1
|
Cao L, Liu E, Yuan X, Dong Y, Yang B, Li H. Clinical characteristics and potential pathology of Moyamoya disease combined with psychiatric disorders in Chinese population - A cross-sectional study. J Affect Disord 2025; 381:1-8. [PMID: 39892754 DOI: 10.1016/j.jad.2025.01.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE This study aims to identify the clinical characteristics of Moyamoya disease (MMD) combined with psychiatric disorders and explore the potential pathogenesis. MATERIAL AND METHODS Psychiatric disorders between 88 MMD patients and 72 health controls were investigated using psychological testing scales. We subsequently analyzed the clinical features of 72 MMD patients with psychiatric comorbidities retrospectively. Finally, neurotransmitters analysis was conducted to further explore the pathogenesis. RESULTS Results of self-testing scales revealed a significantly higher susceptibility of psychiatric disorders in MMD patients. Compared with MMD group, clinical features of combined group demonstrated significant differences in age (51.3 ± 9.6 vs. 40.9 ± 10.4, p = 0.000), gender of female (68.1 % vs. 51.3 %, p = 0.018), duration time (33.3 ± 44.6mon vs. 8.1 ± 15.3mon, p = 0.000), cerebral infarction (55.2 % vs. 70.8 %, p = 0.025), initial type, Suzuki stage and mRS scores (p < 0.05). The perfusion results revealed significantly decreased time to peak in frontal parietal lobe (1854.14 ± 238.62 vs. 1242.79 ± 115.99, p = 0.025), temporal occipital lobe (1721.55 ± 245.15 vs. 1165.71 ± 111.55, p = 0.040), lateral ventricle (1840.03 ± 256.88 vs. 1221.95 ± 115.53, p = 0.028), and the cerebral blood volume of temporal occipital lobe was found significantly decreased (300.36 ± 34.93 vs. 403.23 ± 19.70, p = 0.026), and remarkable lower incidence of hyperperfusion syndrome and subdural effusion were demonstrated. Differential neurotransmitters of decreased 3-htdroxybutyric acid expression and increased sarcosine, tyrosine, betaine aldehyde chloride, kynurenic acid, glycine, succinic acid and lysine were identified in combined group. CONCLUSIONS Patients of MMD combined with psychiatric disorders presented unique clinical characteristics. Neurotransmitters disorder may be involved in the pathogenesis. These results provided novel clinical management evidence and new insights in pathologic mechanism of MMD combined with psychiatric disorders.
Collapse
Affiliation(s)
- Lei Cao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Eryong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xiaoli Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yang Dong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
2
|
Potenza A, Gorla G, Carrozzini T, Pollaci G, Dei Cas M, Acerbi F, Vetrano IG, Ferroli P, Canavero I, Paroni R, Rifino N, Bersano A, Gatti L. Lipidomic profiling of the cerebrospinal fluid in moyamoya angiopathy patients. Orphanet J Rare Dis 2025; 20:243. [PMID: 40410905 PMCID: PMC12101001 DOI: 10.1186/s13023-025-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Moyamoya angiopathy (MA) is a rare cerebrovascular disorder which can occur in both children and young adults, characterized by progressive occlusion of the intracranial carotid arteries, leading patients to ischemic and haemorrhagic strokes. Despite decades of research, the mechanisms underlying MA remain poorly clarified and current gaps in the understanding of pathogenesis have hampered the development of suitable preventive strategies and therapeutic options. Moreover, clinically approved biomarkers for MA patients' stratification are missing. The unknown pathophysiology and the lack of reliable biomarkers prompted us to investigate cerebrospinal fluid (CSF) lipidome through state-of-the-art lipidomics. METHODS Intraoperative CSF from a subgroup of MA patients in comparison to age/sex matched controls (CTRL) was analysed through LC-MS/MS, by an untargeted lipidomic approach. Receiver operating characteristic (ROC) curve and simple linear regression analyses were performed for diagnostic use. We searched for simultaneously altered lipids in plasma and CSF of MA patients. RESULTS Overall, we observed a significant increase of sphingolipids (p < 0.05) and phospholipids (p < 0.05) in MA CSF. A partial least squares discriminant analysis clearly separated MA and CTRL by 64% on Principal Component 1. We identified lipid classes (n = 12) with a Variance Importance in Projection score ≥ 1.5, within those lipids highly correlated with MA (n = 70). A significant increase in acylcarnitines, sphingolipids (sphingomyelins and ceramides), phospholipids (lysophosphatidylcholines; phosphatidylcholines; phosphatidylethanolamines; ether-phosphatidylethanolamines; ether-phosphatidylcholines) and cholesterol esters was found by multivariate and univariate analyses. Monoacylglycerols were the only lipid class displaying a markedly significant (p < 0.001) decrease in CSF of MA patients as compared to CTRL subjects. The ROC curve and simple linear regression analysis identified 10 out of 12 lipid classes as reliable MA biomarkers, mainly dealing with phospholipids. We then compared current and previous data on plasma lipidomic profile. The discriminant analysis returned n = 175 (in plasma) and n = 70 (in CSF) simultaneously altered lipids respectively, and phosphatidylcholines (n = 10) resulted as commonly decreased in plasma and increased in CSF. CONCLUSIONS Our findings highlighted a strong pro-inflammatory environment in MA CSF. These preliminary hallmarks could be helpful to decipher the complex MA pathogenesis, by supplying candidate biomarkers for patient stratification.
Collapse
Affiliation(s)
- Antonella Potenza
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20122, Milan, Italy
| | - Gemma Gorla
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Tatiana Carrozzini
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Giuliana Pollaci
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20122, Milan, Italy
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Lab, Department of Health Sciences, Università degli Studi di Milano, 20132, Milan, Italy
| | - Francesco Acerbi
- Neurosurgical Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
- Neurosurgery Unit, Pisa University Hospital, 56126, Pisa, Italy
| | - Ignazio G Vetrano
- Neurosurgical Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122, Milan, Italy
| | - Paolo Ferroli
- Neurosurgical Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Isabella Canavero
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Lab, Department of Health Sciences, Università degli Studi di Milano, 20132, Milan, Italy
| | - Nicola Rifino
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Anna Bersano
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Laura Gatti
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| |
Collapse
|
3
|
Zeng C, Chen H, Liu J, Bao Y, Sun X, Meng F, Xue Y, Cui Y, Zhao Q, Zhang J, Li H, Zhang D, Wang R, Zhang Y, Zhang G, Zhao J, Zhang Q. Unraveling the Dyslipidemic Landscape in Moyamoya Disease: OxLDL as a Key Biomarker. CNS Neurosci Ther 2025; 31:e70441. [PMID: 40365738 PMCID: PMC12076191 DOI: 10.1111/cns.70441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
AIMS The pathogenic mechanisms of moyamoya disease (MMD) remain unrecognized. Although genetic predisposition and hemodynamic changes have been focused on, emerging evidence suggests dyslipidemia may also contribute to MMD. Here, we performed a comprehensive analysis of lipid profiles, aiming to elucidate potential mechanisms in MMD. METHODS In this prospective case-control study, 222 MMD patients and 231 healthy controls (HCs) were enrolled. The comprehensive lipid profiling was performed, encompassing standard lipids, apolipoproteins, oxidized low-density lipoprotein (oxLDL), and small dense LDL (sdLDL). Statistical models of weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) were applied to capture individual and joint lipid effects on MMD risk. RESULTS Compared with HCs, MMD patients exhibited significantly higher oxLDL, sdLDL, and lipoprotein(a) (p < 0.05). OxLDL emerged as a robust independent risk factor for MMD (adjusted OR 1.146, 95% CI 1.102-1.210, p < 0.001). WQS analysis further identified oxLDL as the single greatest contributor to MMD risk, with additional support from BKMR showing marked synergistic interactions between oxLDL and homocysteine. CONCLUSIONS The study revealed a comprehensive dyslipidemic landscape in MMD, highlighting oxLDL as a pivotal biomarker. The results underscored the significance of lipid metabolism in MMD pathogenesis, warranting further investigation to guide novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Haoyuan Chen
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Jie Liu
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Youyuan Bao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Xudong Sun
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Fanbo Meng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Yimeng Xue
- Department of NeuropathologyBeijing Neurosurgical InstituteBeijingChina
| | - Yunhao Cui
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Qianjun Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | | | - Hao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Dong Zhang
- Department of NeurosurgeryBeijing Hospital, National Center of GerontologyBeijingChina
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| |
Collapse
|
4
|
Guo Q, Xie M, Wang X, Han C, Gao G, Wang QN, Li J, Duan L, Bao X. Multi-omic serum analysis reveals ferroptosis pathways and diagnostic molecular signatures associated with Moyamoya diseases. J Neuroinflammation 2025; 22:123. [PMID: 40301939 PMCID: PMC12042548 DOI: 10.1186/s12974-025-03446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease in humans. Although early revascularization can improve symptoms, it cannot reverse the progression of the disease. The current diagnosis still relies on traditional a Digital Subtraction Angiography (DSA) examination, which is invasive and expensive, leading to delayed diagnosis and affecting treatment timing and patient prognosis. The ability to diagnose MMD early and develop personalized treatment plans can significantly improve the prognosis of patients. Here, we have introduced the research on MMD biomarkers. By integrating proteomics and metabolomics data, we have successfully identified over 1700 features from more than 60 serum samples collected at the onset of symptoms in MMD patients. We use multiple computational strategies to interpret complex information in serum, providing a comprehensive perspective for early diagnosis of MMD. Diagnostic ability of our biomarker is significantly better than previous studies, especially when used in combination. In the study of molecular mechanisms, we found that the ferroptosis pathway was significant disruption in MMD patients, which was also confirmed by transcriptomics data. Finally, we validated the metabolites and proteins associated with ferroptosis pathways, as well as the biomarkers screened by machine learning, using another independent MMD cohort. Our research provides important clues for the diagnosis of MMD, and this assay can identify MMD early, thereby promoting stronger monitoring and intervention.
Collapse
Affiliation(s)
- Qingbao Guo
- Department of Neurosurgery, XI'AN NO.9 HOSPITAL, Shaanxi, 710054, China.
| | - Manli Xie
- Department of Occupational Diseases, Xi'an Central Hospital, Shaanxi, 710003, China
| | - Xiaopeng Wang
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Cong Han
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Gan Gao
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Qian-Nan Wang
- Department of Neurosurgery, the Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100089, China
| | - Jingjie Li
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Lian Duan
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiangyang Bao
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
5
|
Deng X, Zhang S, Zhao R, Liu W, Huang W, Chen X, Gao X, Huang Y, Zhang D. The role of the RING finger protein 213 gene in Moyamoya disease. Fluids Barriers CNS 2025; 22:39. [PMID: 40247333 PMCID: PMC12004738 DOI: 10.1186/s12987-025-00649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/29/2025] [Indexed: 04/19/2025] Open
Abstract
Moyamoya Disease (MMD) represents a chronic and progressive cerebrovascular disorder characterized by the gradual occlusion of the terminal portions of the bilateral internal carotid arteries and their major branches, accompanied by the formation of abnormal vascular networks at the base of the skull. In adolescents, particularly in pediatric populations, MMD is a significant cause of stroke, posing a severe challenge to human health and imposing a heavy burden on healthcare systems. Ring Finger Protein 213 (RNF213), as the primary susceptibility gene for MMD, plays a crucial regulatory role in the initiation, progression, and prognosis of the disease. Despite extensive research on the role of RNF213 in the pathogenesis of MMD, the underlying molecular mechanisms remain incompletely understood and represent a pressing scientific challenge requiring further exploration. This review aims to synthesize the latest research findings and systematically elucidate the multifaceted roles of RNF213 in MMD, including genetic susceptibility, immune-inflammatory responses, blood-brain barrier(BBB) disruption, and angiogenesis. By integrating these findings, this study seeks to provide new insights and theoretical support for a comprehensive and in-depth understanding of the pathophysiological processes of MMD. This research not only contributes to further unraveling the complex pathogenesis of MMD but also lays a solid theoretical foundation for the development of targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Runsheng Zhao
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weihong Huang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xuanlin Chen
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China
| | - Xiang Gao
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Kazerooni L, Vogel BN, Banerjee AK, Jafarpour S, Santoro JD. Heterozygous Pathogenic Variants in SERPINB7 Potentially Associated With Concomitant Moyamoya Angiopathy and Nagashima-Type Palmoplantar Keratoderma. Am J Med Genet A 2025:e64058. [PMID: 40125802 DOI: 10.1002/ajmg.a.64058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/17/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
The authors present the first documented case of concomitant Nagashima-type palmoplantar keratoderma and moyamoya angiopathy, identifying a novel gene as a potential link between rare dermatologic and cerebrovascular diseases. The subject of this case report was identified and clinically evaluated at the Neurological Institute of Children's Hospital Los Angeles. Written informed consent for clinical care, genetic testing, and participation in this case study was obtained. The patient initially presented with a history of several dermatologic conditions, including eczema, vitiligo, and Nagashima-type palmoplantar keratoderma. Neurological examination and diagnostic imaging were strongly suggestive of moyamoya angiopathy, prompting a bilateral encephaloduroarteriomyosynangiosis. Singleton Clinical Exome Sequencing was subsequently performed, revealing pathogenic heterozygous variants in SERPINB7. This study identifies SERPINB7 as a possible link between Nagashima-type palmoplantar keratoderma and moyamoya angiopathy, indicating the pleomorphism of SERPINB7-mediated changes in human disease. Further studies are warranted to investigate the function of SERPINB7 in endovascular tissue. Furthermore, the increasingly recognized association between autoimmune dermatologic disease and moyamoya may be mediated through genetic mechanisms, highlighting the importance of genetic testing in individuals with rare dermatologic and cerebrovascular disorders.
