoxychlor, and vinclozolin, industrial chemical 2,2',4,4',5,5'-hexachlorobiphenyl, and components of personal care products, triclocarban and triclosan. EDCs rapidly dysregulated GJIC in Sertoli TM4 cells mainly via MAPK p38 and/or Erk1/2/pathways by the intermediate hyper- or de-phosphorylation of Cx43 (Ser368, Ser282) and translocalization of Cx43 from the plasma membrane, suggesting disturbed intracellular trafficking of Cx43 protein. Surprisingly, EDCs did not rapidly activate MAPK Erk1/2 or p38; on the contrary, TCC and TCS decreased their activity (phosphorylation). Our results indicate that EDCs might disrupt testicular homeostasis and development via testicular GJIC, junctional and non-junctional functions of Cx43 and MAPK-signalling pathways in Sertoli cells.
Collapse
Affiliation(s)
- Affiefa Yawer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Jan Raška
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
36
|
Rengaraj D, Cha DG, Lee HJ, Lee KY, Choi YH, Jung KM, Kim YM, Choi HJ, Choi HJ, Yoo E, Woo SJ, Park JS, Park KJ, Kim JK, Han JY. Dissecting chicken germ cell dynamics by combining a germ cell tracing transgenic chicken model with single-cell RNA sequencing. Comput Struct Biotechnol J 2022; 20:1654-1669. [PMID: 35465157 PMCID: PMC9010679 DOI: 10.1016/j.csbj.2022.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Avian germ cells can be distinguished by certain characteristics during development. On the basis of these characteristics, germ cells can be used for germline transmission. However, the dynamic transcriptional landscape of avian germ cells during development is unknown. Here, we used a novel germ-cell-tracing method to monitor and isolate chicken germ cells at different stages of development. We targeted the deleted in azoospermia like (DAZL) gene, a germ-cell-specific marker, to integrate a green fluorescent protein (GFP) reporter gene without affecting endogenous DAZL expression. The resulting transgenic chickens (DAZL::GFP) were used to uncover the dynamic transcriptional landscape of avian germ cells. Single-cell RNA sequencing of 4,752 male and 13,028 female DAZL::GFP germ cells isolated from embryonic day E2.5 to 1 week post-hatch identified sex-specific developmental stages (4 stages in male and 5 stages in female) and trajectories (apoptosis and meiosis paths in female) of chicken germ cells. The male and female trajectories were characterized by a gradual acquisition of stage-specific transcription factor activities. We also identified evolutionary conserved and species-specific gene expression programs during both chicken and human germ-cell development. Collectively, these novel analyses provide mechanistic insights into chicken germ-cell development.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu 42988, South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu 42988, South Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyeon Jeong Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eunhui Yoo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, South Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Corresponding authors at: POSTECH, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea (J.K. Kim). Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea (J.Y. Han).
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
- Corresponding authors at: POSTECH, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea (J.K. Kim). Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea (J.Y. Han).
| |
Collapse
|
37
|
Hong S, Shen X, Cheng J, Tang H, Sun F. Comprehensive Analysis of the Transcriptome-Wide m6A Methylation in Mouse Pachytene Spermatocytes and Round Spermatids. Front Genet 2022; 13:832677. [PMID: 35368708 PMCID: PMC8968445 DOI: 10.3389/fgene.2022.832677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis, an efficient and complex system in male germline development, requires a series of elaborately regulated genetic events in which diploid spermatogonia differentiate into haploid spermatozoa. N6-methyladenosine (m6A) is an important epigenetic RNA modification that occurs during spermatogenesis. ALKBH5 is an m6A eraser and knocking out Alkbh5 increases the level of total m6A methylation and causes male infertility. In this study, comprehensive analyses of MeRIP-seq and RNA-seq data revealed differences between wild-type (WT) and Alkbh5 knockout (KO) mice. In pachytene spermatocytes (PA), 8,151 m6A peaks associated with 9,959 genes were tested from WT and 10,856 m6A peaks associated with 10,016 genes were tested from KO mice. In the round spermatids (RO), 10,271 m6A peaks associated with 10,109 genes were tested from WT mice and 9,559 m6A peaks associated with 10,138 genes were tested from KO mice. The peaks were mainly concentrated in the coding region and the stop codon of the GGAC motif. In addition, enrichment analysis showed significant m6A methylation genes in related pathways in spermatogenesis. Furthermore, we conducted joint analyses of the m6A methylome and RNA transcription, suggesting an m6A regulatory mechanism of gene expression. Finally, seven differentially expressed mRNAs from RNA-seq data in both PA and RO were verified using qPCR. Overall, our study provides new information on m6A modification changes between WT and KO in PA and RO, and may provide new insights into the molecular mechanisms of m6A modification in germ cell development and spermatogenesis.
