1
|
Lovewell RR, Langermann S, Flies DB. Immune inhibitory receptor agonist therapeutics. Front Immunol 2025; 16:1566869. [PMID: 40207220 PMCID: PMC11979287 DOI: 10.3389/fimmu.2025.1566869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The immune system maintains the health of an organism through complex sensing and communication mechanisms. Receptors on the surface of immune cells respond to stimuli resulting in activity described at its most basic as inhibitory or stimulatory. Significant progress in therapeutic intervention has occurred by modulating these pathways, yet much remains to be accomplished. Therapeutics that antagonize, or block, immune inhibitory receptor (IIR) pathways, such as checkpoint inhibitors in cancer are a key example. Antagonism of immune stimulatory receptors (ISRs) for dysregulated inflammation and autoimmunity have received significant attention. An alternative strategy is to agonize, or induce signaling, in immune pathways to treat disease. Agonism of ISRs has been employed with some success in disease settings, but agonist therapeutics of IIRs have great, untapped potential. This review discusses and highlights recent advances in pre-clinical and clinical therapeutics designed to agonize IIR pathways to treat diseases. In addition, an understanding of IIR agonists based on activity at a cellular level as either agonist suppression of stimulatory cells (SuSt), or a new concept, agonist suppression of suppressive cells (SuSu) is proposed.
Collapse
|
2
|
Szwed M, Jost T, Majka E, Gharibkandi NA, Majkowska-Pilip A, Frey B, Bilewicz A, Fietkau R, Gaipl U, Marczak A, Lubgan D. Pt-Au Nanoparticles in Combination with Near-Infrared-Based Hyperthermia Increase the Temperature and Impact on the Viability and Immune Phenotype of Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2025; 26:1574. [PMID: 40004038 PMCID: PMC11855494 DOI: 10.3390/ijms26041574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Near-infrared light (NIR)-responsive metal-based nanoparticles (NPs) could be used for tumour therapy. We examined how platinum (Pt), gold (Au), and core-shell Pt-Au NPs affect the viability of human hepatocellular carcinoma (HCC) cell lines (Hep3B, HepG2, and Huh7D-12) alone and in combination with NIR exposure. In addition, the expression of immune checkpoint molecules (ICMs) on the tumour cells was analysed. We revealed that the cytotoxicity and programmed cell death induction of Au and Pt-Au NPs toward HCC cells could be enhanced by NIR with 960 nm in a different way. Pt-Au NPs were the only particles that resulted in an additional temperature increase of up to 2 °C after NIR. Regarding the tumour cell immune phenotype, not all of the cells experienced changes in immune phenotype. NIR itself was the trigger of the alterations, while the NPs did not significantly affect the expression of most of the examined ICMs, such as PD-L1, PD-L1, HVEM, CD70, ICOS-L, Ox40-L, and TNFRSF9. The combination of Pt-Au NPs with NIR resulted in the most prominent increase of ICMs in HepG2 cells. We conclude that the thermotherapeutic effect of Pt-Au NP application and NIR could be beneficial in multimodal therapy settings in liver cancer for selected patients.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Tina Jost
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Emilia Majka
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Nasrin Abbasi Gharibkandi
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Agnieszka Majkowska-Pilip
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Rainer Fietkau
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Dorota Lubgan
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
3
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024; 56:2113-2126. [PMID: 39349829 PMCID: PMC11541569 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Medina JA, Ledezma DK, Ghofrani J, Chen J, Chin SJ, Balakrishnan PB, Lee NH, Sweeney EE, Fernandes R. Photothermal therapy co-localized with CD137 agonism improves survival in an SM1 melanoma model without hepatotoxicity. Nanomedicine (Lond) 2024; 19:2049-2064. [PMID: 39225150 PMCID: PMC11485692 DOI: 10.1080/17435889.2024.2389770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.
