1
|
Menéndez-González M, García-Martínez A, Fernández-Vega I, Pitiot A, Álvarez V. A variant in GRN of Spanish origin presenting with heterogeneous phenotypes. Neurologia 2025; 40:57-65. [PMID: 36216226 DOI: 10.1016/j.nrleng.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION The variant c.1414-1G>T in the GRN gene has previously been reported as probably pathogenic in subjects of Hispanic origin in the American continent. METHODS We report 5 families of Spanish origin carrying this variant, including the clinical, neuroimaging, and laboratory findings. RESULTS Phenotypes were strikingly different, including cases presenting with behavioral variant frontotemporal dementia, semantic variant primary progressive aphasia, rapidly progressive motor neuron disease (pathologically documented), and tremor-dominant parkinsonism. Retinal degeneration has been found in homozygous carriers only. Ex vivo splicing assays confirmed that the mutation c.1414-1G>T affects the splicing of the exon, causing a loss of 20 amino acids in exon 11. CONCLUSIONS We conclude that variant c.1414-1G>T of the GRN gene is pathogenic, can lead to a variety of clinical presentations and to gene dosage effect, and probably has a Spanish founder effect.
Collapse
Affiliation(s)
- M Menéndez-González
- Department of Neurology, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Department of Medicine, Universidad de Oviedo, Spain.
| | - A García-Martínez
- Department of Neurology, Hospital Universitario Central de Asturias, Spain
| | - I Fernández-Vega
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Department of Pathology Anatomy, Hospital Universitario Central de Asturias, Spain; Department of Surgery, Universidad de Oviedo, Spain
| | - A Pitiot
- Laboratory of Molecular Oncology, Hospital Universitario Central de Asturias, Spain
| | - V Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; Laboratory of Genetics, Hospital Universitario Central de Asturias, Spain
| |
Collapse
|
2
|
Evans EF, Shyr ZA, Traynor BJ, Zheng W. Therapeutic development approaches to treat haploinsufficiency diseases: restoring protein levels. Drug Discov Today 2024; 29:104201. [PMID: 39384033 DOI: 10.1016/j.drudis.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Rare diseases affect one in ten people but only a small fraction of these diseases have an FDA-approved treatment. Haploinsufficiency, caused by a dominant loss-of-function mutation, is a unique rare disease group because patients have one normal allele of the affected gene. This makes rare haploinsufficiency diseases promising candidates for drug development by increasing expression of the normal gene allele, decreasing the target protein degradation and enhancing the target protein function. This review summarizes recent progresses and approaches used in the translational research of therapeutics to treat haploinsufficiency diseases including gene therapy, nucleotide-based therapeutics and small-molecule drug development. We hope that these drug development strategies will accelerate therapeutic development to treat haploinsufficiency diseases.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Bryan J Traynor
- National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20814, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
3
|
Hsiao-Nakamoto J, Chiu CL, VandeVrede L, Ravi R, Vandenberg B, De Groot J, Tsogtbaatar B, Fang M, Auger P, Gould NS, Marchioni F, Powers CA, Davis SS, Suh JH, Alkabsh J, Heuer HW, Lago AL, Scearce-Levie K, Seeley WW, Boeve BF, Rosen HJ, Berger A, Tsai R, Di Paolo G, Boxer AL, Bhalla A, Huang F. Alterations in Lysosomal, Glial and Neurodegenerative Biomarkers in Patients with Sporadic and Genetic Forms of Frontotemporal Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579529. [PMID: 38405775 PMCID: PMC10888909 DOI: 10.1101/2024.02.09.579529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.
Collapse
Affiliation(s)
- Jennifer Hsiao-Nakamoto
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Chi-Lu Chiu
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ritesh Ravi
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Brittany Vandenberg
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Brittany Vandenberg, Washington State University, Pullman, WA 99164, USA
| | - Jack De Groot
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Jack DeGroot: Prime Medicine Inc., Cambridge, MA 02139, USA
| | | | - Meng Fang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Paul Auger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Paul Auger: Nurix Therapeutics, San Francisco, CA 94158, USA
| | - Neal S Gould
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Filippo Marchioni
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Casey A Powers
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Casey A. Powers: Stanford University, Stanford, CA 94305, USA
| | - Sonnet S Davis
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jung H Suh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jamal Alkabsh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Kimberly Scearce-Levie: Cajal Neuroscience, Seattle, WA 98109, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Amy Berger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Richard Tsai
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Gilbert Di Paolo
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
- These authors contributed equally
| | - Akhil Bhalla
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Fen Huang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| |
Collapse
|
4
|
Wang LH, Liu XM, Liu Y, Li HR, Liu JQI, Yang LB. Emergency entity relationship extraction for water diversion project based on pre-trained model and multi-featured graph convolutional network. PLoS One 2023; 18:e0292004. [PMID: 37812633 PMCID: PMC10561837 DOI: 10.1371/journal.pone.0292004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/10/2023] [Indexed: 10/11/2023] Open
Abstract
Using information technology to extract emergency decision-making knowledge from emergency plan documents is an essential means to enhance the efficiency and capacity of emergency management. To address the problems of numerous terminologies and complex relationships faced by emergency knowledge extraction of water diversion project, a multi-feature graph convolutional network (PTM-MFGCN) based on pre-trained model is proposed. Initially, through the utilization of random masking of domain-specific terminologies during pre-training, the model's comprehension of the meaning and application of such terminologies within specific fields is enhanced, thereby augmenting the network's proficiency in extracting professional terminologies. Furthermore, by introducing a multi-feature adjacency matrix to capture a broader range of neighboring node information, thereby enhancing the network's ability to handle complex relationships. Lastly, we utilize the PTM-MFGCN to achieve the extraction of emergency entity relationships in water diversion project, thus constructing a knowledge graph for water diversion emergency management. The experimental results demonstrate that PTM-MFGCN exhibits improvements of 2.84% in accuracy, 4.87% in recall, and 5.18% in F1 score, compared to the baseline model. Relevant studies can effectively enhance the efficiency and capability of emergency management, mitigating the impact of unforeseen events on engineering safety.
