1
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Mader MM, Gebeyehu G, Jaouni TM, Jacków-Malinowska J, Rami A, Hansen C, Guo Z, Gaddam S, Tate KM, Pappalardo A, Li L, Chow GM, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Cramer A, Bruckner A, Bilousova G, Roop D, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable and cGMP-compatible autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. Nat Commun 2024; 15:5834. [PMID: 38992003 PMCID: PMC11239819 DOI: 10.1038/s41467-024-49400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jessica L Torkelson
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shengdi Li
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kelly McCarthy
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Hanson H Zhen
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius M Mader
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gulilat Gebeyehu
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Taysir M Jaouni
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Joanna Jacków-Malinowska
- Department of Dermatology, Columbia University, New York, NY, USA
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Sadhana Gaddam
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Keri M Tate
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lingjie Li
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Grace M Chow
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kevin R Roy
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Patrick S McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Amber Cramer
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jean Y Tang
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA.
| | - Anthony E Oro
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Pinton L, Khedr M, Lionello VM, Sarcar S, Maffioletti SM, Dastidar S, Negroni E, Choi S, Khokhar N, Bigot A, Counsell JR, Bernardo AS, Zammit PS, Tedesco FS. 3D human induced pluripotent stem cell-derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat Protoc 2023; 18:1337-1376. [PMID: 36792780 DOI: 10.1038/s41596-022-00790-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/02/2022] [Indexed: 02/17/2023]
Abstract
Skeletal muscle is a complex tissue composed of multinucleated myofibers responsible for force generation that are supported by multiple cell types. Many severe and lethal disorders affect skeletal muscle; therefore, engineering models to reproduce such cellular complexity and function are instrumental for investigating muscle pathophysiology and developing therapies. Here, we detail the modular 3D bioengineering of multilineage skeletal muscles from human induced pluripotent stem cells, which are first differentiated into myogenic, neural and vascular progenitor cells and then combined within 3D hydrogels under tension to generate an aligned myofiber scaffold containing vascular networks and motor neurons. 3D bioengineered muscles recapitulate morphological and functional features of human skeletal muscle, including establishment of a pool of cells expressing muscle stem cell markers. Importantly, bioengineered muscles provide a high-fidelity platform to study muscle pathology, such as emergence of dysmorphic nuclei in muscular dystrophies caused by mutant lamins. The protocol is easy to follow for operators with cell culture experience and takes between 9 and 30 d, depending on the number of cell lineages in the construct. We also provide examples of applications of this advanced platform for testing gene and cell therapies in vitro, as well as for in vivo studies, providing proof of principle of its potential as a tool to develop next-generation neuromuscular or musculoskeletal therapies.
Collapse
Affiliation(s)
- Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Moustafa Khedr
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Valentina M Lionello
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Shilpita Sarcar
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Sara M Maffioletti
- Department of Cell and Developmental Biology, University College London, London, UK
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Sumitava Dastidar
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Elisa Negroni
- Department of Cell and Developmental Biology, University College London, London, UK
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Noreen Khokhar
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - John R Counsell
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Andreia Sofia Bernardo
- The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.
- The Francis Crick Institute, London, UK.
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
4
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Jackow J, Rami A, Hansen C, Guo Z, Gaddam S, Pappalardo A, Li L, Cramer A, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Bruckner A, Bilousova G, Roop D, Bailey I, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable, GMP-compatible, autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.529447. [PMID: 36909618 PMCID: PMC10002612 DOI: 10.1101/2023.02.28.529447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Background Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies. Methods We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7). DEBCT uses a combined high-efficiency reprogramming and CRISPR-based genetic correction single step to generate genome scar-free, COL7A1 corrected clonal iPS cells from primary patient fibroblasts. Validated iPS cells are converted into epidermal, dermal and melanocyte progenitors with a novel 2D organoid differentiation protocol, followed by CD49f enrichment and expansion to minimize maturation heterogeneity. iSC product characterization by single cell transcriptomics was followed by mouse xenografting for disease correcting activity at 1 month and toxicology analysis at 1-6 months. Culture-acquired mutations, potential CRISPR-off targets, and cancer-driver variants were evaluated by targeted and whole genome sequencing. Findings iPS cell-derived iSC grafts were reproducibly generated from four recessive DEB patients with different pathogenic mutations. Organotypic iSC grafts onto immune-compromised mice developed into stable stratified skin with functional C7 restoration. Single cell transcriptomic characterization of iSCs revealed prominent holoclone stem cell signatures in keratinocytes and the recently described Gibbin-dependent signature in dermal fibroblasts. The latter correlated with enhanced graftability. Multiple orthogonal sequencing and subsequent computational approaches identified random and non-oncogenic mutations introduced by the manufacturing process. Toxicology revealed no detectable tumors after 3-6 months in DEBCT-treated mice. Interpretation DEBCT successfully overcomes previous roadblocks and represents a robust, scalable, and safe cGMP manufacturing platform for production of a CRISPR-corrected autologous organotypic skin graft to heal DEB patient wounds.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Jessica L. Torkelson
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Shengdi Li
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kelly McCarthy
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Hanson H. Zhen
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Joanna Jackow
- Department of Dermatology, Columbia University, New York, NY 10032
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology
| | | | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology
| | - Amber Cramer
- Program in Epithelial Biology and Department of Dermatology
| | - Kevin R. Roy
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Patrick S. McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Irene Bailey
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Jean Y. Tang
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | | | - Lars M. Steinmetz
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Anthony E. Oro
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| |
Collapse
|
5
|
Puwanant A, Živković SA, Clemens PR. Muscular dystrophy. NEUROBIOLOGY OF BRAIN DISORDERS 2023:147-164. [DOI: 10.1016/b978-0-323-85654-6.00055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
7
|
Choi S, Ferrari G, Moyle LA, Mackinlay K, Naouar N, Jalal S, Benedetti S, Wells C, Muntoni F, Tedesco FS. Assessing and enhancing migration of human myogenic progenitors using directed iPS cell differentiation and advanced tissue modelling. EMBO Mol Med 2022; 14:e14526. [PMID: 36161772 PMCID: PMC9549733 DOI: 10.15252/emmm.202114526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Muscle satellite stem cells (MuSCs) are responsible for skeletal muscle growth and regeneration. Despite their differentiation potential, human MuSCs have limited in vitro expansion and in vivo migration capacity, limiting their use in cell therapies for diseases affecting multiple skeletal muscles. Several protocols have been developed to derive MuSC-like progenitors from human induced pluripotent stem (iPS) cells (hiPSCs) to establish a source of myogenic cells with controllable proliferation and differentiation. However, current hiPSC myogenic derivatives also suffer from limitations of cell migration, ultimately delaying their clinical translation. Here we use a multi-disciplinary approach including bioinformatics and tissue engineering to show that DLL4 and PDGF-BB improve migration of hiPSC-derived myogenic progenitors. Transcriptomic analyses demonstrate that this property is conserved across species and multiple hiPSC lines, consistent with results from single cell motility profiling. Treated cells showed enhanced trans-endothelial migration in transwell assays. Finally, increased motility was detected in a novel humanised assay to study cell migration using 3D artificial muscles, harnessing advanced tissue modelling to move hiPSCs closer to future muscle gene and cell therapies.