Collapse
Affiliation(s)
- Jacob A Medina
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Debbie K Ledezma
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Joshua Ghofrani
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Jie Chen
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Samantha J Chin
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | | | - Norman H Lee
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Rohan Fernandes
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| |
Collapse
|
5
|
Gergely TG, Drobni ZD, Kallikourdis M, Zhu H, Meijers WC, Neilan TG, Rassaf T, Ferdinandy P, Varga ZV. Immune checkpoints in cardiac physiology and pathology: therapeutic targets for heart failure. Nat Rev Cardiol 2024; 21:443-462. [PMID: 38279046 DOI: 10.1038/s41569-023-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.
Collapse
Affiliation(s)
- Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Adaptive Immunity Lab, Humanitas Research Hospital IRCCS, Milan, Italy
| | - Han Zhu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wouter C Meijers
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
6
|
Cao J, Qing J, Zhu L, Chen Z. Role of TIM-1 in the development and treatment of tumours. Front Cell Dev Biol 2024; 12:1307806. [PMID: 38831760 PMCID: PMC11144867 DOI: 10.3389/fcell.2024.1307806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
T-cell immunoglobulin and mucin structural domain 1 (TIM-1, also known as hepatitis A virus cell receptor 1) is a co-stimulatory molecule that is expressed predominantly on the surface of T cells. TIM-1 promotes the activation and proliferation of T cells, cytokine secretion, and can also be overexpressed in various types of cancer. Upregulation of TIM-1 expression may be associated with the development and progression of cancer. After reviewing the literature, we propose that TIM-1 affects tumour development mainly through two pathways. In the Direct pathway: overexpression in tumours activates tumour-related signaling pathways, mediates the proliferation, apoptosis, invasion and metastasis, and directly affects tumour development directly. In the indirect pathway: In addition to changing the tumour microenvironment and influencing the growth of tumours, TIM-1 binds to ligands to encourage the activation, proliferation, and generation of cytokines by immune cells. This review examines how TIM-1 stimulates the development of tumours in direct and indirect ways, and how TIM-1 is exploited as a target for cancer therapy.
Collapse
Affiliation(s)
- Jinmeng Cao
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- School of Clinical Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Liya Zhu
- Graduate school, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhizhong Chen
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| |
Collapse
|
7
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O'Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating tumor necrosis factor receptors. Cell Chem Biol 2024; 31:944-954.e5. [PMID: 38653243 PMCID: PMC11142405 DOI: 10.1016/j.chembiol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.
Collapse
MESH Headings
- Humans
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Receptors, OX40/agonists
- Receptors, OX40/immunology
- Receptors, OX40/metabolism
- Receptors, OX40/antagonists & inhibitors
- Antibodies/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/pharmacology
- Mice
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O'Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Beckmann K, Reitinger C, Yan X, Carle A, Blümle E, Jurkschat N, Paulmann C, Prassl S, Kazandjian LV, Loré K, Nimmerjahn F, Fischer S. Fcγ-Receptor-Independent Controlled Activation of CD40 Canonical Signaling by Novel Therapeutic Antibodies for Cancer Therapy. Antibodies (Basel) 2024; 13:31. [PMID: 38651411 PMCID: PMC11036229 DOI: 10.3390/antib13020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients.