Collapse
|
38
|
Identification and Characterization of MicroRNAs Involving in Initial Sex Differentiation of Chlamys farreri Gonads. BIOLOGY 2022; 11:biology11030456. [PMID: 35336829 PMCID: PMC8945268 DOI: 10.3390/biology11030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Sex formation of gonads encompasses two ancient and highly conserved biological processes, sex determination and sex differentiation. The processes are strictly regulated by a complex of gene networks. There is increasing evidence that miRNAs play key roles in many biological processes. however, information is limited in their contribution to sex differentiation in animals. In the present study, we identified the novel miRNAs involved in sex-related genes regulation and explored the miRNA–mRNA networks underlying the posttranscriptional regulation during the initial sex differentiation in Zhikong scallop, Chlamys farreri. Our findings provide an important basis for studying the sex differentiation mechanisms, as well as developing sex control techniques in bivalves. Abstract Research on expressional regulation of genes at the initial sex differentiation of gonads will help to elucidate the mechanisms of sex determination and differentiation in animals. However, information on initial sex differentiation of gonads is limited in bivalves. MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that can regulate the target gene expression at the posttranscription level by degrading the mRNA or repressing the mRNA translation. In the present study, we investigated the small RNAs transcriptome using the testes and ovaries of Zhikong scallop Chlamys farreri juveniles with a shell height of 5.0 mm, a critical stage of initial sex differentiation of gonads. A total of 75 known mature miRNAs and 103 novel miRNAs were identified. By comparing the expression of miRNAs between the ovary and testis, 11 miRNAs were determined to be differentially expressed. GO annotations and KEGG analyses indicated that many putative target genes that matched to these differentially expressed miRNAs participated in the regulation of sex differentiation. Furthermore, two selected miRNAs, cfa-novel_miR65 and cfa-miR-87a-3p_1, were confirmed to downregulate expressions of Foxl2 (a female-critical gene) and Klf4 (a male-critical gene), respectively, using a dual-luciferase reporter analysis. Our findings provided new insights into the initial sex differentiation of gonads regulated by miRNAs in bivalves.
Collapse
|
39
|
El-Fakharany YM, Mohamed EM, Etewa RL, Abdel Hamid OI. Selenium nanoparticles alleviate lead acetate-induced toxicological and morphological changes in rat testes through modulation of calmodulin-related genes expression. J Biochem Mol Toxicol 2022; 36:e23017. [PMID: 35194871 DOI: 10.1002/jbt.23017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023]
Abstract
Lead (Pb) is one of the most common toxic heavy metals. It is a well-known testicular toxicant. Selenium nanoparticles (SeNPs) are a more effective form of elemental selenium that reduces drug-induced toxicities. This study aimed to study the possible ameliorating effect of SeNPs on the toxicological and morphological changes in testes of lead acetate intoxicated rats. The study was conducted on 40 adult male albino rats divided into four groups; control, SeNPs-treated, lead acetate-treated, lead acetate and SeNPS treated groups. The concurrent treatment of lead acetate-exposed rats with SeNPs (0.1 mg/kg/day) for 12 weeks significantly lowered the blood and testicular lead levels, increased serum testosterone, and decreased luteinizing hormone and follicle-stimulating hormone to approach control values. In addition, it improved the histopathological, and ultrastructural alterations of the testes and improved the immunohistochemical expression of the c-kit. This was accompanied by maintenance of the testicular oxidant/antioxidant balance and reversing the lead-induced disrupted calmodulin-related genes expression in testicular tissue in the form of downregulation of CAMMK2 and MAP2K6 and upregulation of CXCR4 genes. There was a strong positive correlation between testicular malondialdehyde and MAP2K6 expression level as well as a strong positive correlation between CXCR4 gene expression and the C-kit area %. In conclusion, SeNPs can be considered as a potential therapy for a lead-induced testicular injury.
