1
|
Rauckhorst AJ, Sheldon RD, Pape DJ, Ahmed A, Falls-Hubert KC, Merrill RA, Brown RF, Deshmukh K, Vallim TA, Deja S, Burgess SC, Taylor EB. A hierarchical hepatic de novo lipogenesis substrate supply network utilizing pyruvate, acetate, and ketones. Cell Metab 2025; 37:255-273.e6. [PMID: 39471817 PMCID: PMC11856365 DOI: 10.1016/j.cmet.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
Hepatic de novo lipogenesis (DNL) is a fundamental physiologic process that is often pathogenically elevated in metabolic disease. Treatment is limited by incomplete understanding of the metabolic pathways supplying cytosolic acetyl-CoA, the obligate precursor to DNL, including their interactions and proportional contributions. Here, we combined extensive 13C tracing with liver-specific knockout of key mitochondrial and cytosolic proteins mediating cytosolic acetyl-CoA production. We show that the mitochondrial pyruvate carrier (MPC) and ATP-citrate lyase (ACLY) gate the major hepatic lipogenic acetyl-CoA production pathway, operating in parallel with acetyl-CoA synthetase 2 (ACSS2). Given persistent DNL after mitochondrial citrate carrier (CiC) and ACSS2 double knockout, we tested the contribution of exogenous and leucine-derived acetoacetate to acetoacetyl-CoA synthetase (AACS)-dependent DNL. CiC knockout increased acetoacetate-supplied hepatic acetyl-CoA production and DNL, indicating that ketones function as mitochondrial-citrate reciprocal DNL precursors. By delineating a mitochondrial-cytosolic DNL substrate supply network, these findings may inform strategies to therapeutically modulate DNL.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adnan Ahmed
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kelly C Falls-Hubert
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Reid F Brown
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kshitij Deshmukh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Thomas A Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
2
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024; 16:2678-2698. [PMID: 39468303 PMCID: PMC11554794 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Pape DJ, Falls-Hubert KC, Merrill RA, Ahmed A, Qian Q, McGivney GR, Sobieralski P, Rauckhorst AJ, Yang L, Taylor EB. The mitochondrial dicarboxylate carrier mediates in vivo hepatic gluconeogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612761. [PMID: 39314408 PMCID: PMC11419125 DOI: 10.1101/2024.09.12.612761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hepatic gluconeogenesis (GNG) is essential for maintaining euglycemia during prolonged fasting. However, GNG becomes pathologically elevated and drives chronic hyperglycemia in type 2 diabetes (T2D). Lactate/pyruvate is a major GNG substrate known to be imported into mitochondria for GNG. Yet, the subsequent mitochondrial carbon export mechanisms required to supply the extra-mitochondrial canonical GNG pathway have not been genetically delineated. Here, we evaluated the role of the mitochondrial dicarboxylate carrier (DiC) in mediating GNG from lactate/pyruvate. We generated liver-specific DiC knockout (DiC LivKO) mice. During lactate/pyruvate tolerance tests, DiC LivKO decreased plasma glucose excursion and 13C-lactate/-pyruvate flux into hepatic and plasma glucose. In a Western diet (WD) feeding model of T2D, acute DiC LivKO after induction of obesity decreased lactate/pyruvate-driven GNG, hyperglycemia, and hyperinsulinemia. Our results show that mitochondrial carbon export through the DiC mediates GNG and that the DiC contributes to impaired glucose homeostasis in a mouse model of T2D.