Collapse
Affiliation(s)
| | - Carmen Reitinger
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Xianglei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Anna Carle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | - Eva Blümle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | | | - Sandra Prassl
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
- FAU Profile Centre Immunomedicine, 91054 Erlangen, Germany
| | | |
Collapse
|
9
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Dane Wittrup K. CD8 + T cell priming that is required for curative intratumorally anchored anti-4-1BB immunotherapy is constrained by Tregs. Nat Commun 2024; 15:1900. [PMID: 38429261 PMCID: PMC10907589 DOI: 10.1038/s41467-024-45625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice. Mechanistically, this synergy depends on ɑCD4 eliminating tumor draining lymph node regulatory T cells, resulting in priming and activation of CD8+ T cells which then infiltrate the tumor microenvironment. The cytotoxic program of these newly primed CD8+ T cells is then supported by the combined effect of TA99 and ɑ4-1BB-LAIR. The combination of TA99 and ɑ4-1BB-LAIR with a clinically approved ɑCTLA-4 antibody known for enhancing T cell priming results in equivalent cure rates, which validates the mechanistic principle, while the addition of ɑCTLA-4 also generates robust immunological memory against secondary tumor rechallenge. Thus, our study establishes the proof of principle for a clinically translatable cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
10
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
11
|
Fallon D, Huang CS, Ma J, Morgan C, Zhou ZS. Agonistic anti-NKG2D antibody structure reveals unique stoichiometry and epitope compared to natural ligands. MAbs 2024; 16:2433121. [PMID: 39582357 PMCID: PMC11591474 DOI: 10.1080/19420862.2024.2433121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Natural killer (NK) cells are effector cells of the innate immune system that distinguish between healthy and abnormal cells through activating and inhibitory receptor signaling. NKG2D, a homodimeric activating receptor expressed on NK cells, recognizes a diverse class of stress ligands expressed by cells experiencing infection, malignant transformation, chronic inflammation, and other cellular stresses. Despite the variety of NKG2D ligands, they all bind the receptor asymmetrically in a 1:1 ligand to homodimeric NKG2D stoichiometry. In contrast, as we report herein, the agonistic antibody 2D3 binds NKG2D with a 2:1 stoichiometry of its antigen binding fragments to homodimeric NKG2D and a largely distinct epitope. This binding interaction, as compared to NKG2D natural ligands, suggests there may be unique mechanisms to engage this receptor while offering possible benefits when incorporated into an IgG-based therapeutic.
Collapse
Affiliation(s)
- Daniel Fallon
- Dragonfly Therapeutics, Inc., Waltham, MA, USA
- Department of Chemistry and Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | | | - Jingya Ma
- Dragonfly Therapeutics, Inc., Waltham, MA, USA
| | | | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| |
Collapse
|
12
|
Delgado M, Garcia-Sanz JA. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023; 12:2837. [PMID: 38132155 PMCID: PMC10741644 DOI: 10.3390/cells12242837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
A series of monoclonal antibodies with therapeutic potential against cancer have been generated and developed. Ninety-one are currently used in the clinics, either alone or in combination with chemotherapeutic agents or other antibodies, including immune checkpoint antibodies. These advances helped to coin the term personalized medicine or precision medicine. However, it seems evident that in addition to the current work on the analysis of mechanisms to overcome drug resistance, the use of different classes of antibodies (IgA, IgE, or IgM) instead of IgG, the engineering of the Ig molecules to increase their half-life, the acquisition of additional effector functions, or the advantages associated with the use of agonistic antibodies, to allow a broad prospective usage of precision medicine successfully, a strategy change is required. Here, we discuss our view on how these strategic changes should be implemented and consider their pros and cons using therapeutic antibodies against cancer as a model. The same strategy can be applied to therapeutic antibodies against other diseases, such as infectious or autoimmune diseases.
Collapse
Affiliation(s)
| | - Jose A. Garcia-Sanz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
13
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O’Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating receptors in the tumor necrosis factor superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571146. [PMID: 38168220 PMCID: PMC10760063 DOI: 10.1101/2023.12.11.571146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Agonist antibodies that activate cellular receptors are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their potent activation. This can be achieved using antibodies that recognize two unique epitopes on the same receptor and mediate receptor superclustering. However, identifying compatible pairs of antibodies to generate biepitopic antibodies (also known as biparatopic antibodies) for activating TNF receptors typically requires animal immunization and is a laborious and unpredictable process. Here, we report a simple method for systematically identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses off-the-shelf, receptor-specific IgG antibodies, which lack intrinsic (Fc-gamma receptor-independent) agonist activity, to first block their corresponding epitopes. Next, we perform selections for single-chain antibodies from human nonimmune libraries that bind accessible epitopes on the same ectodomains using yeast surface display and fluorescence-activated cell sorting. The selected single-chain antibodies are finally fused to the light chains of IgGs to generate human tetravalent antibodies that engage two different receptor epitopes and mediate potent receptor activation. We highlight the broad utility of this approach by converting several existing clinical-stage antibodies against TNF receptors, including ivuxolimab and pogalizumab against OX40 and utomilumab against CD137, into biepitopic antibodies with highly potent agonist activity. We expect that this widely accessible methodology can be used to systematically generate biepitopic antibodies for activating other receptors in the TNF receptor superfamily and many other receptors whose activation is dependent on strong receptor clustering.
