1
|
Grasso P. Harnessing the Power of Leptin: The Biochemical Link Connecting Obesity, Diabetes, and Cognitive Decline. Front Aging Neurosci 2022; 14:861350. [PMID: 35527735 PMCID: PMC9072663 DOI: 10.3389/fnagi.2022.861350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this review, the current understanding of leptin’s role in energy balance, glycemic regulation, and cognitive function is examined, and its involvement in maintaining the homeostatic “harmony” of these physiologies is explored. The effects of exercise on circulating leptin levels are summarized, and the results of clinical application of leptin to metabolic disease and neurologic dysfunction are reviewed. Finally, pre-clinical evidence is presented which suggests that synthetic peptide leptin mimetics may be useful in resolving not only the leptin resistance associated with common obesity and other elements of metabolic syndrome, but also the peripheral insulin resistance characterizing type 2 diabetes mellitus, and the central insulin resistance associated with certain neurologic deficits in humans.
Collapse
Affiliation(s)
- Patricia Grasso
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Patricia Grasso,
| |
Collapse
|
2
|
Yaginuma H, Banno R, Sun R, Taki K, Mizoguchi A, Kobayashi T, Sugiyama M, Tsunekawa T, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Suga H, Arima H. Peripheral combination treatment of leptin and an SGLT2 inhibitor improved glucose metabolism in insulin-dependent diabetes mellitus mice. J Pharmacol Sci 2021; 147:340-347. [PMID: 34663516 DOI: 10.1016/j.jphs.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
We investigated whether peripheral combination treatment of a sodium-glucose cotransporter 2 (SGLT2) inhibitor and leptin improves glucose metabolism in insulin-dependent diabetes mellitus (IDDM) model mice. Twelve-week-old male C57BL6 mice were intraperitoneally administered a high dose of streptozotocin to produce IDDM. IDDM mice were then divided into five groups: SGLT2 inhibitor treatment alone, leptin treatment alone, leptin and SGLT2 inhibitor co-treatment, untreated IDDM mice, and healthy mice groups. The blood glucose (BG) level at the end of the dark cycle was measured, and a glucose tolerance test (GTT) was performed and compared between the five groups. Leptin was peripherally administered at 20 μg/day using an osmotic pump, and an SGLT2 inhibitor, ipragliflozin, was orally administered at 3 mg/kg/day. Monotherapy with SGLT2 inhibitor or leptin significantly improved glucose metabolism in mice as evaluated by BG and GTT compared with the untreated group, whereas the co-treatment group with SGLT2 inhibitor and leptin further improved glucose metabolism as compared with the monotherapy group. Notably, glucose metabolism in the co-treatment group improved to the same level as that in the healthy mice group. Thus, peripheral combination treatment with leptin and SGLT2 inhibitor improved glucose metabolism in IDDM mice without the use of insulin.
Collapse
Affiliation(s)
- Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-0814, Japan.
| | - Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, 2-2-22 Bunkyo, Ichinomiya 491-8558, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, 2-2-22 Bunkyo, Ichinomiya 491-8558, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Japan Nagoya 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
3
|
Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol 2021; 33:e12941. [PMID: 33599044 DOI: 10.1111/jne.12941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
The central nervous system (CNS) contributes significantly to glucose homeostasis. The available evidence indicates that insulin directly acts on the CNS, in particular the hypothalamus, to regulate hepatic glucose production, thereby controlling whole-body glucose metabolism. Additionally, insulin also acts on the brain to regulate food intake and fat metabolism, which may indirectly regulate glucose metabolism. Studies conducted over the last decade have found that the CNS can regulate glucose metabolism in an insulin-independent manner. Enhancement of central leptin signalling reverses hyperglycaemia in insulin-deficient rodents. Here, I review the mechanisms by which central insulin and leptin actions regulate glucose metabolism. Although clinical studies have shown that insulin treatment is currently indispensable for managing diabetes, unravelling the neuronal mechanisms underlying the central regulation of glucose metabolism will pave the way for the design of novel therapeutic drugs for diabetes.
Collapse
Affiliation(s)
- Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Singha A, Palavicini JP, Pan M, Farmer S, Sandoval D, Han X, Fujikawa T. Leptin Receptors in RIP-Cre 25Mgn Neurons Mediate Anti-dyslipidemia Effects of Leptin in Insulin-Deficient Mice. Front Endocrinol (Lausanne) 2020; 11:588447. [PMID: 33071988 PMCID: PMC7538546 DOI: 10.3389/fendo.2020.588447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a potent endocrine hormone produced by adipose tissue and regulates a broad range of whole-body metabolism such as glucose and lipid metabolism, even without insulin. Central leptin signaling can lower hyperglycemia in insulin-deficient rodents via multiple mechanisms, including improvements of dyslipidemia. However, the specific neurons that regulate anti-dyslipidemia effects of leptin remain unidentified. Here we report that leptin receptors (LEPRs) in neurons expressing Cre recombinase driven by a short fragment of a promoter region of Ins2 gene (RIP-Cre25Mgn neurons) are required for central leptin signaling to reverse dyslipidemia, thereby hyperglycemia in insulin-deficient mice. Ablation of LEPRs in RIP-Cre25Mgn neurons completely blocks glucose-lowering effects of leptin in insulin-deficient mice. Further investigations reveal that insulin-deficient mice lacking LEPRs in RIP-Cre25Mgn neurons (RIP-CreΔLEPR mice) exhibit greater lipid levels in blood and liver compared to wild-type controls, and that leptin injection into the brain does not suppress dyslipidemia in insulin-deficient RIP-CreΔLEPR mice. Leptin administration into the brain combined with acipimox, which lowers blood lipids by suppressing triglyceride lipase activity, can restore normal glycemia in insulin-deficient RIP-CreΔLEPR mice, suggesting that excess circulating lipids are a driving-force of hyperglycemia in these mice. Collectively, our data demonstrate that LEPRs in RIP-Cre25Mgn neurons significantly contribute to glucose-lowering effects of leptin in an insulin-independent manner by improving dyslipidemia.