Collapse
Affiliation(s)
- Lilia Kazerooni
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Abhik K Banerjee
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Zeng C, Ge P, Yin Z, Lu J, Yu X, Li J, Zhai Y, Liu C, He Q, Liu W, Wang J, Liu X, Ye X, Zhang Q, Wang R, Zhang Y, Zhang D, Zhao J. RNF213 Variant and Infectious Burden Associated With Intracranial Artery Stenosis in Moyamoya Disease. J Am Heart Assoc 2025; 14:e036830. [PMID: 40028855 DOI: 10.1161/jaha.124.036830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND The mechanisms driving the progression of moyamoya disease (MMD) remain unrecognized. There is evidence suggesting that genetic and environmental factors may be associated with intracranial artery stenosis. Here, we aimed to investigate the characteristics of infectious exposure and the association of the RNF213 (RING finger protein 213) variant and infectious burden (IB) with intracranial artery stenosis of MMD. METHODS AND RESULTS We prospectively recruited 275 patients with MMD. Participants underwent RNF213p.R4810K sequencing. Serum antibody titers of herpes simplex virus, cytomegalovirus, toxoplasma, rubella virus, and Epstein-Barr virus were assessed and combined into an IB score. The degree of intracranial artery stenosis was measured by using the Willis narrowing score (WNS), which was then dichotomized as mild and severe. Multivariate regression analyses were performed to analyze variables associated with severe WNS. Patients with the RNF213 variant had a higher risk of severe WNS than wild-type individuals (P=0.003). Patients with MMD with severe WNS showed an increased level of IB score (P<0.001). The RNF213 variant (odds ratio [OR], 2.832 [95% CI, 1.347-5.955]; P=0.006) and IB score (OR, 1.771 [95% CI, 1.286-2.439]; P<0.001) were significantly associated with severe WNS after adjusting for covariates. Furthermore, the associations between IB score and severe WNS were more prominent among patients with modifiable risk factors of elevated body mass index (Pinteraction<0.001), triglycerides (Pinteraction=0.011), and homocysteine (Pinteraction=0.016). CONCLUSIONS This study outlined a perspective of the genetic-environmental interactions in the progression of MMD. The RNF213 variant and increased IB were associated with intracranial artery stenosis in MMD. The study will provide novel insights into the mechanism of disease progression, which may offer opportunities for early intervention of infectious exposure in MMD.
Collapse
Affiliation(s)
- Chaofan Zeng
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Peicong Ge
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Zihan Yin
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Junlin Lu
- Department of Neurosurgery West China Hospital, Sichuan University Chengdu Sichuan China
| | - Xiaofan Yu
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Junsheng Li
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Yuanren Zhai
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Chenglong Liu
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Qiheng He
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Wei Liu
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Jia Wang
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Xingju Liu
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Xun Ye
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Qian Zhang
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Rong Wang
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Yan Zhang
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| | - Dong Zhang
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
- Department of Neurosurgery Beijing Hospital, National Center of Gerontology Beijing China
- Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing China
| | - Jizong Zhao
- Department of Neurosurgery Beijing Tiantan Hospital, Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Center of Stroke Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience Beijing China
| |
Collapse
|
8
|
Wen Y, Chen J, Long T, Chen F, Wang Z, Chen S, Zhang G, Li M, Zhang S, Kang H, Feng W, Wang G. miR-6760-5p suppresses neoangiogenesis by targeting Yes-associated protein 1 in patients with moyamoya disease undergoing indirect revascularization. Gene 2025; 937:149152. [PMID: 39662645 DOI: 10.1016/j.gene.2024.149152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE The aim of this research was to investigate the specific regulatory role of miR-6760-5p in angiogenesis in moyamoya disease. METHODS HUVECs were transfected with miR-6760-5p inhibitor and mimics fragments, then subjected to assays for cell proliferation, migration, and tube formation. Subsequently, downstream target genes of miR-6760-5p were predicted and the protein expression levels of these genes were evaluated. The presence of miR-6760-5p and YAP1 was verified by a dual luciferase reporter gene test, followed by an assessment of the effects of YAP1 and miR-6760-5p on the HUVECs. RESULTS Comparatively to the control group, increased expression of miR-6760-5p decreased cell growth, movement, and tube formation. YAP1 gene was discovered as a target controlled by miR-6760-5p, with subsequent investigation confirming YAP1 as a gene regulated by miR-6760-5p. Additionally, miR-6760-5p was found to counteract the angiogenesis-promoting effect of YAP1. CONCLUSION The results of this research suggest a possible link between the miR-6760-5p gene found in the cerebrospinal fluid of individuals with moyamoya disease and the process of vascularization in this particular condition. The findings indicate that miR-6760-5p may be a new molecular indicator and potential target for the diagnosis of moyamoya disease.
Collapse
Affiliation(s)
- Yunyu Wen
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China; The Institute of Brain Disease is part of Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Junda Chen
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Tinghan Long
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Fangzhou Chen
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Zhibin Wang
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Siyuan Chen
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Guozhong Zhang
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Mingzhou Li
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Shichao Zhang
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Huibin Kang
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China
| | - Wenfeng Feng
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China; The Institute of Brain Disease is part of Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China.
| | - Gang Wang
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Located in Guangzhou, Guangdong, China; The Laboratory for Precision Neurosurgery is affiliated with Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China; The Institute of Brain Disease is part of Nanfang Hospital at Southern Medical University, Located in Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Weng R, Xu Y, Gao X, Cao L, Su J, Yang H, Li H, Ding C, Pu J, Zhang M, Hao J, Xu W, Ni W, Qian K, Gu Y. Non-Invasive Diagnosis of Moyamoya Disease Using Serum Metabolic Fingerprints and Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405580. [PMID: 39737836 PMCID: PMC11848555 DOI: 10.1002/advs.202405580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/03/2024] [Indexed: 01/01/2025]
Abstract
Moyamoya disease (MMD) is a progressive cerebrovascular disorder that increases the risk of intracranial ischemia and hemorrhage. Timely diagnosis and intervention can significantly reduce the risk of new-onset stroke in patients with MMD. However, the current diagnostic methods are invasive and expensive, and non-invasive diagnosis using biomarkers of MMD is rarely reported. To address this issue, nanoparticle-enhanced laser desorption/ionization mass spectrometry (LDI MS) was employed to record serum metabolic fingerprints (SMFs) with the aim of establishing a non-invasive diagnosis method for MMD. Subsequently, a diagnostic model was developed based on deep learning algorithms, which exhibited high accuracy in differentiating the MMD group from the HC group (AUC = 0.958, 95% CI of 0.911 to 1.000). Additionally, hierarchical clustering analysis revealed a significant association between SMFs across different groups and vascular cognitive impairment in MMD. This approach holds promise as a novel and intuitive diagnostic method for MMD. Furthermore, the study may have broader implications for the diagnosis of other neurological disorders.
Collapse
Affiliation(s)
- Ruiyuan Weng
- Department of NeurosurgeryHuashan Hospital of Fudan UniversityShanghai200040P. R. China
- Neurosurgical Institute of Fudan UniversityShanghai201107P. R. China
| | - Yudian Xu
- Department of Traditional Chinese MedicineRenJi HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- School of Biomedical EngineeringInstitute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Xinjie Gao
- Department of NeurosurgeryHuashan Hospital of Fudan UniversityShanghai200040P. R. China
- Neurosurgical Institute of Fudan UniversityShanghai201107P. R. China
| | - Linlin Cao
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Jiabin Su
- Department of NeurosurgeryHuashan Hospital of Fudan UniversityShanghai200040P. R. China
- Neurosurgical Institute of Fudan UniversityShanghai201107P. R. China
| | - Heng Yang
- Department of NeurosurgeryHuashan Hospital of Fudan UniversityShanghai200040P. R. China
- Neurosurgical Institute of Fudan UniversityShanghai201107P. R. China
| | - He Li
- Department of Traditional Chinese MedicineRenJi HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Chenhuan Ding
- Department of Traditional Chinese MedicineRenJi HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Meng Zhang
- Department of NeurosurgeryLiaocheng People's HospitalShandong252000China
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFujian350000China
| | - Jiheng Hao
- Department of NeurosurgeryLiaocheng People's HospitalShandong252000China
| | - Wei Xu
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Wei Ni
- Department of NeurosurgeryHuashan Hospital of Fudan UniversityShanghai200040P. R. China
- Neurosurgical Institute of Fudan UniversityShanghai201107P. R. China
| | - Kun Qian
- School of Biomedical EngineeringInstitute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yuxiang Gu
- Department of NeurosurgeryHuashan Hospital of Fudan UniversityShanghai200040P. R. China
- Neurosurgical Institute of Fudan UniversityShanghai201107P. R. China
- Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFujian350000China
| |
Collapse
|
10
|
He S, Zhou Z, Cheng MY, Hao X, Chiang T, Wang Y, Zhang J, Wang X, Ye X, Wang R, Steinberg GK, Zhao Y. Advances in moyamoya disease: pathogenesis, diagnosis, and therapeutic interventions. MedComm (Beijing) 2025; 6:e70054. [PMID: 39822761 PMCID: PMC11733107 DOI: 10.1002/mco2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Moyamoya disease (MMD) is a type of cerebrovascular disease characterized by occlusion of the distal end of the internal carotid artery and the formation of collateral blood vessels. Over the past 20 years, the landscape of research on MMD has significantly transformed. In this review, we provide insights into the pathogenesis, diagnosis, and therapeutic interventions in MMD. The development of high-throughput sequencing technology has expanded our understanding of genetic susceptibility, identifying MMD-related genes beyond RNF213, such as ACTA2, DIAPH1, HLA, and others. The genetic susceptibility of MMD to its pathological mechanism was summarized and discussed. Based on the second-hit theory, the influences of inflammation, immunity, and environmental factors on MMD were also appropriately summarized. Despite these advancements, revascularization surgery remains the primary treatment for MMD largely because of the lack of effective in vivo and in vitro models. In this study, 16 imaging diagnostic methods for MMD were summarized. Regarding therapeutic intervention, the influences of drugs, endovascular procedures, and revascularization surgeries on patients with MMD were discussed. Future research on the central MMD vascular abnormalities and peripheral circulating factors will provide a more comprehensive understanding of the pathogenic mechanisms of MMD.
Collapse
Affiliation(s)
- Shihao He
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Zhenyu Zhou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Michelle Y. Cheng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaokuan Hao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Terrance Chiang
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yanru Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Junze Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Xilong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xun Ye
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Rong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Gary K. Steinberg
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yuanli Zhao
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
11
|
Wang S, Jiang Q, Liu Y, Zhang X, Huang Y, Zhang H. The Role of Immune Cells in Moyamoya Disease. Brain Sci 2025; 15:137. [PMID: 40002470 PMCID: PMC11852451 DOI: 10.3390/brainsci15020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Moyamoya disease (MMD) is a rare progressive cerebrovascular disorder characterized by the stenosis or occlusion of the terminal segments of the internal carotid arteries, leading to the development of abnormal collateral vascular networks. These networks are a compensatory mechanism for reduced blood flow to the brain. Despite extensive research, the exact etiology of MMD remains unknown, although recent studies suggest that immune system dysfunction plays a critical role in its pathogenesis. In particular, the involvement of immune cells such as T cells, macrophages, and dendritic cells has been increasingly recognized. These immune cells contribute to the inflammatory process and vascular remodeling observed in MMD patients, further complicating the disease's progression. Inflammation and immune-mediated damage to the vessel walls may accelerate the narrowing and occlusion of arteries, exacerbating ischemic events in the brain. Additionally, studies have revealed that certain genetic and environmental factors can influence immune system activation in MMD, linking these pathways to disease development. This review aims to provide a comprehensive overview of the immune mechanisms at play in MMD, focusing on how immune cells participate in vascular injury and remodeling. Understanding these immunological processes may offer new therapeutic targets to halt or reverse disease progression, potentially leading to more effective treatment strategies for MMD.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; (S.W.); (Q.J.); (Y.L.); (X.Z.); (Y.H.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Wu J, Li S, Liang R, Wang Y, Shi F, Pan X, Chen X. Risk factors for perioperative cerebral infarction in moyamoya disease: a meta-analysis. Front Neurol 2025; 16:1530137. [PMID: 39926020 PMCID: PMC11802441 DOI: 10.3389/fneur.2025.1530137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Background The present study explored the risk factors for cerebral infarction perioperative moyamoya disease by meta-analysis. Methods The PubMed, Embase, Cochrane library, Web of science databases were searched for case-control/cohort studies on risk factors for the emergence of cerebral infarction perioperative moyamoya disease, the search was done from the database creation to June 1, 2024, and the data was analyzed by using stata15.0. Result Ten retrospective cohort studies (N = 3,239) were included. Meta-analysis results suggested posterior cerebral artery involvement [OR = 2.62, 95%CI (1.36, 5.06)], preoperative magnetic resonance angiography [OR = 2.81, 95%CI (1.27, 6.22)], previous infarction [OR = 2.52, 95% CI (1.69, 3.75)] were risk factor for the development of cerebral infarction perioperative moyamoya disease. Conclusion This study proves that posterior cerebral artery involvement and grade of preoperative magnetic resonance angiography is higher, and the previous infarction happened moyamoya disease a risk factor for cerebral infarction. Therefore, people with these risk factors should be intervened in advance to prevent the occurrence of perioperative cerebral infarction.