Collapse
Affiliation(s)
- SungWoo Choi
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Giulia Ferrari
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Louise A Moyle
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Present address:
Institute of Biomedical EngineeringUniversity of TorontoTorontoONCanada
| | - Kirsty Mackinlay
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Present address:
Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Naira Naouar
- Institut de Biologie Paris Seine FR3631, Plateforme de Bioinformatique ARTbioSorbonne UniversitéParisFrance
| | - Salma Jalal
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Sara Benedetti
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Christine Wells
- Centre for Stem Cell SystemsThe University of MelbourneMelbourneVICAustralia
| | - Francesco Muntoni
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
- Dubowitz Neuromuscular CentreUCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for ChildrenLondonUK
| | - Francesco Saverio Tedesco
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Dubowitz Neuromuscular CentreUCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
8
|
Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. NPJ Regen Med 2022; 7:25. [PMID: 35468920 PMCID: PMC9038738 DOI: 10.1038/s41536-022-00222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects.
Collapse
|
9
|
Herrero-Hernandez P, Bergsma AJ, Pijnappel WWMP. Generation of Human iPSC-Derived Myotubes to Investigate RNA-Based Therapies In Vitro. Methods Mol Biol 2022; 2434:235-243. [PMID: 35213021 PMCID: PMC9703849 DOI: 10.1007/978-1-0716-2010-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Alternative pre-mRNA splicing can be cell-type specific and results in the generation of different protein isoforms from a single gene. Deregulation of canonical pre-mRNA splicing by disease-associated variants can result in genetic disorders. Antisense oligonucleotides (AONs) offer an attractive solution to modulate endogenous gene expression through alteration of pre-mRNA splicing events. Relevant in vitro models are crucial for appropriate evaluation of splicing modifying drugs. In this chapter, we describe how to investigate the splicing modulating activity of AONs in an in vitro skeletal muscle model, applied to Pompe disease. We also provide a detailed description of methods to visualize and analyze gene expression in differentiated skeletal muscle cells for the analysis of muscle differentiation and splicing outcome. The methodology described here is relevant to develop treatment options using AONs for other genetic muscle diseases as well, including Duchenne muscular dystrophy, myotonic dystrophy, and facioscapulohumeral muscular dystrophy.
Collapse
Affiliation(s)
- Pablo Herrero-Hernandez
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Atze J Bergsma
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Dhoke NR, Kim H, Selvaraj S, Azzag K, Zhou H, Oliveira NAJ, Tungtur S, Ortiz-Cordero C, Kiley J, Lu QL, Bang AG, Perlingeiro RCR. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Cell Rep 2021; 36:109360. [PMID: 34260922 PMCID: PMC8327854 DOI: 10.1016/j.celrep.2021.109360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.
Collapse
Affiliation(s)
- Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nelio A J Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Mazaleyrat K, Badja C, Broucqsault N, Chevalier R, Laberthonnière C, Dion C, Baldasseroni L, El-Yazidi C, Thomas M, Bachelier R, Altié A, Nguyen K, Lévy N, Robin JD, Magdinier F. Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells. Cells 2020; 9:cells9061531. [PMID: 32585982 PMCID: PMC7349825 DOI: 10.3390/cells9061531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19–21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery.
Collapse
Affiliation(s)
- Kilian Mazaleyrat
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Cherif Badja
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Natacha Broucqsault
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Raphaël Chevalier
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Camille Laberthonnière
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Camille Dion
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Lyla Baldasseroni
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Claire El-Yazidi
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Morgane Thomas
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Richard Bachelier
- Aix-Marseille University, INSERM, INRA, C2VN, 13385 Marseille, France; (R.B.); (A.A.)
| | - Alexandre Altié
- Aix-Marseille University, INSERM, INRA, C2VN, 13385 Marseille, France; (R.B.); (A.A.)
| | - Karine Nguyen
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
- APHM, Département de Génétique Médicale, Hôpital de la Timone Enfants, 13385 Marseille, France
| | - Nicolas Lévy
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
- APHM, Département de Génétique Médicale, Hôpital de la Timone Enfants, 13385 Marseille, France
| | - Jérôme D. Robin
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Frédérique Magdinier
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
- Correspondence:
| |
Collapse
|