Collapse
Affiliation(s)
- Ashish Singha
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Scotlynn Farmer
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Darleen Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Teppei Fujikawa
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, TX, United States
- Division of Hypothalamic Research Center, Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
6
|
Zouhar P, Rakipovski G, Bokhari MH, Busby O, Paulsson JF, Conde-Frieboes KW, Fels JJ, Raun K, Andersen B, Cannon B, Nedergaard J. UCP1-independent glucose-lowering effect of leptin in type 1 diabetes: only in conditions of hypoleptinemia. Am J Physiol Endocrinol Metab 2020; 318:E72-E86. [PMID: 31743040 PMCID: PMC6985793 DOI: 10.1152/ajpendo.00253.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possibility to use leptin therapeutically for lowering glucose levels in patients with type 1 diabetes has attracted interest. However, earlier animal models of type 1 diabetes are severely catabolic with very low endogenous leptin levels, unlike most patients with diabetes. Here, we aim to test glucose-lowering effects of leptin in novel, more human-like murine models. We examined the glucose-lowering potential of leptin in diabetic models of two types: streptozotocin-treated mice and mice treated with the insulin receptor antagonist S961. To prevent hypoleptinemia, we used combinations of thermoneutral temperature and high-fat feeding. Leptin fully normalized hyperglycemia in standard chow-fed streptozotocin-treated diabetic mice. However, more humanized physiological conditions (high-fat diets or thermoneutral temperatures) that increased adiposity - and thus also leptin levels - in the diabetic mice abrogated the effects of leptin, i.e., the mice developed leptin resistance also in this respect. The glucose-lowering effect of leptin was not dependent on the presence of the uncoupling protein-1 and was not associated with alterations in plasma insulin, insulin-like growth factor 1, food intake or corticosterone but fully correlated with decreased plasma glucagon levels and gluconeogenesis. An important implication of these observations is that the therapeutic potential of leptin as an additional treatment in patients with type 1 diabetes is probably limited. This is because such patients are treated with insulin and do not display low leptin levels. Thus, the potential for a glucose-lowering effect of leptin would already have been attained with standard insulin therapy, and further effects on blood glucose level through additional leptin cannot be anticipated.
Collapse
Affiliation(s)
- Petr Zouhar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Adipose Tissue Biology, Institute of Physiology CAS, Prague, the Czech Republic
| | | | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Oliver Busby
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | | - Kirsten Raun
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Methionine Restriction Partly Recapitulates the Sympathetically Mediated Enhanced Energy Expenditure Induced by Total Amino Acid Restriction in Rats. Nutrients 2019; 11:nu11030707. [PMID: 30917593 PMCID: PMC6470753 DOI: 10.3390/nu11030707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Total amino acid (AA) restriction promotes hyperphagia and energy expenditure. We determined whether (i) methionine restriction mimics the effects of total AA restriction, (ii) methionine supplementation attenuates these responses, and iii) sympathetic signaling mediates such effects. Rats were injected with either vehicle (V) or 6-hydroxydopamine (S) to induce chemical sympathectomy, and then randomized to four diets: 16% AA (16AA), 5% AA (5AA), 16% AA-methionine (16AA-Met), and 5% AA+methionine (5AA+Met). Propranolol or ondansetron were injected to examine the role of sympathetic and serotonergic signaling, respectively. 5AA, 5AA+Met, and 16AA-Met increased the food conversion rate for 1–3 weeks in the V and S groups, and increased mean energy expenditure in V group,; the magnitude of these changes was attenuated in the S group. Propranolol decreased the energy expenditure of V16AA, V5AA, and V5AA+Met and of S5AA, S5AA+Met, and S16AA-Met, whereas ondansetron decreased the energy expenditure in only the S groups. Compared to 16AA, the other V groups had reduced body weights from days 7–11 onwards and decreased lean masses throughout the study and the other S groups had decreased body weights and lean masses from day 14 onwards. Total AA restriction enhanced the energy expenditure and reduced the weight and lean mass; these effects were partly recapitulated by methionine restriction and were sympathetically mediated.