Collapse
Affiliation(s)
- Jincan Wu
- Fujian University of Traditional Chinese Medicine, Fujian, China
- The Second Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Shiju Li
- The Second Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Ruixin Liang
- Fujian University of Traditional Chinese Medicine, Fujian, China
- The Second Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Yanxu Wang
- People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fangyuan Shi
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiaoming Pan
- The Second Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xinyi Chen
- Fujian University of Traditional Chinese Medicine, Fujian, China
- The Second Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
13
|
Bhardwaj A, Panepinto MC, Ueberheide B, Neel BG. A mechanism for hypoxia-induced inflammatory cell death in cancer. Nature 2025; 637:470-477. [PMID: 39506105 DOI: 10.1038/s41586-024-08136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Hypoxic cancer cells resist many antineoplastic therapies and can seed recurrence1,2. We previously found that either deficiency or inhibition of protein-tyrosine phosphatase (PTP1B) promotes human epidermal growth factor receptor 2-positive breast cancer cell death in hypoxia by activation of RNF213 (ref. 3), a large protein with multiple AAA-ATPase domains and two ubiquitin ligase domains (RING and RZ) implicated in Moyamoya disease, lipotoxicity and innate immunity4. Here we report that PTP1B and ABL1/2 reciprocally control RNF213 tyrosine phosphorylation and, consequently, its oligomerization and RZ domain activation. The RZ domain ubiquitylates and induces the degradation of the major NF-κB regulator CYLD/SPATA2. Decreased CYLD/SPATA2 levels lead to NF-κB activation and induction of the NLRP3 inflammasome which, together with hypoxia-induced endoplasmic reticulum stress, triggers pyroptotic cell death. Consistent with this model, CYLD deletion phenocopies, whereas NLRP3 deletion blocks, the effects of PTP1B deficiency on human epidermal growth factor receptor 2-positive breast cancer xenograft growth. Reconstitution studies with RNF213 mutants confirm that the RZ domain mediates tumour cell death. In concert, our results identify a unique, potentially targetable PTP1B-RNF213-CYLD-SPATA2 pathway critical for the control of inflammatory cell death in hypoxic tumours, provide new insights into RNF213 regulation and have potential implications for the pathogenesis of Moyamoya disease, inflammatory disorders and autoimmune disease.
Collapse
Affiliation(s)
- Abhishek Bhardwaj
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| | - Maria C Panepinto
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Beatrix Ueberheide
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
14
|
He K, Wang X, Gu Y, Tong X, Qin X, Liao Y, Huang LH, Wang J, Xu B. In-depth cerebrovascular lipidomics profiling for discovering novel biomarkers and mechanisms in moyamoya and intracranial atherosclerotic disease. Int J Surg 2025; 111:1607-1613. [PMID: 39352103 PMCID: PMC11745776 DOI: 10.1097/js9.0000000000002092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Despite considerable research efforts, the precise etiology and underlying pathways contributing to moyamoya disease (MMD) remain poorly understood. Moreover, the overlapping vascular pathologies shared between MMD and intracranial atherosclerotic disease (ICAD) pose challenges in clinical differentiation, even with gold-standard cerebral angiography. An in-depth exploration of lipidomic alterations in cerebral intracranial MMD vessels could offer valuable insights into the pathogenesis of MMD-related mechanisms, encompassing MMD and ICAD, and unveil novel biomarkers and potential therapeutic targets. However, to date, comprehensive lipidomic profiling has been lacking. MATERIALS AND METHODS To discover novel biomarkers and unravel the pathophysiological mechanisms underlying MMD, we conducted a lipidomics analysis to characterize various lipid species in matched human extracranial and intracranial artery tissues from patients diagnosed with MMD ( n =99) and ICAD ( n =12). RESULTS Our analysis identified 569 lipid species and delineated a robust panel of lipidomic biomarkers capable of effectively distinguishing MMD from ICAD (area under curve=0.98), as determined by receiver operating characteristic curve analysis. Notably, we observed a significantly more pronounced positive correlation of diacylglycerols and a negative association of triglycerides in intracranial artery tissues of MMD patients compared to those with ICAD, suggesting a potential role of dysregulated diacylglycerol-induced signaling in MMD pathogenesis. Furthermore, our investigation into the correlations of critical differential intracranial artery vessel lipid species between MMD and ICAD and clinical parameters revealed negative associations with plasma iron levels, implying a potential link between plasma iron metabolism and artery lipid homeostasis during MMD pathogenesis. CONCLUSION These findings offer promising prospects for advancing clinical diagnosis for enhanced differentiation between the two disease conditions. Additionally, they shed light on the fundamental mechanisms implicated in MMD pathogenesis and suggest potential therapeutic avenues through targeting artery vessel lipids or plasma iron levels.
Collapse
Affiliation(s)
- Kangmin He
- Department of Neurosurgery, Fudan University Huashan Hospital, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Xinmei Wang
- The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Gu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Tong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuanfeng Qin
- Department of Neurosurgery, Fudan University Huashan Hospital, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yujun Liao
- Department of Neurosurgery, Fudan University Huashan Hospital, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaxi Wang
- The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Bin Xu
- Department of Neurosurgery, Fudan University Huashan Hospital, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
15
|
Ling H, Huang H, Fu B, Pan X, Gao L, Yan W. Clinical Characteristics and Multi-Model Imaging Analysis of Moyamoya Disease: An Observational Study. J Craniofac Surg 2025; 36:e45-e49. [PMID: 39436989 DOI: 10.1097/scs.0000000000010765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE Previous studies have lacked a comprehensive analysis of imaging modalities for diagnosing Moyamoya disease (MMD). This study aims to bridge this gap by utilizing multi-modal imaging to provide a more detailed understanding of the clinical and imaging characteristics of MMD. METHODS A retrospective analysis was conducted on seventy-eight adult MMD patients enrolled from March 2018 to March 2021. The study focused on clinical features, imaging findings, and treatment outcomes, with a particular emphasis on the comparative efficacy of different imaging modalities. RESULTS In this series, clinical manifestations varied depending on the type of MMD, with intracerebral hemorrhage (ICH) being the most common (69.2%), followed by cerebral infarction (25.6%). Imaging techniques provided critical diagnostic insights: magnetic resonance imaging (MRI) demonstrated superior sensitivity over computed tomography (CT) in detecting hemorrhages, whereas computed tomography angiography (CTA) and digital subtraction angiography (DSA) identified intricate vascular lesions, including moyamoya vessels and aneurysms. Notably, cerebral perfusion imaging (CTP) highlighted significant differences in cerebral blood flow and volume between infarction and hemorrhage cases. This comprehensive imaging approach guided varied therapeutic strategies, including bypass surgery in 57 patients and interventional embolization for aneurysms in 14 patients. CONCLUSION The authors' findings underscore the critical role of early diagnosis using DSA, whereas highlighting CTA and MRA as valuable noninvasive tools for screening and follow-up. The integration of multi-modal imaging provides a detailed vascular assessment crucial for individualized patient management, facilitating timely interventions and significantly improving clinical outcomes.
Collapse
Affiliation(s)
- Hui Ling
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou
| | - Huaping Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou
| | - Bin Fu
- Department of Neurosurgery, Zhoushan Hospital of Zhejiang, Zhoushan
| | - Xiaoli Pan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou
| | - Wei Yan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou
| |
Collapse
|
16
|
Tan BYQ, Kok CHP, Ng MBJ, Loong S, Jou E, Yeo LLL, Han W, Anderson CD, Khor CC, Lai PS. Exploring RNF213 in Ischemic Stroke and Moyamoya Disease: From Cellular Models to Clinical Insights. Biomedicines 2024; 13:17. [PMID: 39857601 PMCID: PMC11762504 DOI: 10.3390/biomedicines13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Advances in stroke genetics have highlighted the critical role of rare genetic variants in cerebrovascular diseases, with RNF213 emerging as a key player in ischemic stroke and Moyamoya disease (MMD). Initially identified as the primary susceptibility gene for MMD, RNF213-notably the p.R4810K variant-has been strongly linked to intracranial artery stenosis (ICAS) and various ischemic stroke subtypes, particularly in East Asian populations. This gene encodes an E3 ubiquitin ligase with diverse roles in angiogenesis, vascular remodeling, lipid metabolism, and cerebral blood flow regulation, yet its exact mechanisms in cerebrovascular pathology remain incompletely understood. This review synthesizes findings from genetic studies, as well as cellular and animal models, to provide a holistic understanding of RNF213's involvement in cerebrovascular diseases. Key mechanisms by which RNF213 variants contribute to disease pathogenesis are explored, alongside discussions on their clinical utility as biomarkers and therapeutic targets. Additionally, we address the gene's implications for disease prediction, risk assessment, and cascade screening. By integrating evidence across disciplines, this review identifies critical knowledge gaps, including the biological pathways underlying RNF213's pathogenicity. These insights lay the groundwork for future research and underscore the potential of RNF213 in driving personalized approaches to cerebrovascular disease management.
Collapse
Affiliation(s)
- Benjamin Y. Q. Tan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | | | - Megan B. J. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
| | - Shaun Loong
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
| | - Eric Jou
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Leonard L. L. Yeo
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore; (M.B.J.N.); (L.L.L.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore 117597, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Christopher D. Anderson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
17
|
Liu C, Mou S, Zhang B, Pang Y, Chan L, Li J, He Q, Zheng Z, Zhao Z, Sun W, Shi X, Qiu H, Deng X, Wang W, Ge P, Zhao J. Innate Immune Cell Profiling in Peripheral Blood Mononuclear Cells of Patients with Moyamoya Disease. Inflammation 2024:10.1007/s10753-024-02201-4. [PMID: 39671077 DOI: 10.1007/s10753-024-02201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by stenosis or occlusion of the internal carotid artery, thus leading to ischaemic and haemorrhagic strokes. Although genetic studies have identified ring finger protein 213 (RNF213) as a susceptibility gene, the low disease penetrance suggests that a secondary trigger, such as infection, may initiate disease onset. This study aimed to characterize the innate immune cell profile of peripheral blood mononuclear cells (PBMCs) of MMD patients via mass cytometry (CyTOF). Blood samples from 10 MMD patients and 10 healthy controls were analysed, with a focus on natural killer (NK) cells, monocytes, and dendritic cells (DCs). The results revealed significant changes in the NK and monocyte subpopulations in MMD patients; specifically, there was a decrease in the CD56dimCD16- NK03 subset and an increase in CD163high classical monocytes, thus indicating compromised microbial defences and heightened inflammation. Additionally, significant changes were observed in DC subpopulations, including an increase in CCR7+ mature DCs and a decrease in CD141+ and CD1c+ DCs. Overactivation of the TLR/MyD88/NF-κB pathway was observed in most innate immune cells, thus indicating its potential role in disease progression. These findings provide novel insights into immune dysfunction in MMD and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Liujia Chan
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors (No.2019RU011), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiangjun Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Rheumatology and Immunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
18
|
Ran Y, Fan Y, Wu S, Chen C, Li Y, Gao T, Zhang H, Han C, Tang X. TdCCA with Dual-Modal Signal Fusion: Degenerated Occipital and Frontal Connectivity of Adult Moyamoya Disease for Early Identification. Transl Stroke Res 2024:10.1007/s12975-024-01313-1. [PMID: 39636478 DOI: 10.1007/s12975-024-01313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Cognitive impairment in patients with moyamoya disease (MMD) manifests earlier than clinical symptoms. Early identification of brain connectivity changes is essential for uncovering the pathogenesis of cognitive impairment in MMD. We proposed a temporally driven canonical correlation analysis (TdCCA) method to achieve dual-modal synchronous information fusion from electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) for exploring the differences in brain connectivity between MMD and normal control groups. The dual-modal fusion features were extracted based on the imaginary part of coherence of the EEG signal (EEG iCOH) and the Pearson correlation coefficients of the fNIRS signal (fNIRS COR) in the resting and working memory state. The machine learning model showed that the accuracy of TdCCA method reached 97%, far higher than single-modal features and feature-level fusion CCA method. Brain connectivity analysis revealed a significant reduction in the strength of the connections between the right occipital lobe and frontal lobes (EEG iOCH: p = 0.022, fNIRS COR p = 0.011) in MMD. These differences reflected the impaired transient memory and executive function in MMD patients. This study contributes to the understanding of the neurophysiological nature of cognitive impairment in MMD and provides a potential adjuvant early identification method for individuals with chronic cerebral ischemia.