Collapse
Affiliation(s)
- Li Hu Wang
- School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
| | - Xue Mei Liu
- School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
- Collaborative Innovation Centre for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
| | - Yang Liu
- Collaborative Innovation Centre for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
| | - Hai Rui Li
- School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
| | - Jia QI Liu
- Collaborative Innovation Centre for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
| | - Li Bo Yang
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China
| |
Collapse
|
5
|
Simon MJ, Logan T, DeVos SL, Di Paolo G. Lysosomal functions of progranulin and implications for treatment of frontotemporal dementia. Trends Cell Biol 2023; 33:324-339. [PMID: 36244875 DOI: 10.1016/j.tcb.2022.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022]
Abstract
Loss-of-function heterozygous mutations in GRN, the gene encoding progranulin (PGRN), were identified in patients with frontotemporal lobar degeneration (FTLD) almost two decades ago and are generally linked to reduced PGRN protein expression levels. Although initial characterization of PGRN function primarily focused on its role in extracellular signaling as a secreted protein, more recent studies revealed critical roles of PGRN in regulating lysosome function, including proteolysis and lipid degradation, consistent with its lysosomal localization. Emerging from these studies is the notion that PGRN regulates glucocerebrosidase activity via direct chaperone activities and via interaction with prosaposin (i.e., a key regulator of lysosomal sphingolipid-metabolizing enzymes), as well as with the anionic phospholipid bis(monoacylglycero)phosphate. This emerging lysosomal biology of PGRN identified novel and promising opportunities in therapeutic discovery as well as biomarker development.
Collapse
Affiliation(s)
| | - Todd Logan
- Denali Therapeutics, South San Francisco, CA, USA
| | | | | |
Collapse
|
6
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
7
|
Braun JEA. Extracellular chaperone networks and the export of J-domain proteins. J Biol Chem 2023; 299:102840. [PMID: 36581212 PMCID: PMC9867986 DOI: 10.1016/j.jbc.2022.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
An extracellular network of molecular chaperones protects a diverse array of proteins that reside in or pass through extracellular spaces. Proteins in the extracellular milieu face numerous challenges that can lead to protein misfolding and aggregation. As a checkpoint for proteins that move between cells, extracellular chaperone networks are of growing clinical relevance. J-domain proteins (JDPs) are ubiquitous molecular chaperones that are known for their essential roles in a wide array of fundamental cellular processes through their regulation of heat shock protein 70s. As the largest molecular chaperone family, JDPs have long been recognized for their diverse functions within cells. Some JDPs are elegantly selective for their "client proteins," some do not discriminate among substrates and others act cooperatively on the same target. The realization that JDPs are exported through both classical and unconventional secretory pathways has fueled investigation into the roles that JDPs play in protein quality control and intercellular communication. The proposed functions of exported JDPs are diverse. Studies suggest that export of DnaJB11 enhances extracellular proteostasis, that intercellular movement of DnaJB1 or DnaJB6 enhances the proteostasis capacity in recipient cells, whereas the import of DnaJB8 increases resistance to chemotherapy in recipient cancer cells. In addition, the export of DnaJC5 and concurrent DnaJC5-dependent ejection of dysfunctional and aggregation-prone proteins are implicated in the prevention of neurodegeneration. This review provides a brief overview of the current understanding of the extracellular chaperone networks and outlines the first wave of studies describing the cellular export of JDPs.