Collapse
Affiliation(s)
- Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S. Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L. Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Yu J, Cui J, Zhang X, Xu H, Chen Z, Li Y, Niu Y, Wang S, Ran S, Zou Y, Ye W, Zhang D, Zhou C, Xia J, Wu J. The OX40-TRAF6 axis promotes CTLA-4 degradation to augment antitumor CD8 + T-cell immunity. Cell Mol Immunol 2023; 20:1445-1456. [PMID: 37932534 PMCID: PMC10687085 DOI: 10.1038/s41423-023-01093-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023] Open
Abstract
Immune checkpoint blockade (ICB), including anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4), benefits only a limited number of patients with cancer. Understanding the in-depth regulatory mechanism of CTLA-4 protein stability and its functional significance may help identify ICB resistance mechanisms and assist in the development of novel immunotherapeutic modalities to improve ICB efficacy. Here, we identified that TNF receptor-associated factor 6 (TRAF6) mediates Lys63-linked ubiquitination and subsequent lysosomal degradation of CTLA-4. Moreover, by using TRAF6-deficient mice and retroviral overexpression experiments, we demonstrated that TRAF6 promotes CTLA-4 degradation in a T-cell-intrinsic manner, which is dependent on the RING domain of TRAF6. This intrinsic regulatory mechanism contributes to CD8+ T-cell-mediated antitumor immunity in vivo. Additionally, by using an OX40 agonist, we demonstrated that the OX40-TRAF6 axis is responsible for CTLA-4 degradation, thereby controlling antitumor immunity in both tumor-bearing mice and patients with cancer. Overall, our findings demonstrate that the OX40-TRAF6 axis promotes CTLA-4 degradation and is a potential therapeutic target for the improvement of T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Abdeldaim DT, Schindowski K. Fc-Engineered Therapeutic Antibodies: Recent Advances and Future Directions. Pharmaceutics 2023; 15:2402. [PMID: 37896162 PMCID: PMC10610324 DOI: 10.3390/pharmaceutics15102402] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Monoclonal therapeutic antibodies have revolutionized the treatment of cancer and other diseases. Fc engineering aims to enhance the effector functions or half-life of therapeutic antibodies by modifying their Fc regions. Recent advances in the Fc engineering of modern therapeutic antibodies can be considered the next generation of antibody therapy. Various strategies are employed, including altering glycosylation patterns via glycoengineering and introducing mutations to the Fc region, thereby enhancing Fc receptor or complement interactions. Further, Fc engineering strategies enable the generation of bispecific IgG-based heterodimeric antibodies. As Fc engineering techniques continue to evolve, an expanding portfolio of Fc-engineered antibodies is advancing through clinical development, with several already approved for medical use. Despite the plethora of Fc-based mutations that have been analyzed in in vitro and in vivo models, we focus here in this review on the relevant Fc engineering strategies of approved therapeutic antibodies to finetune effector functions, to modify half-life and to stabilize asymmetric bispecific IgGs.