Collapse
Affiliation(s)
- Yuchen Ran
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuang Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Chao Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yangxi Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua Univerisity, Beijing, 100084, China
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Houdi Zhang
- Department of Neurosurgery, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China.
| | - Cong Han
- Department of Neurosurgery, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China.
- Department of Neurosurgery, First Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China.
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
19
|
Crespillo-Casado A, Pothukuchi P, Naydenova K, Yip MCJ, Young JM, Boulanger J, Dharamdasani V, Harper C, Hammoudi PM, Otten EG, Boyle K, Gogoi M, Malik HS, Randow F. Recognition of phylogenetically diverse pathogens through enzymatically amplified recruitment of RNF213. EMBO Rep 2024; 25:4979-5005. [PMID: 39375464 PMCID: PMC11549300 DOI: 10.1038/s44319-024-00280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Innate immunity senses microbial ligands known as pathogen-associated molecular patterns (PAMPs). Except for nucleic acids, PAMPs are exceedingly taxa-specific, thus enabling pattern recognition receptors to detect cognate pathogens while ignoring others. How the E3 ubiquitin ligase RNF213 can respond to phylogenetically distant pathogens, including Gram-negative Salmonella, Gram-positive Listeria, and eukaryotic Toxoplasma, remains unknown. Here we report that the evolutionary history of RNF213 is indicative of repeated adaptation to diverse pathogen target structures, especially in and around its newly identified CBM20 carbohydrate-binding domain, which we have resolved by cryo-EM. We find that RNF213 forms coats on phylogenetically distant pathogens. ATP hydrolysis by RNF213's dynein-like domain is essential for coat formation on all three pathogens studied as is RZ finger-mediated E3 ligase activity for bacteria. Coat formation is not diffusion-limited but instead relies on rate-limiting initiation events and subsequent cooperative incorporation of further RNF213 molecules. We conclude that RNF213 responds to evolutionarily distant pathogens through enzymatically amplified cooperative recruitment.
Collapse
Affiliation(s)
- Ana Crespillo-Casado
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Prathyush Pothukuchi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Matthew C J Yip
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Vimisha Dharamdasani
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ceara Harper
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Pierre-Mehdi Hammoudi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Elsje G Otten
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Keith Boyle
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
20
|
Fang J, Yang X, Tang M, Li S, Han F, Zhou L, Li M, Yang M, Cui L, Zhang S, Zhu Y, Yao M, Ni J. Rare RNF213 variants is related to early-onset intracranial atherosclerosis: A Chinese community-based study. J Stroke Cerebrovasc Dis 2024; 33:107982. [PMID: 39233284 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The relationship between rare variants in Ring finger protein 213 (RNF213) and intracranial atherosclerosis (ICAS) remained unelucidated. Using whole-exome sequencing (WES) and high-resolution magnetic resonance imaging (HR-MRI), this study aimed at investigating the association between rare RNF213 variants and ICAS within a Chinese community-dwelling population. METHODS The present study included 821 participants from Shunyi cohort. Genetic data of rare RNF213 variants were acquired by WES and were categorized by functional domains. Intracranial and extracranial atherosclerosis were assessed by brain HR-MRI and carotid ultrasound, respectively. Logistic regression and generalized linear regression were applied to evaluate the effects of rare RNF213 variants on atherosclerosis. Stratification by age were conducted with 50 years old set as the cutoff value. RESULTS Ninety-five participants were identified as carriers of rare RNF213 variants. Carotid plaques were observed in 367 (44.7 %) participants, while ICAS was identified in 306 (37.3 %). Rare variants of RNF213 was not associated with ECAS. Employing HR-MRI, both the presence of rare variants (β = 0.150, P = 0.025) and numerical count of variants (β = 0.182, P = 0.003) were significantly correlated with ICAS within the group of age ≤50 years. Both variant existence (β = 0.154, P = 0.014) and variant count (β = 0.188, P = 0.003) were significantly associated with plaques in middle cerebral arteries within younger subgroup, rather than basilar arteries. Furthermore, a significant association was observed between variants that located outside the N-arm domain and ICAS in the younger subgroup (OR = 2.522, P = 0.030). Statistical results remained robust after adjusted for age, gender, and cardiovascular risk factors. CONCLUSIONS Rare variants of RNF213 is associated with age-related ICAS in general Chinese population, highlighting the potential role of RNF213 as a genetic contributor to early-onset ICAS.
Collapse
Affiliation(s)
- Jianxun Fang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xinzhuang Yang
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Mingyu Tang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shengde Li
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Fei Han
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lixin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Mingli Li
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Liying Cui
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yicheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
21
|
Tokairin K, Ito M, Lee AG, Teo M, He S, Cheng MY, Steinberg GK. Genome-Wide DNA Methylation Profiling Reveals Low Methylation Variability in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01299-w. [PMID: 39356405 DOI: 10.1007/s12975-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disorder that can lead to stroke and neurological dysfunctions. Given the largely sporadic nature and the role of gene-environment interactions in various diseases, we examined epigenetic modifications in MMD. We performed genome-wide DNA methylation using Illumina 850 K Methylation EPIC BeadChip, in two racially distinct adult female cohorts: a non-Asian cohort (13 MMD patients and 7 healthy controls) and an Asian cohort (14 MMD patients and 3 healthy controls). An additional external cohort with both sexes (females: 5 MMD patients and 5 healthy controls, males: 5 MMD patients and 5 healthy controls) was included for validation. Our findings revealed strikingly low DNA methylation variability between MMD patients and healthy controls, in both MMD female cohorts. In the non-Asian cohort, only 6 probes showed increased variability versus 647 probes that showed decreased variability. Similarly, in the Asian cohort, the MMD group also displayed a reduced methylation variability across all 2845 probes. Subsequent analysis showed that these differentially variable probes are located on genes involved in key biological processes such as methylation and transcription, DNA repair, cytoskeletal remodeling, natural killer cell signaling, cellular growth, and migration. These findings mark the first observation of low methylation variability in any disease, contrasting with the high variability observed in other disorders. This reduced methylation variability in MMD may hinder patients' adaptability to environmental shifts, such as hemodynamic stress, thereby influencing vascular homeostasis and contributing to MMD pathology. These findings offer new insights into the mechanisms of MMD and potential treatment strategies.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaki Ito
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mario Teo
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking, China
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Cottrell DB, Haley SM. Key information about moyamoya. Nursing 2024; 54:12-14. [PMID: 39302744 DOI: 10.1097/nsg.0000000000000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Damon B Cottrell
- At Texas Woman's University in Dallas, Tex., Damon B. Cottrell is a Professor and Sheila M. Haley is an Assistant Clinical Professor
| | | |
Collapse
|
23
|
Yu Z, Tao Y, Zhu M, Yu T. System Inflammation Response Index and Serum Glucose-Potassium Ratio as Prognostic Indicators for Hemorrhagic Moyamoya Disease. World Neurosurg 2024; 190:e1081-e1086. [PMID: 39151697 DOI: 10.1016/j.wneu.2024.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Hemorrhagic moyamoya disease (HMMD) can result in poor outcomes. Serum biomarkers may play a significant role in predicting HMMD outcomes. This study retrospectively analyzed the correlation between serum biomarkers at the time of admission and outcomes for patients with HMMD. METHODS We evaluated 270 patients with HMMD admitted to Yijishan Hopital of Wannan Medical College between July 2017 and April 2023. The patients were categorized into 2 groups according to their modified Rankin Scale scores at 3 months after discharge. Univariate and multivariate analyses were used to identify the associations between biomarkers and clinical outcomes. Receiver operating characteristic curves were obtained to investigate the potential of the biomarkers for predicting prognosis. RESULTS Of the 270 patients analyzed, 96 (35.6%) had unfavorable outcomes. The potential predictors were identified using the univariate analysis. The subsequent multivariate logistic regression analysis showed that the systemic inflammatory response index (SIRI) (odds ratio 0.86, 95% confidence interval 0.75-0.98, P = 0.028] and serum glucose to potassium ratio (GPR) (odds ratio 0.53, 95% confidence interval 0.38-0.76, P < 0.001) were independent risk factors of poor outcomes. The receiver operating characteristic analysis indicated that patients with a higher SIRI (≥2.12) and GPR (≥1.75) levels were more likely to have unfavorable outcomes. CONCLUSIONS An elevated GPR and SIRI at admission were associated with a poor clinical outcome at the 3-month follow-up for patients with HMMD. Therefore, these biomarkers could be considered in future management decisions for these patients.
Collapse
Affiliation(s)
- Zuan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; The Translational Research Institute for Neurological Disorders of Wannan Medical College, Wuhu, China
| | - Yuqi Tao
- Blood Transfusion Department, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Mingfeng Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; The Translational Research Institute for Neurological Disorders of Wannan Medical College, Wuhu, China
| | - Tao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; The Translational Research Institute for Neurological Disorders of Wannan Medical College, Wuhu, China.
| |
Collapse
|
24
|
Guo Q, Fan YN, Xie M, Wang QN, Li J, Liu S, Wang X, Yu D, Zou Z, Gao G, Zhang Q, Hao F, Feng J, Yang R, Wang M, Fu H, Bao X, Duan L. Exploring the transcriptomic landscape of moyamoya disease and systemic lupus erythematosus: insights into crosstalk genes and immune relationships. Front Immunol 2024; 15:1456392. [PMID: 39290707 PMCID: PMC11405312 DOI: 10.3389/fimmu.2024.1456392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Background Systemic Lupus Erythematosus (SLE) is acknowledged for its significant influence on systemic health. This study sought to explore potential crosstalk genes, pathways, and immune cells in the relationship between SLE and moyamoya disease (MMD). Methods We obtained data on SLE and MMD from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify common genes. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these shared genes. Hub genes were further selected through the least absolute shrinkage and selection operator (LASSO) regression, and a receiver operating characteristic (ROC) curve was generated based on the results of this selection. Finally, single-sample Gene Set Enrichment Analysis (ssGSEA) was utilized to assess the infiltration levels of 28 immune cells in the expression profile and their association with the identified hub genes. Results By intersecting the important module genes from WGCNA with the DEGs, the study highlighted CAMP, CFD, MYO1F, CTSS, DEFA3, NLRP12, MAN2B1, NMI, QPCT, KCNJ2, JAML, MPZL3, NDC80, FRAT2, THEMIS2, CCL4, FCER1A, EVI2B, CD74, HLA-DRB5, TOR4A, GAPT, CXCR1, LAG3, CD68, NCKAP1L, TMEM33, and S100P as key crosstalk genes linking SLE and MMD. GO analysis indicated that these shared genes were predominantly enriched in immune system process and immune response. LASSO analysis identified MPZL3 as the optimal shared diagnostic biomarkers for both SLE and MMD. Additionally, the analysis of immune cell infiltration revealed the significant involvement of activation of T and monocytes cells in the pathogenesis of SLE and MMD. Conclusion This study is pioneering in its use of bioinformatics tools to explore the close genetic relationship between MMD and SLE. The genes CAMP, CFD, MYO1F, CTSS, DEFA3, NLRP12, MAN2B1, NMI, QPCT, KCNJ2, JAML, MPZL3, NDC80, FRAT2, THEMIS2, CCL4, FCER1A, EVI2B, CD74, HLA-DRB5, TOR4A, GAPT, CXCR1, LAG3, CD68, NCKAP1L, TMEM33, and S100P have been identified as key crosstalk genes that connect MMD and SLE. Activation of T and monocytes cells-mediated immune responses are proposed to play a significant role in the association between MMD and SLE.