Collapse
Affiliation(s)
- Janice E A Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Koçoğlu C, Van Broeckhoven C, van der Zee J. How network-based approaches can complement gene identification studies in frontotemporal dementia. Trends Genet 2022; 38:944-955. [DOI: 10.1016/j.tig.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
|
9
|
Vandenbark AA, Offner H, Matejuk S, Matejuk A. Microglia and astrocyte involvement in neurodegeneration and brain cancer. J Neuroinflammation 2021; 18:298. [PMID: 34949203 PMCID: PMC8697466 DOI: 10.1186/s12974-021-02355-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
The brain is unique and the most complex organ of the body, containing neurons and several types of glial cells of different origins and properties that protect and ensure normal brain structure and function. Neurological disorders are the result of a failure of the nervous system multifaceted cellular networks. Although great progress has been made in the understanding of glia involvement in neuropathology, therapeutic outcomes are still not satisfactory. Here, we discuss recent perspectives on the role of microglia and astrocytes in neurological disorders, including the two most common neurodegenerative conditions, Alzheimer disease and progranulin-related frontotemporal lobar dementia, as well as astrocytoma brain tumors. We emphasize key factors of microglia and astrocytic biology such as the highly heterogeneic glial nature strongly dependent on the environment, genetic factors that predispose to certain pathologies and glia senescence that inevitably changes the CNS landscape. Our understanding of diverse glial contributions to neurological diseases can lead advances in glial biology and their functional recovery after CNS malfunction.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA. .,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Szymon Matejuk
- Medical Student of Jagiellonian University, Cracow, Poland
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| |
Collapse
|
10
|
Benussi A, Alberici A, Samra K, Russell LL, Greaves CV, Bocchetta M, Ducharme S, Finger E, Fumagalli G, Galimberti D, Jiskoot LC, Le Ber I, Masellis M, Nacmias B, Rowe JB, Sanchez-Valle R, Seelaar H, Synofzik M, Rohrer JD, Borroni B. Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimers Dement 2021; 18:1408-1423. [PMID: 34874596 DOI: 10.1002/alz.12485] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
The presymptomatic stages of frontotemporal dementia (FTD) are still poorly defined and encompass a long accrual of progressive biological (preclinical) and then clinical (prodromal) changes, antedating the onset of dementia. The heterogeneity of clinical presentations and the different neuropathological phenotypes have prevented a prior clear description of either preclinical or prodromal FTD. Recent advances in therapeutic approaches, at least in monogenic disease, demand a proper definition of these predementia stages. It has become clear that a consensus lexicon is needed to comprehensively describe the stages that anticipate dementia. The goal of the present work is to review existing literature on the preclinical and prodromal phases of FTD, providing recommendations to address the unmet questions, therefore laying out a strategy for operationalizing and better characterizing these presymptomatic disease stages.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Kiran Samra
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute and Douglas Research Centre, McGill University, Montreal, Québec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Giorgio Fumagalli
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Lize C Jiskoot
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Isabelle Le Ber
- Paris Brain Institute - Institut du Cerveau - ICM, Sorbonne Université, Inserm U1127, CNRS UMR, Paris, France.,Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Network for Rare Neurological Diseases (ERN-RND), Paris, France
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, and IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
11
|
Bourbouli M, Paraskevas GP, Rentzos M, Mathioudakis L, Zouvelou V, Bougea A, Tychalas A, Kimiskidis VK, Constantinides V, Zafeiris S, Tzagournissakis M, Papadimas G, Karadima G, Koutsis G, Kroupis C, Kartanou C, Kapaki E, Zaganas I. Genotyping and Plasma/Cerebrospinal Fluid Profiling of a Cohort of Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Patients. Brain Sci 2021; 11:brainsci11091239. [PMID: 34573259 PMCID: PMC8472580 DOI: 10.3390/brainsci11091239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of the same pathophysiological spectrum and have common genetic and cerebrospinal fluid (CSF) biomarkers. Our aim here was to identify causative gene variants in a cohort of Greek patients with FTD, ALS and FTD-ALS, to measure levels of CSF biomarkers and to investigate genotype-phenotype/CSF biomarker associations. In this cohort of 130 patients (56 FTD, 58 ALS and 16 FTD-ALS), we performed C9orf72 hexanucleotide repeat expansion analysis, whole exome sequencing and measurement of “classical” (Aβ42, total tau and phospho-tau) and novel (TDP-43) CSF biomarkers and plasma progranulin. Through these analyses, we identified 14 patients with C9orf72 repeat expansion and 11 patients with causative variants in other genes (three in TARDBP, three in GRN, three in VCP, one in FUS, one in SOD1). In ALS patients, we found that levels of phospho-tau were lower in C9orf72 repeat expansion and MAPT c.855C>T (p.Asp285Asp) carriers compared to non-carriers. Additionally, carriers of rare C9orf72 and APP variants had lower levels of total tau and Aβ42, respectively. Plasma progranulin levels were decreased in patients carrying GRN pathogenic variants. This study expands the genotypic and phenotypic spectrum of FTD/ALS and offers insights in possible genotypic/CSF biomarker associations.