Collapse
Affiliation(s)
- Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kelly C Falls-Hubert
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adnan Ahmed
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Gavin R McGivney
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Paulina Sobieralski
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ling Yang
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| |
Collapse
|
4
|
Hadfield CM, Walker JK, Arnatt C, McCommis KS. Computational structural prediction and chemical inhibition of the human mitochondrial pyruvate carrier protein heterodimer complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594520. [PMID: 39071381 PMCID: PMC11275797 DOI: 10.1101/2024.05.16.594520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mitochondrial pyruvate carrier (MPC) plays a role in numerous diseases including neurodegeneration, metabolically dependent cancers, and the development of insulin resistance. Several previous studies in genetic mouse models or with existing inhibitors suggest that inhibition of the MPC could be used as a viable therapeutic strategy in these diseases. However, the MPC's structure is unknown, making it difficult to screen for and develop therapeutically viable inhibitors. Currently known MPC inhibitors would make for poor drugs due to their poor pharmacokinetic properties, or in the case of the thiazolidinediones (TZDs), off-target specificity for peroxisome-proliferator activated receptor gamma (PPARγ) leads to unwanted side effects. In this study, we develop several structural models for the MPC heterodimer complex and investigate the chemical interactions required for the binding of these known inhibitors to MPC and PPARγ. Based on these models, the MPC most likely takes on outward-facing (OF) and inward-facing (IF) conformations during pyruvate transport, and inhibitors likely plug the carrier to inhibit pyruvate transport. Although some chemical interactions are similar between MPC and PPARγ binding, there is likely enough difference to reduce PPARγ specificity for future development of novel, more specific MPC inhibitors.
Collapse
Affiliation(s)
- Christy M. Hadfield
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| | - John K. Walker
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine
- Department of Chemistry, Saint Louis University
| | - Chris Arnatt
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine
- Department of Chemistry, Saint Louis University
| | - Kyle S. McCommis
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| |
Collapse
|
5
|
Rauckhorst AJ, Vasquez Martinez G, Mayoral Andrade G, Wen H, Kim JY, Simoni A, Robles-Planells C, Mapuskar KA, Rastogi P, Steinbach EJ, McCormick ML, Allen BG, Pabla NS, Jackson AR, Coleman MC, Spitz DR, Taylor EB, Zepeda-Orozco D. Tubular mitochondrial pyruvate carrier disruption elicits redox adaptations that protect from acute kidney injury. Mol Metab 2024; 79:101849. [PMID: 38056691 PMCID: PMC10733108 DOI: 10.1016/j.molmet.2023.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Although tubular metabolism changes markedly following acute kidney injury (AKI), it remains unclear which metabolic alterations are beneficial or detrimental. By analyzing large-scale, publicly available datasets, we observed that AKI consistently leads to downregulation of the mitochondrial pyruvate carrier (MPC). This investigation aimed to understand the contribution of the tubular MPC to kidney function, metabolism, and acute injury severity. METHODS We generated tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice and employed renal function tests, in vivo renal 13C-glucose tracing, mechanistic enzyme activity assays, and tests of injury and survival in an established rhabdomyolysis model of AKI. RESULTS MPC TubKO mice retained normal kidney function, displayed unchanged markers of kidney injury, but exhibited coordinately increased enzyme activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, compared to WT control mice, MPC TubKO mice showed increased glycolysis, decreased kidney injury and oxidative stress markers, and strikingly increased survival. CONCLUSIONS Our findings suggest that decreased renal tubular mitochondrial pyruvate uptake hormetically upregulates oxidant defense systems before AKI and is a beneficial adaptive response after rhabdomyolysis-induced AKI. This raises the possibility of therapeutically modulating the MPC to attenuate AKI severity.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Hsiang Wen
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Simoni
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Claudia Robles-Planells
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley R Jackson
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA.
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Gao R, Li Y, Xu Z, Zhang F, Xu J, Hu Y, Yin J, Yang K, Sun L, Wang Q, He X, Huang K. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology 2023; 78:1800-1815. [PMID: 36651176 DOI: 10.1097/hep.0000000000000279] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS NAFLD has become a major metabolic disease worldwide. A few studies have reported the potential relationship between mitochondrial pyruvate carrier 1 (MPC1) and inflammation, fibrosis, and insulin sensitivity in obese or NASH mouse models. However, the impact of MPC1 on NAFLD-related liver lipid metabolism and its role in the NAFLD progression require further investigation. APPROACH AND RESULTS MPC1 expression was measured in liver tissues from normal controls and patients with NAFLD. We characterized the metabolic phenotypes and expression of genes involved in hepatic lipid accumulation in MPC1 systemic heterozygous knockout (MPC1 +/- ) mice. Hepatic protein lactylation was detected using Tandem Mass Tags proteomics and verified by the overexpression of lactylation mutants in cells. Finally, the effect of MPC1 inhibition on liver inflammation was examined in mice and AML-12 cells. Here, we found that MPC1 expression was positively correlated to liver lipid deposition in patients with NAFLD. MPC1 +/- mice fed with high-fat diet had reduced hepatic lipid accumulation but no change in the expression of lipid synthesis-related genes. MPC1 knockout affected the lactylation of several proteins, especially fatty acid synthase, through the regulation of lactate levels in hepatocytes. Lactylation at the K673 site of fatty acid synthase inhibited fatty acid synthase activity, which mediated the downregulation of liver lipid accumulation by MPC1. Moreover, although MPC1 knockout caused lactate accumulation, inflammation level was controlled because of mitochondrial protection and macrophage polarization. CONCLUSIONS In NAFLD, MPC1 levels are positively correlated with hepatic lipid deposition; the enhanced lactylation at fatty acid synthase K673 site may be a downstream mechanism.