Collapse
Affiliation(s)
- Qingbao Guo
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan-Na Fan
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Manli Xie
- Department of Occupational Diseases, Xi'an Central Hospital, Xi'an, Shanxi, China
| | - Qian-Nan Wang
- Department of Neurosurgery, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingjie Li
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Simeng Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaopeng Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dan Yu
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhengxing Zou
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Gan Gao
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fangbin Hao
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jie Feng
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rimiao Yang
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Minjie Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Heguan Fu
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiangyang Bao
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Sasagasako T, Mineharu Y, Funaki T, Fushimi Y, Chihara H, Park S, Nakajima K, Matsui Y, Okawa M, Kikuchi T, Arakawa Y. RNF213 Mutation Associated with the Progression from Middle Cerebral Artery Steno-Occlusive Disease to Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01293-2. [PMID: 39191959 DOI: 10.1007/s12975-024-01293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Middle cerebral artery steno-occlusive disease (MCAD) has been recognized as a different clinical entity from moyamoya disease (MMD). Although MCAD can progress to MMD, the extent to which patients actually progress and the risk factors for this progression have not been fully elucidated. We retrospectively reviewed patients with MCAD who underwent RNF213 genotyping. Demographic features, RNF213 p.R4810K mutation, medical history, and longitudinal changes in angiography were analyzed. Sixty patients with 81 affected hemispheres were enrolled. During the follow-up period, 17 patients developed MMD, and the RNF213 p.R4810K mutation was the only factor significantly associated with progression to MMD (odds ratio, 16.1; 95% CI, 2.13-731; P = 0.001). The log-rank test demonstrated that patients with the mutation had a higher risk of progression to MMD (P = 0.007), stenosis progression (P = 0.010), and symptomatic cerebral infarction or hemorrhage (P = 0.026). In Cox regression analysis the p.R4810K mutation remained a significant factor after adjusting for age group (childhood or adult onset) at diagnosis (hazard ratio, 8.42; 95% CI, 1.10-64.4). Hemisphere-based analysis also showed that the mutation was associated with a higher risk of progression to the MMD hemisphere (P = 0.002), stenosis progression (P = 0.005), and cerebral infarction or hemorrhage (P = 0.012). The RNF213 p.R4810K mutation was identified as a risk factor for progression from MCAD to MMD. Genotyping for this mutation may contribute to risk stratification in MCAD.
Collapse
Affiliation(s)
- Tomoki Sasagasako
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideo Chihara
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Silsu Park
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kota Nakajima
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuzumi Matsui
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Okawa
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Leach DF, Margam S S, Gustin A, Gustin PJ, Jajeh MN, Chavis YC, Walker KV, Bentley JS. Case Report: A rare presentation of rapidly progressive moyamoya disease refractory to unilateral surgical revascularization. Front Surg 2024; 11:1409692. [PMID: 39220621 PMCID: PMC11361982 DOI: 10.3389/fsurg.2024.1409692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Moyamoya disease (MMD) is a chronic, occlusive cerebrovasculopathy typified by progressive steno-occlusive disease of the intracranial internal carotid arteries (ICAs) and their proximal branches. Moyamoya syndrome (MMS) categorizes patients with characteristic MMD plus associated conditions. As such, the most usual presentations are those that occur with cerebral ischemia, specifically transient ischemic attack, acute ischemic stroke, and seizures. Hemorrhagic stroke, headaches, and migraines can also occur secondary to the compensatory growth of fragile collateral vessels propagated by chronic cerebral ischemia. While the pathophysiology of MMD is unknown, there remain numerous clinical associations including radiation therapy to the brain, inherited genetic syndromes, hematologic disorders, and autoimmune conditions. We describe the case of a 31-year-old woman who presented with recurrent ischemic cerebral infarcts secondary to rapidly progressive, bilateral MMD despite undergoing early unilateral surgical revascularization with direct arterial bypass. She had numerous metabolic conditions and rapidly decompensated, ultimately passing away despite intensive and aggressive interventions. The present case highlights that progression of moyamoya disease to bilateral involvement can occur very rapidly, within a mere 6 weeks, a phenomenon which has not been documented in the literature to our knowledge.
Collapse
Affiliation(s)
- Daniel Friel Leach
- Department of Radiation Oncology, University of Virginia Health, Charlottesville, VA, United States
| | - Srivikram Margam S
- Research, Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | - Aaron Gustin
- Neurological Surgery, Carle BroMenn Medical Center, Normal, IL, United States
| | - Paul J. Gustin
- Neurological Surgery, Carle BroMenn Medical Center, Normal, IL, United States
| | | | - Yhana C. Chavis
- Department of Radiation Oncology, University of Virginia Health, Charlottesville, VA, United States
| | - Kristin V. Walker
- Department of Radiation Oncology, University of Virginia Health, Charlottesville, VA, United States
| | - Joshua S. Bentley
- Cerebrovascular and Endovascular Neurosurgery, Southeast Health, Dothan, AL, United States
| |
Collapse
|
27
|
Liu C, Ge P, Zhang B, Chan L, Pang Y, Tao C, Li J, He Q, Liu W, Mou S, Zheng Z, Zhao Z, Sun W, Zhang Q, Wang R, Zhang Y, Wang W, Zhang D, Zhao J. Mass cytometry revealed the circulating immune cell landscape across different Suzuki stages of Moyamoya disease. Immunol Res 2024; 72:654-664. [PMID: 38376705 PMCID: PMC11347468 DOI: 10.1007/s12026-024-09464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Moyamoya disease (MMD) is a cerebrovascular disorder marked by progressive arterial narrowing, categorized into six stages known as Suzuki stages based on angiographic features. Growing evidence indicates a pivotal role of systemic immune and inflammatory responses in the initiation and advancement of MMD. This study employs high-dimensional mass cytometry to reveal the immunophenotypic characteristics of peripheral blood immune cells (PBMCs) at various Suzuki stages, offering insights into the progression of MMD. PBMC samples from eight patients with early-stage MMD (Suzuki stages II and III) and eight patients with later-stage MMD (Suzuki stages IV, V, and VI) were analyzed using high-dimensional mass cytometry to evaluate the frequency and phenotype of immune cell subtypes. We identified 15 cell clusters and found that the immunological features of early-stage MMD and later-stage MMD are composed of cluster variations. In this study, we confirmed that, compared to later-stage MMD, the early-stage MMD group exhibits an increase in non-classical monocytes. As the Suzuki stage level increases, the proportions of plasmacytoid DCs and monocyte-derived DCs decrease. Furthermore, T cells, monocytes, DCs, and PMN-MDSCs in the early-stage MMD group show activation of the canonical NF-κB signaling pathway. We summarized and compared the similarities and differences between early-stage MMD patients and later-stage MMD patients. There is a potential role of circulating immune dysfunction and inflammatory responses in the onset and development of MMD.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Liujia Chan
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China.
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
28
|
Cao L, Yang W, Duan X, Shao Y, Zhang Z, Wang C, Sun K, Zhang M, Li H, Harada KH, Yang B. Novel analysis of functional relationship linking moyamoya disease to moyamoya syndrome. Heliyon 2024; 10:e34600. [PMID: 39149038 PMCID: PMC11325278 DOI: 10.1016/j.heliyon.2024.e34600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Objective The aim of this study was to elucidate the genetic pathways associated with Moyamoya disease (MMD) and Moyamoya syndrome (MMS), compare the functional activities, and validate relevant related genes in an independent dataset. Methods We conducted a comprehensive search for genetic studies on MMD and MMS across multiple databases and identified related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments analyses were performed for these genes. Commonly shared genes were selected for further validation in the independent dataset, GSE189993. The Sangerbox platform was used to perform statistical analysis and visualize the results. P<0.05 indicated a statistically significant result. Results We included 52 MMD and 51 MMS-related publications and identified 126 and 51 relevant genes, respectively. GO analysis for MMD showed significant enrichment in cytokine activity, cell membrane receptors, enzyme binding, and immune activity. A broader range of terms was enriched for MMS. KEGG pathway analysis for MMD highlighted immune and cellular activities and pathways related to MMS prominently featured inflammation and metabolic disorders. Notably, nine overlapping genes were identified and validated. The expressions of RNF213, PTPN11, and MTHFR demonstrated significant differences in GSE189993. A combined receiver operating characteristic curve showed high diagnostic accuracy (AUC = 0.918). Conclusions The findings indicate a close relationship of MMD with immune activity and MMS with inflammation, metabolic processes and other environmental factors in a given genetic background. Differentiating between MMD and MMS can enhance the understanding of their pathophysiology and inform the strategies for their diagnoses and treatment.
Collapse
Affiliation(s)
- Lei Cao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Wenzhi Yang
- School of Life Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaozong Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yipu Shao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhizhong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Chenchao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Kaiwen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Manxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068501, Japan
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
29
|
Li W, Zhao X, Fu J, Cheng L. Identification of lysosome-related hub genes as potential biomarkers and immune infiltrations of moyamoya disease by multiple bioinformatics methods and machine-learning strategies. Heliyon 2024; 10:e34432. [PMID: 39104482 PMCID: PMC11298923 DOI: 10.1016/j.heliyon.2024.e34432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Background Moyamoya disease (MMD), characterized by chronic cerebrovascular pathology, poses a rare yet significant clinical challenge, associated with elevated rates of mortality and disability. Despite intensive research endeavors, the exact biomarkers driving its pathogenesis remain enigmatic. Methods The expression patterns of GSE189993 and GSE141022 were retrieved from the Gene Expression Omnibus (GEO) repository to procure differentially expressed genes (DEGs) between samples afflicted with MMD and those under control conditions. The Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine with Recursive Feature Elimination (SVM-RFE), and Random Forest (RF) algorithms were employed for identifying candidate diagnostic genes associated with MMD. Subsequently, these candidate genes underwent validation in an independent cohort (GSE157628). The CMAP database was ultimately employed to forecast drugs pertinent to MMD for clinical translation. Results A collective of 240 DEGs were discerned. Functional enrichment scrutiny unveiled the enrichment of the cholesterol metabolism pathway, salmonella infection pathway, and allograft rejection pathway within the MMD cohort. EPDR1, DENND3, and NCSTN emerged as discerned diagnostic biomarkers for MMD. The CMAP database was ultimately employed to scrutinize the ten most auspicious pharmaceutical compounds for managing MMD. Finally, after validation through in vitro experiments, EPDR1, DENND3, and NCSTN were identified as the key genes. Conclusion EPDR1, DENND3, and NCSTN have emerged as potential novel biomarkers for MMD. The involvement of T lymphocytes, neutrophilic granulocytes, dendritic cells, natural killer cells, and plasma cells could be pivotal in the pathogenesis and advancement of MMD.
Collapse
Affiliation(s)
- Wenyang Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiang Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinxing Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lei Cheng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
30
|
Abumiya T, Fujimura M. Moyamoya Vasculopathy and Moyamoya-Related Systemic Vasculopathy: A Review With Histopathological and Genetic Viewpoints. Stroke 2024; 55:1699-1706. [PMID: 38690664 DOI: 10.1161/strokeaha.124.046999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Systemic vasculopathy has occasionally been reported in cases of moyamoya disease (MMD). Since the pathological relationship between moyamoya vasculopathy (MMV) and moyamoya-related systemic vasculopathy (MMRSV) remains unclear, it was examined herein by a review of histopathologic studies in consideration of clinicopathological and genetic viewpoints. Although luminal stenosis was a common finding in MMV and MMRSV, histopathologic findings of vascular remodeling markedly differed. MMV showed intimal hyperplasia, marked medial atrophy, and redundant tortuosity of the internal elastic lamina, with outer diameter narrowing called negative remodeling. MMRSV showed hyperplasia, mainly in the intima and sometimes in the media, with disrupted stratification of the internal elastic lamina. Systemic vasculopathy has also been observed in patients with non-MMD carrying the RNF213 (ring finger protein 213) mutation, leading to the concept of RNF213 vasculopathy. RNF213 vasculopathy in patients with non-MMD was histopathologically similar to MMRSV. Cases of MMRSV have sometimes been diagnosed with fibromuscular dysplasia. Fibromuscular dysplasia is similar to MMD not only in the histopathologic findings of MMRSV but also from clinicopathological and genetic viewpoints. The significant histopathologic difference between MMV and MMRSV may be attributed to a difference in the original vascular wall structure and its resistance to pathological stress between the intracranial and systemic arteries. To understand the pathogeneses of MMD and MMRSV, a broader perspective that includes RNF213 vasculopathy and fibromuscular dysplasia as well as an examination of the 2- or multiple-hit theory consisting of genetic factors, vascular structural conditions, and vascular environmental factors, such as blood immune cells and hemodynamics, are needed.
Collapse
Affiliation(s)
- Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.A., M.F.)
- Department of Neurosurgery, Miyanomori Memorial Hospital, Sapporo, Japan (T.A.)