Collapse
Affiliation(s)
- Mara Bourbouli
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - George P. Paraskevas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
- 2nd Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| | - Mihail Rentzos
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Vasiliki Zouvelou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Anastasia Bougea
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Athanasios Tychalas
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- 1st Department of Neurology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Vasilios Constantinides
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Spiros Zafeiris
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Minas Tzagournissakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Georgios Papadimas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgia Karadima
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgios Koutsis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Chrisoula Kartanou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Elisabeth Kapaki
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Ioannis Zaganas
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- Correspondence: ; Tel.: +30-2810-394643
| |
Collapse
|
12
|
Frydas A, Cacace R, van der Zee J, Van Broeckhoven C, Wauters E. Genetic variants in progranulin upstream open reading frames increase downstream protein expression. Neurobiol Aging 2021; 110:113-121. [PMID: 34620513 DOI: 10.1016/j.neurobiolaging.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/25/2022]
Abstract
Premature termination codon (PTC) mutations in the granulin gene (GRN) lead to loss-of-function (LOF) of the progranulin protein (PGRN), causing frontotemporal lobar degeneration (FTLD) by haploinsufficiency. GRN expression is regulated at multiple levels, including the 5' untranslated region (UTR). The main 5' UTR of GRN and an alternative 5' UTR, contain upstream open reading frames (uORFs). These mRNA elements generally act as cis-repressors of translation. Disruption of each uORF of the alternative 5' UTR, increases protein expression with the 2 ATG-initiated uORFs being capable of initiating translation. We performed targeted sequencing of the uORF regions in a Flanders-Belgian cohort of patients with frontotemporal dementia (FTD) and identified 2 genetic variants, one in each 5' UTR. Both variants increase downstream protein levels, with the main 5' UTR variant rs76783532 causing a significant 1.5-fold increase in protein expression. We observed that the presence of functional uORFs in the alternative 5' UTR act as potential regulators of PGRN expression and demonstrate that genetic variation within GRN uORFs can alter their function.
Collapse
Affiliation(s)
- Alexandros Frydas
- VIB Center for Molecular Neurology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rita Cacace
- VIB Center for Molecular Neurology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- VIB Center for Molecular Neurology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- VIB Center for Molecular Neurology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Eline Wauters
- VIB Center for Molecular Neurology, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, Davis SS, Low RLY, Chiu CL, Fang M, Huang F, Bhalla A, Llapashtica C, Prorok R, Pizzo ME, Calvert MEK, Sun EW, Hsiao-Nakamoto J, Rajendra Y, Lexa KW, Srivastava DB, van Lengerich B, Wang J, Robles-Colmenares Y, Kim DJ, Duque J, Lenser M, Earr TK, Nguyen H, Chau R, Tsogtbaatar B, Ravi R, Skuja LL, Solanoy H, Rosen HJ, Boeve BF, Boxer AL, Heuer HW, Dennis MS, Kariolis MS, Monroe KM, Przybyla L, Sanchez PE, Meisner R, Diaz D, Henne KR, Watts RJ, Henry AG, Gunasekaran K, Astarita G, Suh JH, Lewcock JW, DeVos SL, Di Paolo G. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 2021; 184:4651-4668.e25. [PMID: 34450028 PMCID: PMC8489356 DOI: 10.1016/j.cell.2021.08.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022]
Abstract
GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.
Collapse
Affiliation(s)
- Todd Logan
- Denali Therapeutics, South San Francisco, CA, USA
| | | | - Anil Rana
- Denali Therapeutics, South San Francisco, CA, USA
| | | | | | | | | | - Chi-Lu Chiu
- Denali Therapeutics, South San Francisco, CA, USA
| | - Meng Fang
- Denali Therapeutics, South San Francisco, CA, USA
| | - Fen Huang
- Denali Therapeutics, South San Francisco, CA, USA
| | - Akhil Bhalla
- Denali Therapeutics, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | - Junhua Wang
- Denali Therapeutics, South San Francisco, CA, USA
| | | | - Do Jin Kim
- Denali Therapeutics, South San Francisco, CA, USA
| | - Joseph Duque
- Denali Therapeutics, South San Francisco, CA, USA
| | | | | | - Hoang Nguyen
- Denali Therapeutics, South San Francisco, CA, USA
| | - Roni Chau
- Denali Therapeutics, South San Francisco, CA, USA
| | | | - Ritesh Ravi
- Denali Therapeutics, South San Francisco, CA, USA
| | | | | | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; On behalf of the ALLFTD investigators
| | - Bradley F Boeve
- On behalf of the ALLFTD investigators; Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; On behalf of the ALLFTD investigators