Collapse
Affiliation(s)
- Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhimeng Xu
- MOE Key Laboratory of Bioinformatics, Department of Automation, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Jingya Yin
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| |
Collapse
|
7
|
Yiew NK, Deja S, Ferguson D, Cho K, Jarasvaraparn C, Jacome-Sosa M, Lutkewitte AJ, Mukherjee S, Fu X, Singer JM, Patti GJ, Burgess SC, Finck BN. Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice. iScience 2023; 26:108196. [PMID: 37942005 PMCID: PMC10628847 DOI: 10.1016/j.isci.2023.108196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice.
Collapse
Affiliation(s)
- Nicole K.H. Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chaowapong Jarasvaraparn
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Miriam Jacome-Sosa
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Jason M. Singer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gary J. Patti
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shawn C. Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Yiew NKH, Vazquez JH, Martino MR, Kennon-McGill S, Price JR, Allard FD, Yee EU, Layman AJ, James LP, McCommis KS, Finck BN, McGill MR. Hepatic pyruvate and alanine metabolism are critical and complementary for maintenance of antioxidant capacity and resistance to oxidative insult. Mol Metab 2023; 77:101808. [PMID: 37716594 PMCID: PMC10561123 DOI: 10.1016/j.molmet.2023.101808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVE Mitochondrial pyruvate is a critical intermediary metabolite in gluconeogenesis, lipogenesis, and NADH production. As a result, the mitochondrial pyruvate carrier (MPC) complex has emerged as a promising therapeutic target in metabolic diseases. Clinical trials are currently underway. However, recent in vitro data indicate that MPC inhibition diverts glutamine/glutamate away from glutathione synthesis and toward glutaminolysis to compensate for loss of pyruvate oxidation, possibly sensitizing cells to oxidative insult. Here, we explored this in vivo using the clinically relevant acetaminophen (APAP) overdose model of acute liver injury, which is driven by oxidative stress. METHODS We used pharmacological and genetic approaches to inhibit MPC2 and alanine aminotransferase 2 (ALT2), individually and concomitantly, in mice and cell culture models and determined the effects on APAP hepatotoxicity. RESULTS We found that MPC inhibition sensitizes the liver to APAP-induced injury in vivo only with concomitant loss of alanine aminotransferase 2 (ALT2). Pharmacological and genetic manipulation of neither MPC2 nor ALT2 alone affected APAP toxicity, but liver-specific double knockout (DKO) significantly worsened APAP-induced liver damage. Further investigation indicated that DKO impaired glutathione synthesis and increased urea cycle flux, consistent with increased glutaminolysis, and these results were reproducible in vitro. Finally, induction of ALT2 and post-treatment with dichloroacetate both reduced APAP-induced liver injury, suggesting new therapeutic avenues. CONCLUSIONS Increased susceptibility to APAP toxicity requires loss of both the MPC and ALT2 in vivo, indicating that MPC inhibition alone is insufficient to disrupt redox balance. Furthermore, the results from ALT2 induction and dichloroacetate in the APAP model suggest new metabolic approaches to the treatment of liver damage.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel H Vazquez
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael R Martino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefanie Kennon-McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jake R Price
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexander J Layman
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura P James
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Yiew NK, Deja S, Ferguson D, Cho K, Jarasvaraparn C, Jacome-Sosa M, Lutkewitte AJ, Mukherjee S, Fu X, Singer JM, Patti GJ, Burgess SC, Finck BN. Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and glycerol-mediated gluconeogenesis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528992. [PMID: 36824879 PMCID: PMC9949129 DOI: 10.1101/2023.02.17.528992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by liver MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway essentially reversing glycolysis and an indirect mitochondrial pathway requiring the MPC. MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites but not into newly synthesized glucose. However, suppression of glycerol metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice. Thus, glucose production by kidney and intestine may compensate for MPC deficiency in hepatocytes.