Collapse
Affiliation(s)
- Yara M El-Fakharany
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha L Etewa
- Department of Medical Biochemistry, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Omaima I Abdel Hamid
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
40
|
Kopalli SR, Cha KM, Cho JY, Kim SK, Koppula S. Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-κB/MAPKs Signaling in Naturally Aged Rats. MYCOBIOLOGY 2022; 50:89-98. [PMID: 35291597 PMCID: PMC8890559 DOI: 10.1080/12298093.2022.2035515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1β, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.
Collapse
Affiliation(s)
| | - Kyu-Min Cha
- D&L Biochem, Business Incubator Center 406, Chungju-Si, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Si-Kwan Kim
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju-si, Republic of Korea
| | - Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju-si, Republic of Korea
| |
Collapse
|
41
|
Wang L, Bu T, Wu X, Gao S, Li X, De Jesus AB, Wong CKC, Chen H, Chung NPY, Sun F, Cheng CY. Cell-Cell Interaction-Mediated Signaling in the Testis Induces Reproductive Dysfunction—Lesson from the Toxicant/Pharmaceutical Models. Cells 2022; 11:cells11040591. [PMID: 35203242 PMCID: PMC8869896 DOI: 10.3390/cells11040591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence has shown that cell-cell interactions between testicular cells, in particular at the Sertoli cell-cell and Sertoli-germ cell interface, are crucial to support spermatogenesis. The unique ultrastructures that support cell-cell interactions in the testis are the basal ES (ectoplasmic specialization) and the apical ES. The basal ES is found between adjacent Sertoli cells near the basement membrane that also constitute the blood-testis barrier (BTB). The apical ES is restrictively expressed at the Sertoli-spermatid contact site in the apical (adluminal) compartment of the seminiferous epithelium. These ultrastructures are present in both rodent and human testes, but the majority of studies found in the literature were done in rodent testes. As such, our discussion herein, unless otherwise specified, is focused on studies in testes of adult rats. Studies have shown that the testicular cell-cell interactions crucial to support spermatogenesis are mediated through distinctive signaling proteins and pathways, most notably involving FAK, Akt1/2 and Cdc42 GTPase. Thus, manipulation of some of these signaling proteins, such as FAK, through the use of phosphomimetic mutants for overexpression in Sertoli cell epithelium in vitro or in the testis in vivo, making FAK either constitutively active or inactive, we can modify the outcome of spermatogenesis. For instance, using the toxicant-induced Sertoli cell or testis injury in rats as study models, we can either block or rescue toxicant-induced infertility through overexpression of p-FAK-Y397 or p-FAK-Y407 (and their mutants), including the use of specific activator(s) of the involved signaling proteins against pAkt1/2. These findings thus illustrate that a potential therapeutic approach can be developed to manage toxicant-induced male reproductive dysfunction. In this review, we critically evaluate these recent findings, highlighting the direction for future investigations by bringing the laboratory-based research through a translation path to clinical investigations.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xinyao Li
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | | | - Chris K. C. Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China;
| | - Hao Chen
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Nancy P. Y. Chung
- Department of Genetic Medicine, Cornell Medical College, New York, NY 10065, USA;
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Correspondence: (F.S.); (C.Y.C.)
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (F.S.); (C.Y.C.)
| |
Collapse
|
42
|
Wang Z, Xie Y, Chen H, Yao J, Lv L, Li Y, Deng C, Zhang M, Sun X, Liu G. Guilingji Protects Against Spermatogenesis Dysfunction From Oxidative Stress via Regulation of MAPK and Apoptotic Signaling Pathways in Immp2l Mutant Mice. Front Pharmacol 2022; 12:771161. [PMID: 35095490 PMCID: PMC8793631 DOI: 10.3389/fphar.2021.771161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Male infertility is a major health issue with an estimated prevalence of 4.2% of male infertility worldwide. Oxidative stress (OS) is one of the main causes of male infertility, which is characterized by excessive reactive oxygen species (ROS) or lack of antioxidants. Meanwhile, it is reported that oxidative stress plays an important role in the spermatogenic impairment in Inner mitochondrial membrane peptidase 2-like (Immp2l) mutant mice. In this study, we focused on the potential mechanism of Guilingji in protecting the spermatogenic functions in Immp2l mutant mice. The results revealed that Immp2l mutant mice exhibit impaired spermatogenesis and histology shows seminiferous tubules with reduced spermatogenic cells. After administration of Guilingji [150 mg/kg per day intragastric gavage], however, alleviated spermatogenesis impairment and reversed testis histopathological damage and reduced apoptosis. What’s more, western blotting and the levels of redox classic markers revealed that Guilingji can markedly reduce reactive oxygen species. Moreover, Guilingji treatment led to inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK), regulated apoptosis in the cells. In summary, Guilingji can improve spermatogenesis in Immp2l mutant mice by regulating oxidation-antioxidant balance and MAPK pathway. Our data suggests that Guilingji may be a promising and effective antioxidant candidate for the treatment of male infertility.