Collapse
|
8
|
Neumann UH, Kwon MM, Baker RK, Kieffer TJ. Leptin contributes to the beneficial effects of insulin treatment in streptozotocin-diabetic male mice. Am J Physiol Endocrinol Metab 2018; 315:E1264-E1273. [PMID: 30300012 DOI: 10.1152/ajpendo.00159.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was long thought that the only hormone capable of reversing the catabolic consequences of diabetes was insulin. However, various studies have demonstrated that the adipocyte-derived hormone leptin can robustly lower blood glucose levels in rodent models of insulin-deficient diabetes. In addition, it has been suggested that some of the metabolic manifestations of insulin-deficient diabetes are due to hypoleptinemia as opposed to hypoinsulinemia. Because insulin therapy increases leptin levels, we sought to investigate the contribution of leptin to the beneficial effects of insulin therapy. To do this, we tested insulin therapy in streptozotocin (STZ) diabetic mice that were either on an ob/ ob background or that were given a leptin antagonist to determine if blocking leptin action would blunt the glucose-lowering effects of insulin therapy. We found that STZ diabetic ob/ ob mice have a diminished blood glucose-lowering effect in response to insulin therapy compared with STZ diabetic controls and exhibited more severe weight loss post-STZ injection. In addition, STZ diabetic mice administered a leptin antagonist through daily injection or plasmid expression respond less robustly to insulin therapy as assessed by both fasting blood glucose levels and blood glucose levels during an oral glucose tolerance test. However, leptin antagonism did not prevent the insulin-induced reduction in β-hydroxybutyrate and triglyceride levels. Therefore, we conclude that elevated leptin levels can contribute to the glucose-lowering effect of insulin therapy in insulin-deficient diabetes.
Collapse
Affiliation(s)
- Ursula H Neumann
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| | - Michelle M Kwon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
- Department of Surgery, Life Sciences Institute, University of British Columbia , Vancouver, British Columbia , Canada
| |
Collapse
|
9
|
Neumann UH, Ho JSS, Chen S, Tam YYC, Cullis PR, Kieffer TJ. Lipid nanoparticle delivery of glucagon receptor siRNA improves glucose homeostasis in mouse models of diabetes. Mol Metab 2017; 6:1161-1172. [PMID: 29031717 PMCID: PMC5641600 DOI: 10.1016/j.molmet.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Objective Hyperglucagonemia is present in many forms of diabetes and contributes to hyperglycemia, and glucagon suppression can ameliorate diabetes in mice. Leptin, a glucagon suppressor, can also reverse diabetes in rodents. Lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) effectively targets the liver and is in clinical trials for the treatment of various diseases. We compared the effectiveness of glucagon receptor (Gcgr)-siRNA delivered via LNPs to leptin in two mouse models of diabetes. Methods Gcgr siRNA encapsulated into LNPs or leptin was administered to mice with diabetes due to injection of the β-cell toxin streptozotocin (STZ) alone or combined with high fat diet (HFD/STZ). Results In STZ-diabetic mice, a single injection of Gcgr siRNA lowered blood glucose levels for 3 weeks, improved glucose tolerance, and normalized plasma ketones levels, while leptin therapy normalized blood glucose levels, oral glucose tolerance, and plasma ketones, and suppressed lipid metabolism. In contrast, in HFD/STZ-diabetic mice, Gcgr siRNA lowered blood glucose levels for 2 months, improved oral glucose tolerance, and reduced HbA1c, while leptin had no beneficial effects. Conclusions While leptin may be more effective than Gcgr siRNA at normalizing both glucose and lipid metabolism in STZ diabetes, Gcgr siRNA is more effective at reducing blood glucose levels in HFD/STZ diabetes. Gcgr siRNA improves glucose metabolism but not lipid metabolism in STZ diabetic mice. Leptin improves both glucose and lipid metabolism in STZ diabetic mice. Gcgr siRNA improves glucose metabolism in HFD/STZ diabetic mice. Leptin does not improve glucose metabolism in HFD/STZ diabetic mice.
Collapse
Affiliation(s)
- Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Jessica S S Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
10
|
D'souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab 2017; 6:1052-1065. [PMID: 28951828 PMCID: PMC5605734 DOI: 10.1016/j.molmet.2017.04.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background The hormone leptin is an important regulator of metabolic homeostasis, able to inhibit food intake and increase energy expenditure. Leptin can also independently lower blood glucose levels, particularly in hyperglycemic models of leptin or insulin deficiency. Despite significant efforts and relevance to diabetes, the mechanisms by which leptin acts to regulate blood glucose levels are not fully understood. Scope of review Here we assess literature relevant to the glucose lowering effects of leptin. Leptin receptors are widely expressed in multiple cell types, and we describe both peripheral and central effects of leptin that may be involved in lowering blood glucose. In addition, we summarize the potential clinical application of leptin in regulating glucose homeostasis. Major conclusions Leptin exerts a plethora of metabolic effects on various tissues including suppressing production of glucagon and corticosterone, increasing glucose uptake, and inhibiting hepatic glucose output. A more in-depth understanding of the mechanisms of the glucose-lowering actions of leptin may reveal new strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Anna M D'souza
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Surgery, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|