Collapse
Affiliation(s)
- Dalia T. Abdeldaim
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
| |
Collapse
|
16
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Zaitseva O, Anany M, Wajant H, Lang I. Basic characterization of antibodies targeting receptors of the tumor necrosis factor receptor superfamily. Front Immunol 2023; 14:1115667. [PMID: 37051245 PMCID: PMC10083269 DOI: 10.3389/fimmu.2023.1115667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Many new immunotherapeutic approaches aim on the stimulatory targeting of receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) using antibodies with intrinsic or conditional agonism. There is an initial need to characterize corresponding TNFRSF receptor (TNFR)-targeting antibodies with respect to affinity, ligand binding, receptor activation and the epitope recognized. Here, we report a collection of simple and matched protocols enabling the detailed investigation of these aspects by help of Gaussia princeps luciferase (GpL) fusion proteins and analysis of interleukin-8 (IL8) production as an easily measurable readout of TNFR activation. In a first step, the antibodies and antibody variants of interest are transiently expressed in human embryonal kidney 293 cells, either in non-modified form or as fusion proteins with GpL as a reporter domain. The supernatants containing the antibody-GpL fusion proteins can then be used without further purification in cell-free and/or cellular binding studies to determine affinity. Similarly, binding studies with mutated TNFR variants enable the characterization of the antibody binding site within the TNFR ectodomain. Furthermore, in cellular binding studies with GpL fusion proteins of soluble TNFL molecules, the ability of the non-modified antibody variants to interfere with TNFL-TNFR interaction can be analyzed. Last but not least, we describe a protocol to determine the intrinsic and the Fc gamma receptor (FcγR)-dependent agonism of anti-TNFR antibodies which exploits i) the capability of TNFRs to trigger IL8 production in tumor cell lines lacking expression of FcγRs and ii) vector- and FcγR-transfected cells, which produce no or only very low amounts of human IL8. The presented protocols only require standard molecular biological equipment, eukaryotic cell culture and plate readers for the quantification of luminescent and colorimetric signals.
Collapse
Affiliation(s)
- Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Giza, Egypt
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Harald Wajant,
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Wittrup KD. Tregs constrain CD8 + T cell priming required for curative intratumorally anchored anti-4-1BB immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526116. [PMID: 36778460 PMCID: PMC9915483 DOI: 10.1101/2023.01.30.526116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical development has been hampered by on-target, off-tumor toxicity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of an ɑ4-1BB antibody fused to the collagen binding protein LAIR. While combination treatment with an antitumor antibody (TA99) displayed only modest efficacy, simultaneous depletion of CD4+ T cells boosted cure rates to over 90% of mice. We elucidated two mechanisms of action for this synergy: ɑCD4 eliminated tumor draining lymph node Tregs, enhancing priming and activation of CD8+ T cells, and TA99 + ɑ4-1BB-LAIR supported the cytotoxic program of these newly primed CD8+ T cells within the tumor microenvironment. Replacement of ɑCD4 with ɑCTLA-4, a clinically approved antibody that enhances T cell priming, produced equivalent cure rates while additionally generating robust immunological memory against secondary tumor rechallenge.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Joshua M Peters
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - William Pinney
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Bryan D Bryson
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| |
Collapse
|
19
|
Claus C, Ferrara-Koller C, Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs 2023; 15:2167189. [PMID: 36727218 PMCID: PMC9897756 DOI: 10.1080/19420862.2023.2167189] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
The clinical development of 4-1BB agonists for cancer immunotherapy has raised substantial interest during the past decade. The first generation of 4-1BB agonistic antibodies entering the clinic, urelumab (BMS-663513) and utomilumab (PF-05082566), failed due to (liver) toxicity or lack of efficacy, respectively. The two antibodies display differences in the affinity and the 4-1BB receptor epitope recognition, as well as the isotype, which determines the Fc-gamma-receptor (FcγR) crosslinking activity. Based on this experience a very diverse landscape of second-generation 4-1BB agonists addressing the liabilities of first-generation agonists has recently been developed, with many entering clinical Phase 1 and 2 studies. This review provides an overview focusing on differences and their scientific rationale, as well as challenges foreseen during the clinical development of these molecules.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Claudia Ferrara-Koller
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| |
Collapse
|