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.A., M.F.)
| |
Collapse
|
31
|
Huang J, Zhu Z, Schlüter D, Lambertsen KL, Song W, Wang X. Ubiquitous regulation of cerebrovascular diseases by ubiquitin-modifying enzymes. Clin Transl Med 2024; 14:e1719. [PMID: 38778460 PMCID: PMC11111633 DOI: 10.1002/ctm2.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation of the molecular mechanisms underlying the pathology of CVDs is critical for the development of efficacious preventative and therapeutic approaches. Accumulating studies have highlighted the significance of ubiquitin-modifying enzymes (UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orchestrate ubiquitination, a post-translational modification tightly involved in CVDs. Functionally, UMEs regulate multiple pathological processes in ischemic and hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the important roles of UMEs in CVDs, they may become novel druggable targets for these diseases. Besides, techniques applying UMEs, such as proteolysis-targeting chimera and deubiquitinase-targeting chimera, may also revolutionize the therapy of CVDs in the future.
Collapse
Affiliation(s)
- Jingyong Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical SchoolHannoverGermany
| | - Kate Lykke Lambertsen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark
- BRIGDE—Brain Research—Inter‐Disciplinary Guided Excellence, Department of Clinical ResearchUniversity of Southern DenmarkOdense CDenmark
- Department of NeurologyOdense University HospitalOdense CDenmark
| | - Weihong Song
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Xu Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
32
|
Yang H, Huang G, Li X, Wu M, Zhou W, Yin X, Zhang M, Chen Z. High-resolution magnetic resonance vessel wall imaging provides new insights into Moyamoya disease. Front Neurosci 2024; 18:1375645. [PMID: 38665292 PMCID: PMC11043609 DOI: 10.3389/fnins.2024.1375645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Moyamoya disease (MMD) is a rare condition that affects the blood vessels of the central nervous system. This cerebrovascular disease is characterized by progressive narrowing and blockage of the internal carotid, middle cerebral, and anterior cerebral arteries, which results in the formation of a compensatory fragile vascular network. Currently, digital subtraction angiography (DSA) is considered the gold standard in diagnosing MMD. However, this diagnostic technique is invasive and may not be suitable for all patients. Hence, non-invasive imaging methods such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are often used. However, these methods may have less reliable diagnostic results. Therefore, High-Resolution Magnetic Resonance Vessel Wall Imaging (HR-VWI) has emerged as the most accurate method for observing and analyzing arterial wall structure. It enhances the resolution of arterial walls and enables quantitative and qualitative analysis of plaque, facilitating the identification of atherosclerotic lesions, vascular entrapment, myofibrillar dysplasia, moyamoya vasculopathy, and other related conditions. Consequently, HR-VWI provides a new and more reliable evaluation criterion for diagnosing vascular lesions in patients with Moyamoya disease.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Guilan Huang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xi Li
- Department of Neurology, University of California Irvine Medical Center, Irvine, CA, United States
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| |
Collapse
|
33
|
Wang MJ, Wang J, Zhang H, Hao FB, Gao G, Liu SM, Wang XP, Li JJ, Zou ZX, Guo QB, Fu HG, Han YQ, Han C, Duan L. High Level of Serum Complement C3 Expression is Associated with Postoperative Vasculopathy Progression in Moyamoya Disease. J Inflamm Res 2024; 17:1721-1733. [PMID: 38523687 PMCID: PMC10959296 DOI: 10.2147/jir.s451538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Background The immune system plays an important role in the onset and development of moyamoya disease (MMD), but the specific mechanisms remain unclear. This study aimed to explore the relationship between the expression of complements and immunoglobulin in serum and progression of MMD. Methods A total of 84 patients with MMD and 70 healthy individuals were enrolled. Serum immunoglobulin and complement C3 and C4 expression were compared between healthy individuals and MMD patients. Follow-up was performed at least 6 months post-operation. Univariate and multivariate analysis after adjusting different covariates were performed to explore predictive factors associated with vasculopathy progression. A nomogram basing on the results of multivariate analysis was established to predict vasculopathy progression. Results Compared to healthy individuals, MMD patients had significantly lower expression of serum complements C3 (P = 0.003*). Among MMD patients, C3 was significantly lower in those with late-stage disease (P = 0.001*). Of 84 patients, 27/84 (32.1%) patients presented with vasculopathy progression within a median follow-up time of 13.0 months. Age (P=0.006*), diastolic blood pressure (P=0.004*) and serum complement C3 expression (P=0.015*) were associated with vasculopathy progression after adjusting different covariables. Conclusion Complement C3 is downregulated in moyamoya disease and decreases even further in late-Suzuki stage disease. Age, diastolic blood pressure and serum complement C3 expression are associated with vasculopathy progression, suggesting that the complement might be involved in the development of moyamoya disease.
Collapse
Affiliation(s)
- Min-Jie Wang
- Chinese PLA Medical School, Beijing, People’s Republic of China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jiayu Wang
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People’s Republic of China
| | - Houdi Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Fang-Bin Hao
- Chinese PLA Medical School, Beijing, People’s Republic of China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Gan Gao
- Chinese PLA Medical School, Beijing, People’s Republic of China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Si-Meng Liu
- Chinese PLA Medical School, Beijing, People’s Republic of China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiao-Peng Wang
- Chinese PLA Medical School, Beijing, People’s Republic of China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jing-Jie Li
- Chinese PLA Medical School, Beijing, People’s Republic of China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zheng-Xing Zou
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qing-Bao Guo
- Chinese PLA Medical School, Beijing, People’s Republic of China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - He-Guan Fu
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yi-Qin Han
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Cong Han
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Lian Duan
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
34
|
Zhang B, Li J, Zeng C, Tao C, He Q, Liu C, Zheng Z, Zhao Z, Mou S, Sun W, Wang J, Zhang Q, Wang R, Zhang Y, Ge P, Zhang D. Nonalcoholic fatty liver disease is an independent risk factor for ischemic stroke after revascularization in patients with Moyamoya disease: a prospective cohort study. Lipids Health Dis 2024; 23:80. [PMID: 38494486 PMCID: PMC10944598 DOI: 10.1186/s12944-024-02065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The study aimed to investigate the association between nonalcoholic fatty liver disease (NAFLD) and ischemic stroke events after revascularization in patients with Moyamoya disease (MMD). METHODS This study prospectively enrolled 275 MMD patients from September 2020 to December 2021. Patients with alcoholism and other liver diseases were excluded. NAFLD was confirmed by CT imaging or abdominal ultrasonography. Stroke events and modified Rankin Scale (mRS) scores at the latest follow-up were compared between the two groups. RESULTS A total of 275 patients were enrolled in the study, among which 65 were diagnosed with NAFLD. Univariate logistic regression analysis showed that NAFLD (P = 0.029) was related to stroke events. Multivariate logistic regression analysis showed that NAFLD is a predictor of postoperative stroke in MMD patients (OR = 27.145, 95% CI = 2.031-362.81, P = 0.013). Kaplan-Meier analysis showed that compared with MMD patients with NAFLD, patients in the control group had a longer stroke-free time (P = 0.004). Univariate Cox analysis showed that NAFLD (P = 0.016) was associated with ischemic stroke during follow-up in patients with MMD. Multivariate Cox analysis showed that NAFLD was an independent risk factor for stroke in patients with MMD (HR = 10.815, 95% CI = 1.259-92.881, P = 0.030). Furthermore, fewer patients in the NAFLD group had good neurologic status (mRS score ≤ 2) than the control group (P = 0.005). CONCLUSION NAFLD was an independent risk factor for stroke in patients with MMD after revascularization and worse neurological function outcomes.
Collapse
Affiliation(s)
- Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China.
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Xu Y, Chen B, Guo Z, Chen C, Wang C, Zhou H, Zhang C, Feng Y. Identification of diagnostic markers for moyamoya disease by combining bulk RNA-sequencing analysis and machine learning. Sci Rep 2024; 14:5931. [PMID: 38467737 PMCID: PMC10928210 DOI: 10.1038/s41598-024-56367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
Moyamoya disease (MMD) remains a chronic progressive cerebrovascular disease with unknown etiology. A growing number of reports describe the development of MMD relevant to infection or autoimmune diseases. Identifying biomarkers of MMD is to understand the pathogenesis and development of novel targeted therapy and may be the key to improving the patient's outcome. Here, we analyzed gene expression from two GEO databases. To identify the MMD biomarkers, the weighted gene co-expression network analysis (WGCNA) and the differential expression analyses were conducted to identify 266 key genes. The KEGG and GO analyses were then performed to construct the protein interaction (PPI) network. The three machine-learning algorithms of support vector machine-recursive feature elimination (SVM-RFE), random forest and least absolute shrinkage and selection operator (LASSO) were used to analyze the key genes and take intersection to construct MMD diagnosis based on the four core genes found (ACAN, FREM1, TOP2A and UCHL1), with highly accurate AUCs of 0.805, 0.903, 0.815, 0.826. Gene enrichment analysis illustrated that the MMD samples revealed quite a few differences in pathways like one carbon pool by folate, aminoacyl-tRNA biosynthesis, fat digestion and absorption and fructose and mannose metabolism. In addition, the immune infiltration profile demonstrated that ACAN expression was associated with mast cells resting, FREM1 expression was associated with T cells CD4 naive, TOP2A expression was associated with B cells memory, UCHL1 expression was associated with mast cells activated. Ultimately, the four key genes were verified by qPCR. Taken together, our study analyzed the diagnostic biomarkers and immune infiltration characteristics of MMD, which may shed light on the potential intervention targets of moyamoya disease patients.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Bing Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Zhongxiang Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China.
| |
Collapse
|
36
|
Oesch G, Münger R, Steinlin M. Be aware of childhood stroke: Proceedings from EPNS Webinar. Eur J Paediatr Neurol 2024; 49:82-94. [PMID: 38447504 DOI: 10.1016/j.ejpn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Childhood arterial ischaemic stroke (AIS) is a significant health concern with increasing incidence. This review aims to provide an overview of the current understanding of childhood AIS. The incidence of childhood AIS is on the rise especially in developing countries, likely due to improved awareness and diagnostic capabilities. Aetiology of childhood AIS is multifactorial, with both modifiable risk factors and genetic predisposition playing important roles. Identifying and addressing these risk factors, such as infection, sickle cell disease, and congenital heart defects, is essential in prevention and management. Identifying underlying conditions through genetic testing is important for appropriate management and long-term prognosis. Clinically, distinguishing stroke from stroke mimics can be challenging. Awareness of important stroke mimics, including migraines, seizures, and metabolic disorders, is crucial to avoid misdiagnosis and ensure appropriate treatment. The diagnostic approach to childhood AIS involves a comprehensive "chain of care," including initial assessment, neuroimaging, and laboratory investigations. National guidelines play a pivotal role in standardizing and streamlining the diagnostic process, ensuring prompt and accurate management. Early intervention is critical in the management of childhood AIS. Due to the critical time window, the question if mechanical thrombectomy is feasible and beneficial should be addressed as fast as possible. Early initiation of antiplatelet or anticoagulation therapy and, in select cases, thrombolysis can help restore blood flow and minimize long-term neurological damage. Additionally, rehabilitation should start as soon as possible to optimize recovery and improve functional outcomes. In conclusion, childhood AIS is a growing concern. Understanding the increasing incidence, age distribution, risk factors, clinical presentation, diagnostic approach, and management strategies is crucial for optimized management of these patients.
Collapse
Affiliation(s)
- Gabriela Oesch
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robin Münger
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
37
|
Yin Z, Ge P, Zeng C, Liu C, Zhao Y, Zhang Q, Xie H, Wang A, Liu X, Kang S, Zhang Q, Zhang Y, Zhang D, Zhao J. Association of lysine pathway metabolites with moyamoya disease. Clin Nutr 2024; 43:787-795. [PMID: 38340411 DOI: 10.1016/j.clnu.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND OBJECTIVE Lysine and its pathway metabolites have been identified as novel biomarkers for metabolic and vascular diseases. The role of them in the identification of moyamoya disease (MMD) has not been elucidated. This study aimed to determine the association between lysine pathway metabolites and the presence of MMD. METHODS We prospectively enrolled 360 MMD patients and 89 healthy controls from September 2020 to December 2021 in Beijing Tiantan Hospital. Serum levels of lysine, pipecolic acid and 2-aminoadipic acid were measured by liquid chromatography-mass spectrometry. We employed logistic regression and restricted cubic spline to explore the association between these metabolites and the presence of MMD. Stratified analyses were also conducted to test the robustness of results. RESULTS We observed that lysine levels in MMD patients were significantly higher and pipecolic acid levels were significantly lower compared to HCs (both p < 0.001), while no difference was found in the level of 2-AAA between both groups. When comparing metabolites by quartiles, elevated lysine levels were linked to increased odds for MMD (the fourth quartile [Q4] vs the first quartile [Q1]: odds ratio, 3.48, 95%CI [1.39-8.75]), while reduced pipecolic acid levels correlated with higher odds (Q4 vs Q1: odds ratio, 0.08; 95 % CI [0.03-0.20]). The restricted cubic spline found a L-shaped relationship between pipecolic acid level and the presence of MMD, with a cutoff point at 2.52 μmol/L. Robust results were also observed across subgroups. CONCLUSION Elevated lysine levels were correlated with increased odds of MMD presence, while lower pipecolic acid levels were associated with higher odds of the condition. These results suggest potential new biomarkers for the identification of MMD. CLINICAL TRIAL REGISTRY NUMBER URL: https://www.chictr.org.cn/. Unique identifier: ChiCTR2200061889.