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; On behalf of the ALLFTD investigators
| | | | | | | | | | | | - Rene Meisner
- Denali Therapeutics, South San Francisco, CA, USA
| | - Dolores Diaz
- Denali Therapeutics, South San Francisco, CA, USA
| | - Kirk R Henne
- Denali Therapeutics, South San Francisco, CA, USA
| | - Ryan J Watts
- Denali Therapeutics, South San Francisco, CA, USA
| | | | | | - Giuseppe Astarita
- Denali Therapeutics, South San Francisco, CA, USA; Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Jung H Suh
- Denali Therapeutics, South San Francisco, CA, USA
| | | | | | | |
Collapse
|
14
|
Natarajan K, Eisfeldt J, Hammond M, Laffita-Mesa JM, Patra K, Khoshnood B, Öijerstedt L, Graff C. Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia. Acta Neuropathol Commun 2021; 9:132. [PMID: 34344473 PMCID: PMC8336016 DOI: 10.1186/s40478-021-01234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
We identified an autosomal dominant progranulin mutation carrier without symptoms of dementia in her lifetime (Reduced Penetrance Mutation Carrier, RedPenMC). This resistance to develop expected pathology presents a unique opportunity to interrogate neurodegenerative mechanisms. We performed multimodal single-nuclei analyses of post-mortem frontal cortex from RedPenMC, including transcriptomics and global levels of chromatin marks. RedPenMC had an increased ratio of GRN-expressing microglia, higher levels of activating histone mark H3k4me3 in microglia and lower levels of the repressive chromatin marks H3k9me1 and H3k9me3 in the frontal cortex than her affected mutation carrier son and evidence of higher protein levels of progranulin in both plasma and brain homogenates. Although the study is limited to one case, the results support that restoring brain progranulin levels may be sufficient to escape neurodegeneration and FTD. In addition to previously identified modifier genes, it is possible that epigenetic marks may contribute to the increased progranulin expression in cases of reduced penetrance. These findings may stimulate similar follow-up studies and new therapeutic approaches.
Collapse
|
15
|
Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med 2021; 13:59. [PMID: 33853652 PMCID: PMC8048219 DOI: 10.1186/s13073-021-00878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular etiology of neurodegenerative brain diseases (NBD) has substantially increased over the past three decades. Early genetic studies of NBD families identified rare and highly penetrant deleterious mutations in causal genes that segregate with disease. Large genome-wide association studies uncovered common genetic variants that influenced disease risk. Major developments in next-generation sequencing (NGS) technologies accelerated gene discoveries at an unprecedented rate and revealed novel pathways underlying NBD pathogenesis. NGS technology exposed large numbers of rare genetic variants of uncertain significance (VUS) in coding regions, highlighting the genetic complexity of NBD. Since experimental studies of these coding rare VUS are largely lacking, the potential contributions of VUS to NBD etiology remain unknown. In this review, we summarize novel findings in NBD genetic etiology driven by NGS and the impact of rare VUS on NBD etiology. We consider different mechanisms by which rare VUS can act and influence NBD pathophysiology and discuss why a better understanding of rare VUS is instrumental for deriving novel insights into the molecular complexity and heterogeneity of NBD. New knowledge might open avenues for effective personalized therapies.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| |
Collapse
|
16
|
Bartoletti-Stella A, De Pasqua S, Baiardi S, Bartolomei I, Mengozzi G, Orio G, Pastorelli F, Piras S, Poda R, Raggi A, Stanzani Maserati M, Tarozzi M, Liguori R, Salvi F, Parchi P, Capellari S. Characterization of novel progranulin gene variants in Italian patients with neurodegenerative diseases. Neurobiol Aging 2021; 97:145.e7-145.e15. [PMID: 32507413 DOI: 10.1016/j.neurobiolaging.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Loss-of-function mutations in the gene encoding for the protein progranulin (PGRN), GRN, are one of the major genetic abnormalities involved in frontotemporal lobar degeneration. However, genetic variations, mainly missense, in GRN have also been linked to other neurodegenerative diseases. We found 12 different pathogenic/likely pathogenic variants in 21 patients identified in a cohort of Italian patients affected by various neurodegenerative disorders. We detected the p.Thr272SerfsTer10 as the most frequent, followed by the c.1179+3A>G variant. We characterized the clinical phenotype of 12 patients from 3 pedigrees carrying the c.1179+3A>G variant, demonstrated the pathogenicity of this mutation, and detected other rarer variants causing haploinsufficiency (p.Met1?, c.709-2A>T, p.Gly79AspfsTer39). Finally, by applying bioinformatics, neuropathological, and biochemical studies, we characterized 6 missense/synonymous variants (p.Asp94His, p.Gly117Asp, p.Ala266Pro, p.Val279Val, p.Arg298His, p.Ala505Gly), including 4 previously unreported. The designation of variants is crucial for genetic counseling and the enrollment of patients in clinical studies.