Collapse
Affiliation(s)
- Zhenqing Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haicheng Chen
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linyan Lv
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Wang Y, Yuan X, Ali MA, Qin Z, Zhang Y, Zeng C. piR-121380 Is Involved in Cryo-Capacitation and Regulates Post-Thawed Boar Sperm Quality Through Phosphorylation of ERK2 via Targeting PTPN7. Front Cell Dev Biol 2022; 9:792994. [PMID: 35155446 PMCID: PMC8826432 DOI: 10.3389/fcell.2021.792994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Cryopreservation induces capacitation-like (cryo-capacitation) changes, similar to natural capacitation, and affects the fertility potential of post-thawed sperm. The molecular mechanism of sperm cryo-capacitation during cryopreservation remains unknown. PIWI-interacting RNAs (piRNAs) have been reported to be involved in cryo-capacitation of post-thawed sperm and regulation of sperm motility, capacitation, and chemotaxis. In this study, protein tyrosine phosphatase nonreceptor type 7 (PTPN7) was positively targeted by piR-121380 after a dual luciferase assay. The mRNA expression of PTPN7 and piR-121380 was significantly decreased (p < 0.01); however, PTPN7 protein was significantly increased (p < 0.01) in post-thawed boar sperm. Furthermore, E1RK1/2 phosphorylation was reduced during cryopreservation. Six hours after transfection with piR-121380 mimic and inhibitor, the phosphorylation of ERK2 was significantly increased and decreased (p < 0.01), respectively. Furthermore, the highest and lowest total sperm motility, forward motility, and capacitation rate were observed after piR-121380 mimic and inhibitor treatments, respectively. The concentration of intracellular calcium ([Ca2+]i) showed no significant difference after transfection with either piR-121380 mimic or inhibitor at 1, 3, and 6 h. In conclusion, we demonstrated that piR-121380 modulates ERK2 phosphorylation by targeting PTPN7, which induces sperm cryo-capacitation, and eventually affects the motility and fertility potential of post-thawed sperm.
Collapse
Affiliation(s)
- Yihan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiang Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Malik Ahsan Ali
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore, Pakistan
| | - Ziyue Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Changjun Zeng,
| |
Collapse
|
44
|
d-aspartate and N-methyl-d-aspartate promote proliferative activity in mouse spermatocyte GC-2 cells. Reprod Biol 2022; 22:100601. [PMID: 35032869 DOI: 10.1016/j.repbio.2021.100601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022]
Abstract
D-Aspartate (D-Asp) and its methylated form N-methyl-d-aspartate (NMDA) promote spermatogenesis by stimulating the biosynthesis of sex steroid hormones. d-Asp also induces spermatogonia proliferation directly by activating the ERK/Aurora B pathway. In the present study, a mouse spermatocyte-derived cell line (GC-2) which represents a stage between preleptotene spermatocyte and round spermatids was exposed to 200 μM d-Asp or 50 μM NMDA for 30 min, 2 h, and 4 h to explore the influence of these amino acids on cell proliferation and mitochondrial activities occurring during this process. By Western blotting analyses, the expressions of AMPAR (GluA1-GluA2/3 subunits), cell proliferation as well as mitochondria functionality markers were determined at different incubation times. The results revealed that d-Asp or NMDA stimulate proliferation and meiosis in the GC-2 cells via the AMPAR/ERK/Akt pathway, which led to increased levels of the PCNA, p-H3, and SYCP3 proteins. The effects of d-Asp and NMDA on the mitochondrial functionality of the GC-2 cells strongly suggested an active role of these amino acids in germ cell maturation. In both d-Asp- and NMDA-treated GC-2 cells mitochondrial biogenesis as well as mitochondrial fusion are increased while mitochondria fission is inhibited. Finally, the findings showed that NMDA significantly increased the expressions of the CII, CIII, CIV, and CV complexes of oxidative phosphorylation system (OXPHOS), whereas d-Asp induced a significant increase in the expressions only of the CIV and CV complexes. The present study provides novel insights into the mechanisms underlying the role of d-Asp and NMDA in promoting spermatogenesis.