Collapse
Affiliation(s)
- Zihan Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yahui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qihang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Anjie Wang
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan, China.
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
38
|
Wittenberg B, Ryan M, Hoffman J, Bernard T, Seinfeld J, Wilkinson C. Rapidly Progressive Contralateral Internal Carotid Artery Stenosis After COVID-19 Infection in a Down Syndrome Patient With Unilateral Moyamoya Arteriopathy. Cureus 2024; 16:e56575. [PMID: 38646238 PMCID: PMC11031128 DOI: 10.7759/cureus.56575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Moyamoya arteriopathy is a condition where chronic, progressive stenosis of large intracranial arteries, primarily of the anterior circulation, results in ischemia and the growth of small, abnormal collateral vessels. There is increasing evidence that infectious pathologies, such as COVID-19, may serve as a sort of trigger, or "second hit," for the development of moyamoya arteriopathy. In this article, we present the case of a 13-year-old female with Down syndrome and unilateral moyamoya arteriopathy who developed contralateral internal carotid artery (ICA) dissection and thrombus in the setting of a positive COVID-19 test and subsequently developed rapidly progressive contralateral ICA and bilateral anterior cerebral artery (ACA) moyamoya-like stenosis. The rapidly progressive contralateral ICA and bilateral ACA moyamoya-like stenosis are likely multifactorial in nature. The contralateral ICA may have had a predisposition for injury and stenosis due to the preexisting moyamoya arteriopathy, making stenosis more likely after COVID-19-induced vascular inflammation and injury as well as after a possible thrombectomy-associated injury. Based on this presentation, patients with moyamoya arteriopathy may be at risk for rapid progression of their moyamoya pathology when exposed to catalysts, including infection, such as COVID-19, and vascular injury, such as thrombectomy-induced injury. In these circumstances, high suspicion and close monitoring are essential for addressing ischemia related to the stenosis before permanent injury.
Collapse
Affiliation(s)
- Blake Wittenberg
- Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Megan Ryan
- Neurosurgery, Rocky Vista University College of Osteopathic Medicine, Parker, USA
| | - Jessa Hoffman
- Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Timothy Bernard
- Neurology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Joshua Seinfeld
- Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Corbett Wilkinson
- Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
39
|
Ge P, Yin Z, Tao C, Zeng C, Yu X, Lei S, Li J, Zhai Y, Ma L, He Q, Liu C, Liu W, Zhang B, Zheng Z, Mou S, Zhao Z, Wang S, Sun W, Guo M, Zheng S, Zhang J, Deng X, Liu X, Ye X, Zhang Q, Wang R, Zhang Y, Zhang S, Wang C, Yang Z, Zhang N, Wu M, Sun J, Zhou Y, Shi Z, Ma Y, Zhou J, Yu S, Li J, Lu J, Gao F, Wang W, Chen Y, Zhu X, Zhang D, Zhao J. Multiomics and blood-based biomarkers of moyamoya disease: protocol of Moyamoya Omics Atlas (MOYAOMICS). Chin Neurosurg J 2024; 10:5. [PMID: 38326922 PMCID: PMC10851534 DOI: 10.1186/s41016-024-00358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Moyamoya disease (MMD) is a rare and complex cerebrovascular disorder characterized by the progressive narrowing of the internal carotid arteries and the formation of compensatory collateral vessels. The etiology of MMD remains enigmatic, making diagnosis and management challenging. The MOYAOMICS project was initiated to investigate the molecular underpinnings of MMD and explore potential diagnostic and therapeutic strategies. METHODS The MOYAOMICS project employs a multidisciplinary approach, integrating various omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, to comprehensively examine the molecular signatures associated with MMD pathogenesis. Additionally, we will investigate the potential influence of gut microbiota and brain-gut peptides on MMD development, assessing their suitability as targets for therapeutic strategies and dietary interventions. Radiomics, a specialized field in medical imaging, is utilized to analyze neuroimaging data for early detection and characterization of MMD-related brain changes. Deep learning algorithms are employed to differentiate MMD from other conditions, automating the diagnostic process. We also employ single-cellomics and mass cytometry to precisely study cellular heterogeneity in peripheral blood samples from MMD patients. CONCLUSIONS The MOYAOMICS project represents a significant step toward comprehending MMD's molecular underpinnings. This multidisciplinary approach has the potential to revolutionize early diagnosis, patient stratification, and the development of targeted therapies for MMD. The identification of blood-based biomarkers and the integration of multiple omics data are critical for improving the clinical management of MMD and enhancing patient outcomes for this complex disease.
Collapse
Affiliation(s)
- Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaofan Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shixiong Lei
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| | - Shuai Zheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Chengjun Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ziwen Yang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Nijia Zhang
- Department of Neurosurgery, Beijing Childrens Hospital, Capital Medical University, Beijing, China
| | - Mingxing Wu
- Department of Neurosurgery, The Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jian Sun
- Department of Neurosurgery, Beijing Changping District Hospital, Beijing, China
| | - Yujia Zhou
- Department of Neurosurgery, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yonggang Ma
- Department of NeuroInterventional Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jianpo Zhou
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaochen Yu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Junli Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Faliang Gao
- Department of Neurosurgery, Center for Rehabilitation Medicine, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
40
|
DeRon N, Fischer F, Norris T. Moyamoya Disease Causing Stroke in the Setting of Cocaine Use and Uncontrolled Hypertension Due to Primary Hyperaldosteronism. Cureus 2024; 16:e51578. [PMID: 38313982 PMCID: PMC10835197 DOI: 10.7759/cureus.51578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Moyamoya disease is a cerebrovascular disease characterized by stenosis of large intracranial arteries and the development of smaller collateral vessels. Moyamoya may cause strokes and stroke-like symptoms in young patients. It has also been linked to autoimmune diseases and neuropsychiatric conditions. We present a case of moyamoya disease in a young patient with concomitant hyperaldosteronism, uncontrolled hypertension, and cocaine use disorder, along with features of antisocial personality disorder. This is a unique presentation of an underlying neurological disease causing psychiatric features exacerbated by cocaine use, and it describes a rare clinical presentation that physicians should consider in patients with moyamoya disease.
Collapse
Affiliation(s)
- Nathan DeRon
- Internal Medicine, Methodist Health System, Dallas, USA
| | | | - Tara Norris
- Internal Medicine, Methodist Health System, Dallas, USA
| |
Collapse
|
41
|
Murai Y, Matano F, Kubota A, Nounaka Y, Ishisaka E, Shirokane K, Koketsu K, Nakae R, Tamaki T. RNF213-Related Vasculopathy: Various Systemic Vascular Diseases Involving RNF213 Gene Mutations: Review. J NIPPON MED SCH 2024; 91:140-145. [PMID: 38777780 DOI: 10.1272/jnms.jnms.2024_91-215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Moyamoya disease (MMD) is a cerebrovascular disorder that is predominantly observed in women of East Asian descent, and is characterized by progressive stenosis of the internal carotid artery, beginning in early childhood, and a distinctive network of collateral vessels known as "moyamoya vessels" in the basal ganglia. Additionally, a prevalent genetic variant found in most MMD cases is the p.R4810K polymorphism of RNF213 on chromosome 17q25.3. Recent studies have revealed that RNF213 mutations are associated not only with MMD, but also with other systemic vascular disorders, including intracranial atherosclerosis and systemic vascular abnormalities such as pulmonary artery stenosis and coronary artery diseases. Therefore, the concept of "RNF213-related vasculopathy" has been proposed. This review focuses on polymorphisms in the RNF213 gene and describes a wide range of clinical and genetic phenotypes associated with RNF213-related vasculopathy. The RNF213 gene has been suggested to play an important role in the pathogenesis of vascular diseases and developing new therapies. Therefore, further research and knowledge sharing through collaboration between clinicians and researchers are required.
Collapse
Affiliation(s)
- Yasuo Murai
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Fumihiro Matano
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Asami Kubota
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Yohei Nounaka
- Department of Neurological Surgery, Nippon Medical School Hospital
| | - Eitaro Ishisaka
- Department of Neurological Surgery, Nippon Medical School Musashi Kosugi Hospital
| | - Kazutaka Shirokane
- Department of Neurological Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | - Kenta Koketsu
- Department of Neurological Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | - Ryuta Nakae
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital
| | - Tomonori Tamaki
- Department of Neurological Surgery, Nippon Medical School Tama Nagayama Hospital
| |
Collapse
|
42
|
Guo Q, Wang Q, Li J, Liu S, Wang X, Yu D, Zou Z, Gao G, Zhang Q, Hao F, Feng J, Yang R, Wang M, Fu H, Bao X, Duan L. Proteomic and metabolomic characterizations of moyamoya disease patient sera. Brain Behav 2023; 13:e3328. [PMID: 37962021 PMCID: PMC10726768 DOI: 10.1002/brb3.3328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The pathogenesis of moyamoya disease (MMD) is unclear. Inflammation and immune imbalance have been identified as potential factors contributing to the occurrence and progression of MMD. However, the specific proteins and metabolites responsible for triggering this process are yet to be established. The purpose of this study is to identify differentially expressed proteins and metabolites in patients with MMD and perform Kyoto Encyclopedia of Genes and Genomes pathway integration analysis to pinpoint crucial proteins and metabolites involved in the disease. METHODS We performed untargeted metabolomic and data-independent acquisition proteomic analyses on the serum samples of individuals with MMD and healthy controls (HC). RESULTS In patients with MMD versus HC, 24 proteins and 60 metabolites, including 21 anionic metabolites and 39 cationic metabolites, which were significantly different, were identified. In patients with MMD, several proteins involved in inflammation and immune metabolism, such as tubulin beta-6 and complement C4, were found to have significantly altered levels. Similarly, many metabolites involved in inflammation and immune metabolisms, such as dimethyl 4-hydroxyisophthalate, beta-nicotinamide mononucleotide, 2-(3-(4-pyridyl)-1H-1,2,4-triazol-5-yl)pyridine, and PC (17:1/18:2), were significantly altered. Intriguingly, these proteins and metabolites are involved in the progression of atherosclerosis through immune and inflammatory pathways, although some have never been reported in MMD. Moreover, integrated proteomics and metabolomics studies were conducted to determine shared pathways involving cholesterol metabolism, vitamin digestion, fat digestion, and absorption pathways of proteins and metabolites, which warrant further investigation. CONCLUSIONS Significant increases in pro-inflammatory and immunosuppressive abilities have been observed in patients with MMD, accompanied by significant reductions in anti-inflammatory and immune regulation. Various metabolites and proteins implicated in these processes have been identified for the first time. These findings hold immense significance for comprehending the pathogenesis of MMD and for the development of future drug therapies.
Collapse
Affiliation(s)
- Qingbao Guo
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Qian‐Nan Wang
- Department of Neurosurgery, The Eighth Medical CentreChinese PLA General HospitalBeijingChina
| | - Jingjie Li
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Simeng Liu
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Xiaopeng Wang
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Dan Yu
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Zheng‐Xing Zou
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Gan Gao
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Qian Zhang
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Fang‐Bin Hao
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Jie Feng
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Ri‐Miao Yang
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Minjie Wang
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Heguan Fu
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Xiangyang Bao
- Department of Neurosurgery, The Fifth Medical CentreChinese PLA General HospitalBeijingChina
| | - Lian Duan
- Department of Neurosurgery, The First Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
43
|
Gawden-Bone CM, Lehner PJ, Volkmar N. As a matter of fat: Emerging roles of lipid-sensitive E3 ubiquitin ligases. Bioessays 2023; 45:e2300139. [PMID: 37890275 DOI: 10.1002/bies.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
The dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein-protein interactions and signal transduction pathways. To maintain membrane integrity, sense-and-response systems monitor and adjust membrane lipid composition to the ever-changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin-proteasome system in monitoring and maintaining membrane lipid composition. We focus on the ER-resident RNF145 E3 ubiquitin ligase, its role in regulating adiponectin receptor 2 (ADIPOR2), its lipid hydrolase substrate, and the broader implications for understanding the homeostatic processes that fine-tune cellular membrane composition.