Collapse
Affiliation(s)
| | - Silvia De Pasqua
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Simone Baiardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Ilaria Bartolomei
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Giuseppe Orio
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Pastorelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Silvia Piras
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Roberto Poda
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Alberto Raggi
- Unità Operativa di Neurologia, Ospedale G.B. Morgagni - L. Pierantoni, Forlì, Italy
| | | | - Martina Tarozzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Telpoukhovskaia MA, Liu K, Sayed FA, Etchegaray JI, Xie M, Zhan L, Li Y, Zhou Y, Le D, Bahr BA, Bogyo M, Ding S, Gan L. Discovery of small molecules that normalize the transcriptome and enhance cysteine cathepsin activity in progranulin-deficient microglia. Sci Rep 2020; 10:13688. [PMID: 32792571 PMCID: PMC7426857 DOI: 10.1038/s41598-020-70534-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD. Limitations of current progranulin-enhancing strategies necessitate the discovery of new targets. To identify compounds that can reverse microglial defects in Grn-deficient mouse microglia, we performed a compound screen coupled with high throughput sequencing to assess key transcriptional changes in inflammatory and lysosomal pathways. Positive hits from this initial screen were then further narrowed down based on their ability to rescue cathepsin activity, a critical biochemical readout of lysosomal capacity. The screen identified nor-binaltorphimine dihydrochloride (nor-BNI) and dibutyryl-cAMP, sodium salt (DB-cAMP) as two phenotypic modulators of progranulin deficiency. In addition, nor-BNI and DB-cAMP also rescued cell cycle abnormalities in progranulin-deficient cells. These data highlight the potential of a transcription-based platform for drug screening, and advance two novel lead compounds for FTD.
Collapse
Affiliation(s)
- Maria A Telpoukhovskaia
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Kai Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Faten A Sayed
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, CA, 94158, USA
| | | | - Min Xie
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Lihong Zhan
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - David Le
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina At Pembroke, Pembroke, NC, 28372, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, CA, 94158, USA. .,Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
18
|
Licata A, Grimmer T, Winkelmann J, Wagner M, Goldhardt O, Riedl L, Roßmeier C, Yakushev I, Diehl-Schmid J. Variability of clinical syndromes and cerebral glucose metabolism in symptomatic frontotemporal lobar degeneration associated with progranulin mutations. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:389-395. [PMID: 32567375 DOI: 10.1080/21678421.2020.1779302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The aims of our study were to describe the clinical phenotype and to characterize the cerebral glucose metabolism patterns as measured with fluordesoxyglucose-positron emission tomography (FDG-PET) in symptomatic FTLD-patients with different GRN variants. Methods: For this study, data were included from all patients (n = 10) of a single-center FTLD registry study who had a pathogenic GRN variant and who had undergone a cerebral FDG-PET scan. Results: An overt variability of clinical phenotypes was identified with half of the cases being not unambiguously classifiable into one of the clinical FTLD subtypes. Furthermore, GRN + patients showed a considerable inter-individual variability of FDG uptake pattern. In half of the GRN + patients, metabolic changes expanded from frontal and temporal brain regions to parietal brain regions including the posterior cingulate cortex. Striking asymmetry without a preference for either hemisphere was overt in half of GRN + cases. Conclusion: We conclude that GRN mutations cause variable patterns of neurodegeneration that often exceed the anatomical boundaries of the frontotemporal brain regions and produce clinical syndromes that cannot clearly be classified into one of the subtypes as defined by the diagnostic criteria.
Collapse
Affiliation(s)
- Abigail Licata
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Psychology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliane Winkelmann
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany.,School of Medicine, Technical University of Munich, Institute of Human Genetics, Munich, Germany
| | - Matias Wagner
- Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany.,School of Medicine, Technical University of Munich, Institute of Human Genetics, Munich, Germany.,Helmholtz Zentrum München, Institute of Human Genetics, Neuherberg, Germany, and
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lina Riedl
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carola Roßmeier
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Fuster-García C, García-García G, Jaijo T, Blanco-Kelly F, Tian L, Hakonarson H, Ayuso C, Aller E, Millán JM. Expanding the Genetic Landscape of Usher-Like Phenotypes. Invest Ophthalmol Vis Sci 2020; 60:4701-4710. [PMID: 31725169 DOI: 10.1167/iovs.19-27470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Usher syndrome (USH) is a rare disorder characterized by retinitis pigmentosa (RP) and sensorineural hearing loss. Several genes are responsible for the disease, but not all cases are explained by mutations in any of these, supporting the fact that there remain other unknown genes that have a role in the syndrome. We aimed to find the genetic cause of presumed USH patients lacking pathogenic mutations in the known USH genes. Methods Whole exome sequencing was performed on a priori USH-diagnosed subjects from nine unrelated families, which had shown negative results for an USH-targeted panel in a previous study. Results We identified possible pathogenic variants in six of the studied families. One patient harbored mutations in REEP6 and TECTA, each gene tentatively causative of one of the two main symptoms of the disease, mimicking the syndrome. In three patients, only the retinal degeneration causative mutations were detected (involving EYS, WDR19, and CNGB1 genes). Another family manifested a dementia-linked retinal dystrophy dependent on an allele dosage in the GRN gene. Last, another case presented a homozygous mutation in ASIC5, a gene not yet associated with USH. Conclusions Our findings demonstrate that pending cases should be clinically and genetically carefully assessed, since more patients than expected may be either related phenocopies or affected by a more complex disease encompassing additional symptoms rather than classical USH.