Collapse
|
45
|
Akar F, Yildirim OG, Yucel Tenekeci G, Tunc AS, Demirel MA, Sadi G. Dietary high-fructose reduces barrier proteins and activates mitogenic signalling in the testis of a rat model: Regulatory effects of kefir supplementation. Andrologia 2021; 54:e14342. [PMID: 34872158 DOI: 10.1111/and.14342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
There are limited data on the influence of fructose rich diet on the male reproductive system. Kefir may have health beneficial effects, but its mechanism of action remains mostly unclear. Herein, we investigated the impact of dietary high fructose on tight junction proteins and mitogenic pathways in rat testis as well as their modulation by kefir supplementation. Twenty-two male Wistar rats (4 weeks old) were divided into the following three groups: Control; Fructose; Fructose + Kefir. Fructose was added to drinking water at concentration of 20% and administered to the rats for 15 weeks and kefir was supplemented by gavage once a day during final 6 weeks. Dietary fructose-induced testicular degeneration was associated with the downregulation of the blood-testis barrier proteins, claudin-11 and N-cadherin as well as SIRT1 expression in testicular tissue of rats. However, p38MAPK, p-p38MAPK and p-ERK1/2 levels were increased in testis of fructose-fed rats. Interestingly, JNK1 and p-JNK1 protein levels were decreased following this dietary intervention. Raf1, ERK1/2, and caspase 3 and TUNEL staining of the testis reveal the activation of apoptosis due to fructose intake. Kefir supplementation markedly promoted the expression of claudin-11, SIRT1, JNK1 and p-JNK1 but suppressed testicular mitogenic and apoptotic factors in fructose-fed rats.
Collapse
Affiliation(s)
- Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Onur Gokhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Gozde Yucel Tenekeci
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Arda Selin Tunc
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Murside Ayse Demirel
- Laboratory Animals Breeding and Experimental Researches Center, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Gokhan Sadi
- Department of Biology, KO Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
46
|
Guo Q, Jiang Y, Bai H, Chen G, Chang G. miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis. Genes (Basel) 2021; 12:genes12111695. [PMID: 34828300 PMCID: PMC8621736 DOI: 10.3390/genes12111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The process of spermatogenesis is complex and systemic, requiring the cooperation of many regulators. However, little is known about how micro RNAs (miRNAs) regulate spermatogenesis in poultry. In this study, we investigated key miRNAs and their target genes that are involved in spermatogenesis in chickens. Next-generation sequencing was conducted to determine miRNA expression profiles in five cell types: primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia (Spa), and chicken sperm. Next, we analyzed and identified several key miRNAs that regulate spermatogenesis in the four germline cell miRNA profiles. Among the enriched miRNAs, miRNA-301a-5p was the key miRNA in PGCs, SSCs, and Spa. Through reverse transcription quantitative PCR (RT-qPCR), dual-luciferase, and miRNA salience, we confirmed that miR-301a-5p binds to transforming growth factor-beta 2 (TGFβ2) and is involved in the transforming growth factor-beta (TGF-β) signaling pathway and germ cell development. To the best of our knowledge, this is the first demonstration of miR-301a-5p involvement in spermatogenesis by direct binding to TGFβ2, a key gene in the TGF-β signaling pathway. This finding contributes to the insights into the molecular mechanism through which miRNAs regulate germline cell differentiation and spermatogenesis in chickens.