Collapse
Affiliation(s)
- Christian M Gawden-Bone
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Norbert Volkmar
- Institute for Molecular Systems Biology (IMSB), ETH Zürich, Zürich, Switzerland
| |
Collapse
|
44
|
Li J, He Q, Liu C, Zeng C, Tao C, Zhai Y, Liu W, Zhang Q, Wang R, Zhang Y, Ge P, Zhang D, Zhao J. Integrated analysis of the association between methionine cycle and risk of moyamoya disease. CNS Neurosci Ther 2023; 29:3212-3227. [PMID: 37183324 PMCID: PMC10580345 DOI: 10.1111/cns.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVE The role of methionine (Met) cycle in the pathogenesis and progression of cardiovascular and cerebrovascular diseases has been established, but its association with moyamoya disease (MMD) has rarely been studied. This study aimed to analyze the levels of Met cycle-related metabolites and constructed a risk model to explore its association with the risk of MMD. METHODS In this prospective study, a total of 302 adult MMD patients and 88 age-matched healthy individuals were consecutively recruited. The serum levels of Met cycle-related metabolites were quantified by liquid chromatography-mass spectrometry (LC-MS). Participants were randomly divided into training set and testing set at a ratio of 1:1. The training set was used to construct the risk score model by LASSO regression. The association between Met cycle-related risk score and the risk of MMD was analyzed using logistic regression and assessed by ROC curves. The testing set was used for validation. RESULTS The levels of methionine sulfoxide and homocysteine were significantly increased, while the levels of betaine and choline were significantly decreased in MMD and its subtypes compared to healthy controls (p < 0.05 for all). The training set was used to construct the risk model and the risk score of each participant has been calculated. After adjusting for potential confounders, the risk score was independently associated with the risk of MMD and its subtypes (p < 0.05 for all). We then divided the participants into low-risk and high-risk groups, the high-risk score was significantly associated with the risk of MMD and its subtypes (p < 0.05 for all). The risk scores were further assessed as tertiles, the highest tertile was significantly associated with a higher risk of MMD and its subtypes compared to the lowest (p < 0.05 for all). The results were validated in the testing set. CONCLUSION This study has constructed and validated a risk model based on Met cycle-related metabolites, which was independently associated with the risk of MMD and its subtypes. The findings provided a new perspective on the risk evaluation and prevention of MMD.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chuming Tao
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
45
|
Zhang Y, Yuan Y, Jiang L, Liu Y, Zhang L. The emerging role of E3 ubiquitin ligase RNF213 as an antimicrobial host determinant. Front Cell Infect Microbiol 2023; 13:1205355. [PMID: 37655297 PMCID: PMC10465799 DOI: 10.3389/fcimb.2023.1205355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Ring finger protein 213 (RNF213) is a large E3 ubiquitin ligase with a molecular weight of 591 kDa that is associated with moyamoya disease, a rare cerebrovascular disease. It is located in the cytosol and perinuclear space. Missense mutations in this gene have been found to be more prevalent in patients with moyamoya disease compared with that in healthy individuals. Understanding the molecular function of RNF213 could provide insights into moyamoya disease. RNF213 contains a C3HC4-type RING finger domain with an E3 ubiquitin ligase domain and six AAA+ adenosine triphosphatase (ATPase) domains. It is the only known protein with both AAA+ ATPase and ubiquitin ligase activities. Recent studies have highlighted the role of RNF213 in fighting against microbial infections, including viruses, parasites, bacteria, and chlamydiae. This review aims to summarize the recent research progress on the mechanisms of RNF213 in pathogenic infections, which will aid researchers in understanding the antimicrobial role of RNF213.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lu Jiang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yihan Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
46
|
Tang Q, Li W, Huang J, Wu Y, Ma C, Tu Y, Zhu Q, Lu J, Xie J, Liu Y, Mao X, Wu W. Single-cell sequencing analysis of peripheral blood in patients with moyamoya disease. Orphanet J Rare Dis 2023; 18:174. [PMID: 37400835 DOI: 10.1186/s13023-023-02781-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/18/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND At present, the etiology of moyamoya disease is not clear, and it is necessary to explore the mechanism of its occurrence and development. Although some bulk sequencing data have previously revealed transcriptomic changes in Moyamoya disease, single-cell sequencing data has been lacking. METHODS Two DSA(Digital Subtraction Angiography)-diagnosed patients with moyamoya disease were recruited between January 2021 and December 2021. Their peripheral blood samples were single-cell sequenced. CellRanger(10 x Genomics, version 3.0.1) was used to process the raw data, demultiplex cellular barcodes, map reads to the transcriptome, and dowm-sample reads(as required to generate normalized aggregate data across samples). There were 4 normal control samples, including two normal samples GSM5160432 and GSM5160434 of GSE168732, and two normal samples of GSE155698, namely GSM4710726 and GSM4710727. Weighted co-expression network analysis was used to explore the gene sets associated with moyamoya disease. GO analysis and KEGG analysis were used to explore gene enrichment pathways. Pseudo-time series analysis and cell interaction analysis were used to explore cell differentiation and cell interaction. RESULTS For the first time, we present a peripheral blood single cell sequencing landscape of Moyamoya disease, revealing cellular heterogeneity and gene expression heterogeneity. In addition, by combining with WGCNA analysis in public database and taking intersection, the key genes in moyamoya disease were obtained. namely PTP4A1, SPINT2, CSTB, PLA2G16, GPX1, HN1, LGALS3BP, IFI6, NDRG1, GOLGA2, LGALS3. Moreover, pseudo-time series analysis and cell interaction analysis revealed the differentiation of immune cells and the relationship between immune cells in Moyamoya disease. CONCLUSIONS Our study can provide information for the diagnosis and treatment of moyamoya disease.
Collapse
Affiliation(s)
- Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Wenjun Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Jie Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yuting Wu
- Department of pharmacy, university of Southern California, Los Angeles, CA, USA
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Qianmiao Zhu
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, P.R. China
| | - Jiacheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Xiaoman Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
47
|
Kaseka ML, Dlamini N. Investigation and management of pediatric moyamoya arteriopathy in the era of genotype-phenotype correlation studies. Eur J Hum Genet 2023; 31:735-737. [PMID: 37188827 PMCID: PMC10326028 DOI: 10.1038/s41431-023-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- M L Kaseka
- Division of Neurology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada.
| | - N Dlamini
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
48
|
Ma Z, Chen D, Wang S, Zhu Y, Chen J. Increase in age at onset of moyamoya disease in China over 25 years. Brain Behav 2023; 13:e3034. [PMID: 37150963 PMCID: PMC10275527 DOI: 10.1002/brb3.3034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND To explore whether the age at onset (AAO) of Chinese patients with moyamoya disease (MMD) increased over time due to a reduced exposure to leptospiral infection. METHODS We performed an independent, multicenter, retrospective study based on data from patients with MMD who initially attended four tertiary hospitals in Hubei, China, from 1996 to 2020. After stratifying the year of MMD onset into five periods (1996-2000, 2001-2005, 2006-2010, 2011-2015, and 2016-2020), we analyzed the temporal trends in AAO and compared different classes of AAO (early-onset, < 20 years; intermediate-onset, 20-49 years; late-onset, ≥ 50 years) in each period. RESULTS We included 1858 patients in this study, with 878 women and 980 men. Their median (IQR) AAO was 47 (39-55) years. The case AAO significantly increased at the rate of 0.94 years per year (r = 0.406, p < .0001), while no trend was observed in birth years through time (p = .512). The birth cohorts who grew up in the leptospirosis epidemic years was stably susceptible to MMD. The median (IQR) AAO has increased significantly from 26 (14-37) years (1996-2000) to 51 (43-57) years (2016-2020) (p < .0001). The proportion of early-onset MMD was significantly higher in 1996-2000 (33.3%, p < .0001) and 2001-2005 (10.4%, p < .001). The AAO shows an aging trend that the proportion of late-onset MMD went from 4.5% (2001-2005) to 54.5% (2016-2020) (p < .0001). CONCLUSIONS The AAO of MMD was increasing during a recent 25-year period in China, which may reflect a birth cohort effect that resulted from environmental changes. The disparity risk of birth cohorts with MMD changed with leptospirosis epidemics, suggesting leptospiral exposure might be a potential risk factor.
Collapse
Affiliation(s)
- Zhiyang Ma
- Department of NeurosurgeryXijing Hospital of Air Force Military Medical UniversityXi'anChina
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Dayu Chen
- Department of NeurosurgeryWuhan General Hospital of Guangzhou Military CommandWuhanChina
| | - Sheng Wang
- Department of Neurosurgery, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaozu Zhu
- Department of NeurosurgeryXiangyang Central HospitalXiangyangChina
| | - Jincao Chen
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
49
|
Cao L, Ai Y, Dong Y, Li D, Wang H, Sun K, Wang C, Zhang M, Yan D, Li H, Liang G, Yang B. Bioinformatics analysis reveals the landscape of immune cell infiltration and novel immune-related biomarkers in moyamoya disease. Front Genet 2023; 14:1101612. [PMID: 37265961 PMCID: PMC10230076 DOI: 10.3389/fgene.2023.1101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Objective: This study aimed to identify immune infiltration characteristics and new immunological diagnostic biomarkers in the cerebrovascular tissue of moyamoya disease (MMD) using bioinformatics analysis. Methods: GSE189993 and GSE141022 were downloaded from the GEO database. Differentially expressed gene and PPI analysis were performed. After performing WGCNA, the most significant module associated with MMD was obtained. Next, functional pathways according to GSEA, GO, and KEGG were enriched for the aforementioned core genes obtained from PPI and WGCNA. Additionally, immune infiltration, using the CIBERSORT deconvolution algorithm, immune-related biomarkers, and the relationship between these genes, was further explored. Finally, diagnostic accuracy was verified with ROC curves in the validation dataset GSE157628. Results: A total of 348 DEGs were screened, including 89 downregulated and 259 upregulated genes. The thistlel module was detected as the most significant module associated with MMD. Functional analysis of the core genes was chiefly involved in the immune response, immune system process, protein tyrosine kinase activity, secretory granule, and so on. Among 13 immune-related overlapping genes, 4 genes (BTK, FGR, PTPN11, and SYK) were identified as potential diagnostic biomarkers, where PTPN11 showed the highest specificity and sensitivity. Meanwhile, a higher proportion of eosinophils, not T cells or B cells, was demonstrated in the specific immune infiltration landscape of MMD. Conclusion: Immune activities and immune cells were actively involved in the progression of MMD. BTK, FGR, PTPN11, and SYK were identified as potential immune diagnostic biomarkers. These immune-related genes and cells may provide novel insights for immunotherapy in the future.
Collapse
Affiliation(s)
- Lei Cao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunzheng Ai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Dong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongpeng Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiwen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenchao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Wu H, Xu J, Sun J, Duan J, Xiao J, Ren Q, Zhou P, Yan J, Li Y, Xiong X, Zeng E. APOE as potential biomarkers of moyamoya disease. Front Neurol 2023; 14:1156894. [PMID: 37228412 PMCID: PMC10203507 DOI: 10.3389/fneur.2023.1156894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Objective The mechanisms underpinning Moyamoya disease (MMD) remain unclear, and effective biomarkers remain unknown. The purpose of this study was to identify novel serum biomarkers of MMD. Methods Serum samples were collected from 23 patients with MMD and 30 healthy controls (HCs). Serum proteins were identified using tandem tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Differentially expressed proteins (DEPs) in the serum samples were identified using the SwissProt database. The DEPs were assessed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Gene Ontology (GO), and protein-protein interaction (PPI) networks, and hub genes were identified and visualized using Cytoscape software. Microarray datasets GSE157628, GSE189993, and GSE100488 from the Gene Expression Omnibus (GEO) database were collected. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DE-miRNAs) were identified, and miRNA targets of DEGs were predicted using the miRWalk3.0 database. Serum apolipoprotein E (APOE) levels were compared in 33 MMD patients and 28 Moyamoya syndrome (MMS) patients to investigate the potential of APOE to be as an MMD biomarker. Results We identified 85 DEPs, of which 34 were up- and 51 down-regulated. Bioinformatics analysis showed that some DEPs were significantly enriched in cholesterol metabolism. A total of 1105 DEGs were identified in the GSE157628 dataset (842 up- and 263 down-regulated), whereas 1290 were identified in the GSE189993 dataset (200 up- and 1,090 down-regulated). The APOE only overlaps with the upregulated gene expression in Proteomic Profiling and in GEO databases. Functional enrichment analysis demonstrated that APOE was associated with cholesterol metabolism. Moreover, 149 miRNAs of APOE were predicted in the miRWalk3.0 database, and hsa-miR-718 was the only DE-miRNA overlap identified in MMD samples. Serum APOE levels were significantly higher in patients with MMD than in those without. The performance of APOE as an individual biomarker to diagnose MMD was remarkable. Conclusions We present the first description of the protein profile of patients with MMD. APOE was identified as a potential biomarker for MMD. Cholesterol metabolism was found to potentially be related to MMD, which may provide helpful diagnostic and therapeutic insights for MMD.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiarong Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinlin Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Ren
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|