Collapse
Affiliation(s)
- Carla Fuster-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Gema García-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Teresa Jaijo
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Fiona Blanco-Kelly
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Servicio de Genética, Fundación Jiménez Díaz, University Hospital, Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, UAM, Madrid, Spain
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Pennsylvania, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Carmen Ayuso
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Servicio de Genética, Fundación Jiménez Díaz, University Hospital, Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, UAM, Madrid, Spain
| | - Elena Aller
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José M Millán
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
20
|
Coppola C, Oliva M, Saracino D, Pappatà S, Zampella E, Cimini S, Ricci M, Giaccone G, Di Iorio G, Rossi G. One novel GRN null mutation, two different aphasia phenotypes. Neurobiol Aging 2019; 87:141.e9-141.e14. [PMID: 31837909 DOI: 10.1016/j.neurobiolaging.2019.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/04/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
Progranulin gene (GRN) mutations are among the leading causes of frontotemporal lobar degeneration, a group of neurodegenerative diseases characterized by remarkable clinical heterogeneity. In this article, we report the new GRN 708+4A>T splicing mutation, identified in 2 siblings of a family with several members affected by cognitive, behavioral, and motor disorders. Plasma progranulin dosage and GRN expression analysis, together with in silico prediction studies, supported the pathogenicity of the mutation. Both the patients displayed a clinical syndrome in which language impairment was largely predominant. However, motor speech deficits were the major feature in one case, diagnosed as progressive nonfluent aphasia, whereas marked semantic alterations were present in the other, whose clinical phenotype was in favor of a mixed aphasia. The profile of neuroanatomical alterations from imaging studies was in line with the clinical phenotypes. Therefore, also this novel GRN mutation is associated with haploinsufficiency and phenotypic heterogeneity, which are both typical features of progranulinopathies.
Collapse
Affiliation(s)
- Cinzia Coppola
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Mariano Oliva
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dario Saracino
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sabina Pappatà
- Department of Biomedical Sciences, Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Sara Cimini
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Ricci
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Iorio
- Second Division of Neurology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giacomina Rossi
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
21
|
Hadwen J, Schock S, Mears A, Yang R, Charron P, Zhang L, Xi HS, MacKenzie A. Transcriptomic RNAseq drug screen in cerebrocortical cultures: toward novel neurogenetic disease therapies. Hum Mol Genet 2019; 27:3206-3217. [PMID: 29901742 DOI: 10.1093/hmg/ddy221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/04/2018] [Indexed: 01/19/2023] Open
Abstract
Rare monogenic diseases affect millions worldwide; although over 4500 rare disease genotypes are known, disease-modifying drugs are available for only 5% of them. The sheer number of these conditions combined with their rarity precludes traditional costly drug discovery programs. An economically viable alternative is to repurpose established drugs for rare diseases. Many genetic diseases result from increased or decreased protein activity and identification of clinically approved drugs which moderate this pathogenic dosage holds therapeutic potential. To identify such agents for neurogenetic diseases, we have generated genome-wide transcriptome profiles of mouse primary cerebrocortical cultures grown in the presence of 218 blood-brain barrier (BBB) penetrant clinic-tested drugs. RNAseq and differential expression analyses were used to generate transcriptomic profiles; therapeutically relevant drug-gene interactions related to rare neurogenetic diseases identified in this fashion were further analyzed by quantitative reverse transcriptase-polymerase chain reaction, western blot and immunofluorescence. We have created a transcriptome-wide searchable database for easy access to the gene expression data resulting from the cerebrocortical drug screen (Neuron Screen) and have mined this data to identify a novel link between thyroid hormone and expression of the peripheral neuropathy associated gene Pmp22. Our results demonstrate the utility of cerebrocortical cultures for transcriptomic drug screening, and the database we have created will foster further discovery of novel links between over 200 clinic-tested BBB penetrant drugs and genes related to diverse neurologic conditions.