Collapse
Affiliation(s)
- Qixin Guo
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
| | - Yong Jiang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
| | - Hao Bai
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Correspondence:
| |
Collapse
|
47
|
Gutiérrez-Añez JC, Henning H, Lucas-Hahn A, Baulain U, Aldag P, Sieg B, Hensel V, Herrmann D, Niemann H. Melatonin improves rate of monospermic fertilization and early embryo development in a bovine IVF system. PLoS One 2021; 16:e0256701. [PMID: 34473747 PMCID: PMC8412339 DOI: 10.1371/journal.pone.0256701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023] Open
Abstract
The developmental competence of male and female gametes is frequently reduced under in vitro conditions, mainly due to oxidative stress during handling. The amino-acid derived hormone melatonin has emerged as a potent non-enzymatic antioxidant in many biological systems. The goal of the present study was to evaluate the effects of melatonin on post-thaw sperm quality, fertilizing ability, and embryo development and competence in vitro after in vitro fertilization. Frozen-thawed bovine spermatozoa were incubated either in the presence of 10−11 M melatonin (MT), or its solvent (ethanol; Sham-Control), or plain Tyrode’s Albumin Lactate Pyruvate medium (TALP, Control). Computer-Assisted Sperm Analysis (CASA) and flow cytometry data after 30 min, 120 min, and 180 min incubation did not reveal any significant effects of melatonin on average motility parameters, sperm subpopulation structure as determined by hierarchical cluster, or on the percentage of viable, acrosome intact sperm, or viable sperm with active mitochondria. Nevertheless, in vitro matured cumulus-oocyte-complexes fertilized with spermatozoa which had been preincubated with 10−11 M melatonin (MT-Sperm) showed higher (P < 0.01) rates of monospermic fertilization, reduced (P < 0.05) polyspermy and enhanced (P < 0.05) embryo development compared to the Control group. Moreover, the relative abundance of MAPK13 in the in vitro-derived blastocysts was greater (P < 0.05) than observed in the Control group. In conclusion, adding melatonin to the sperm-preparation protocol for bovine IVF improved proper fertilization and enhanced embryonic development and competence in vitro.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Añez
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
- Medical-Surgical Department, College of Veterinary Medicine, University of Zulia, Maracaibo, Venezuela
- * E-mail: , (JCGA); (HN)
| | - Heiko Henning
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Patrick Aldag
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Birgit Sieg
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Vivian Hensel
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Heiner Niemann
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- * E-mail: , (JCGA); (HN)
| |
Collapse
|
48
|
Gu LF, Chen JQ, Lin QY, Yang YZ. Roles of mitochondrial unfolded protein response in mammalian stem cells. World J Stem Cells 2021; 13:737-752. [PMID: 34367475 PMCID: PMC8316864 DOI: 10.4252/wjsc.v13.i7.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
Collapse
Affiliation(s)
- Li-Fang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qi Chen
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qing-Yin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan-Zhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
49
|
Kilinc L, Uz YH. Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways. Clin Exp Reprod Med 2021; 48:211-220. [PMID: 34352168 PMCID: PMC8421662 DOI: 10.5653/cerm.2020.04105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Leyla Kilinc
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yesim Hulya Uz
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
50
|
Ma X, Wang G, Wu L, Liu H, Jiang H, Wang L, Liu Q, Wu Q, Tian X, Li X. Dynamic expression and functional analysis of circular RNA in the gonads of Chinese soft-shelled turtles (Pelodiscus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100863. [PMID: 34237608 DOI: 10.1016/j.cbd.2021.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Circular RNA (circRNA) is a noncoding RNA that can regulate a variety of biological processes. CircRNAs can regulate gene expression posttranscriptionally by acting as microRNA sponges. Many turtle species are remarkable organisms due to their reproductive processes. However, information on circRNA in the gonads of turtles is limited. In this study, 6, 121 circRNAs were identified in the testes and ovaries of Chinese soft-shelled turtles (Pelodiscus sinensis) using the Illumina platform, and 710 circRNAs were significantly differentially expressed (DE). The DE circRNAs included 541 upregulated and 169 downregulated circRNAs in the testes. GO and KEGG pathway analysis indicated that the DE circRNAs were enriched in several signaling pathways, including GnRH, Wnt, FoxO, Progesterone mediated oocyte maturation, and mTOR signaling pathways. Five DE circRNAs were randomly selected, and their relative expression levels in ovaries and testes were detected by quantitative real-time PCR. All of these circRNAs were differentially expressed. In addition, 9, 883 interactions between circRNAs and miRNAs were predicted in the turtles. Target genes of the miRNAs include a range of genes regulating gonadal development. Seven ceRNA networks (DE circRNAs-DE miRNAs-DE mRNAs), including 7 DE circRNAs, 11 DE miRNAs and 20 DE mRNAs, were constructed. The networks included Cdc6, the miR-1 family, the miR-203 family, and the miR-302 family. The expression profile of gonadal circRNAs might help to elucidate the roles of nonprotein coding RNAs in turtle gonadal development.
Collapse
Affiliation(s)
- Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Guiyu Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Hongxia Jiang
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Luming Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Qian Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen 361000, People's Republic of China.
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China.
| |
Collapse
|