Collapse
Affiliation(s)
- Jeremiah Hadwen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Alan Mears
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Robert Yang
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Philippe Charron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Liying Zhang
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Hualin S Xi
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Alex MacKenzie
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
22
|
Fumagalli GG, Sacchi L, Basilico P, Arighi A, Carandini T, Scarioni M, Colombi A, Pietroboni A, Ghezzi L, Fenoglio C, Serpente M, D’anca M, Arcaro M, Mercurio M, Triulzi F, Scola E, Marotta G, Scarpini E, Galimberti D. Monozygotic Twins with Frontotemporal Dementia Due To Thr272fs GRN Mutation Discordant for Age At Onset. J Alzheimers Dis 2019; 67:1173-1179. [DOI: 10.3233/jad-180723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Giorgio Giulio Fumagalli
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Neurosciences, University of Florence, Psychology, Drug Research and Child Health (NEUROFARBA), Florence, Italy
| | - Luca Sacchi
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Basilico
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Scarioni
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Colombi
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Pietroboni
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Ghezzi
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Serpente
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marianna D’anca
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Mercurio
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Scola
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- University of Milan, “Dino Ferrari” Center, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Abstract
Purpose of review In this review we highlight recent advances in the human genetics of frontotemporal dementia (FTD). In addition to providing a broad survey of genes implicated in FTD in the last several years, we also discuss variation in genes implicated in both hereditary leukodystrophies and risk for FTD (e.g., TREM2, TMEM106B, CSF1R, AARS2, NOTCH3). Recent findings Over the past five years, genetic variation in approximately 50 genes has been confirmed or suggested to cause or influence risk for FTD and FTD-spectrum disorders. We first give background and discuss recent findings related to C9ORF72, GRN and MAPT, the genes most commonly implicated in FTD. We then provide a broad overview of other FTD-associated genes and go on to discuss new findings in FTD genetics in East Asian populations, including pathogenic variation in CHCHD10, which may represent a frequent cause of disease in Chinese populations. Finally, we consider recent insights gleaned from genome-wide association and genetic pleiotropy studies. Summary Recent genetic discoveries highlight cellular pathways involving autophagy, the endolysosomal system and neuroinflammation, and reveal an intriguing overlap between genes that confer risk for leukodystrophy and FTD.
Collapse
|
24
|
Kotela A, Wojdasiewicz P, Łęgosz P, Sarzyńska S, Drela K, Pulik Ł, Kaleta B, Kniotek M, Borysowski J, Poniatowski ŁA, Kotela I. Increased serum levels of progranulin (PGRN) in patients with haemophilic arthropathy. Clin Exp Pharmacol Physiol 2018; 46:373-379. [PMID: 30488982 DOI: 10.1111/1440-1681.13054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022]
Abstract
Haemophilia A and B are rarely occurring X chromosome-linked congenital coagulation disorders dominated by spontaneous joint bleedings and chronic synovitis, leading to development of haemophilic arthropathy (HA). Progranulin (PGRN) is a growth factor with anti-inflammatory and immunomodulatory properties. PGRN is an important molecule in the pathogenesis of osteoarthritis (OA) and rheumatological disorders. This study was aimed at investigating the potential role of PGRN in the mechanisms underlying the pathogenesis of HA. The serum levels of PGRN were measured by enzyme-linked immunosorbent assay (ELISA) in patients with end-stage knee joint HA (n = 20) and end-stage primary knee joint OA (n = 20) who met the inclusion and exclusion criteria. The clinical and radiological assessment of disease severity was evaluated by the Knee Society Score (KSS) and Kellgren-Lawrence scale. Median PGRN levels in HA patients was 349.1 ng/mL (232.8-415.6 ng/mL) and in OA patients 148.3 ng/mL (112.1-275.3 ng/mL) with statistically significant differences between both groups (P < 0.015). Further analysis revealed no correlation between PGRN levels and any of the patient demographics and clinical parameters. This study demonstrates increased PGRN serum levels in patients with HA and provides new insights into the mechanisms underlying the pathogenesis of HA indicating a new potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Andrzej Kotela
- Department of Orthopaedics and Traumatology, 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Orthopaedics and Traumatology, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland
| | - Piotr Wojdasiewicz
- Department of General and Experimental Pathology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland.,Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Sarzyńska
- Department of Orthopaedics and Traumatology, 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Pulik
- Department of Orthopaedics and Traumatology, 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, 1st Faculty of Medicine, Tadeusz Orłowski Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Monika Kniotek
- Department of Clinical Immunology, 1st Faculty of Medicine, Tadeusz Orłowski Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, 1st Faculty of Medicine, Tadeusz Orłowski Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz A Poniatowski
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland.,Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Ireneusz Kotela
- Department of Orthopaedics and Traumatology, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland.,Department of Rehabilitation in Disease of the Locomotor System, Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
25
|
Wauters E, Van Broeckhoven C. GFRA2 in GRN-related frontotemporal lobar degeneration. Lancet Neurol 2018; 17:488-489. [PMID: 29724593 DOI: 10.1016/s1474-4422(18)30171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/20/2022]
Affiliation(s)
- Eline Wauters
- Centre for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Centre for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
26
|
Benussi L, Binetti G, Ghidoni R. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point? Front Neurosci 2017; 11:672. [PMID: 29249935 PMCID: PMC5717017 DOI: 10.3389/fnins.2017.00672] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 01/05/2023] Open
Abstract
Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD), Frontotemporal dementia (FTD) and Lewy body dementia (LBD). We will report evidences that the Brain Derived Neurotrophic Factor (BDNF), the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression.
Collapse
Affiliation(s)
- Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|