Collapse
Affiliation(s)
- Nicole K.H. Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Kevin Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Chaowapong Jarasvaraparn
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Miriam Jacome-Sosa
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Jason M. Singer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Gary J. Patti
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Shawn C. Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| |
Collapse
|
10
|
Tavoulari S, Sichrovsky M, Kunji ERS. Fifty years of the mitochondrial pyruvate carrier: New insights into its structure, function, and inhibition. Acta Physiol (Oxf) 2023; 238:e14016. [PMID: 37366179 PMCID: PMC10909473 DOI: 10.1111/apha.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The mitochondrial pyruvate carrier (MPC) resides in the mitochondrial inner membrane, where it links cytosolic and mitochondrial metabolism by transporting pyruvate produced in glycolysis into the mitochondrial matrix. Due to its central metabolic role, it has been proposed as a potential drug target for diabetes, non-alcoholic fatty liver disease, neurodegeneration, and cancers relying on mitochondrial metabolism. Little is known about the structure and mechanism of MPC, as the proteins involved were only identified a decade ago and technical difficulties concerning their purification and stability have hindered progress in functional and structural analyses. The functional unit of MPC is a hetero-dimer comprising two small homologous membrane proteins, MPC1/MPC2 in humans, with the alternative complex MPC1L/MPC2 forming in the testis, but MPC proteins are found throughout the tree of life. The predicted topology of each protomer consists of an amphipathic helix followed by three transmembrane helices. An increasing number of inhibitors are being identified, expanding MPC pharmacology and providing insights into the inhibitory mechanism. Here, we provide critical insights on the composition, structure, and function of the complex and we summarize the different classes of small molecule inhibitors and their potential in therapeutics.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Maximilian Sichrovsky
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
11
|
Kurmaeva D, Ye Y, Bakhytkyzy I, Aru V, Dalimova D, Turdikulova S, Dragsted LO, Engelsen SB, Khakimov B. Associations between sheep meat intake frequency and blood plasma levels of metabolites and lipoproteins in healthy Uzbek adults. Metabolomics 2023; 19:46. [PMID: 37099187 PMCID: PMC10133350 DOI: 10.1007/s11306-023-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/27/2023]
Abstract
INTRODUCTION Uzbekistan is one of the countries with the highest number of diet-related chronic diseases, which is believed to be associated with high animal fat intake. Sheep meat is high in fats (~ 5% in muscle), including saturated and monounsaturated fatty acids, and it contains nearly twice the higher amounts of n-3 polyunsaturated fatty acids and conjugated linoleic acids compared to beef. Nevertheless, sheep meat is considered health promoting by the locals in Uzbekistan and it accounts for around 1/3 of red meat intake in the country. OBJECTIVES The aim of this study was to apply a metabolomics approach to investigate if sheep meat intake frequency (SMIF) is associated with alterations in fasting blood plasma metabolites and lipoproteins in healthy Uzbek adults. METHODS The study included 263 subjects, 149 females and 114 males. For each subject a food intake questionnaire, including SMIF, was recorded and fasting blood plasma samples were collected for metabolomics. Blood plasma metabolites and lipoprotein concentrations were determined using 1H NMR spectroscopy. RESULTS AND CONCLUSION The results showed that SMIF was confounded by nationality, sex, body mass index (BMI), age, intake frequency of total meat and fish in ascending order (p < 0.01). Multivariate and univariate data analyses showed differences in the levels of plasma metabolites and lipoproteins with respect to SMIF. The effect of SMIF after statistical adjustment by nationality, sex, BMI, age, intake frequency of total meat and fish decreased but remained significant. Pyruvic acid, phenylalanine, ornithine, and acetic acid remained significantly lower in the high SMIF group, whereas choline, asparagine, and dimethylglycine showed an increasing trend. Levels of cholesterol, apolipoprotein A1, as well as low- and high-density lipoprotein subfractions all displayed a decreasing trend with increased SMIF although the difference were not significant after FDR correction.
Collapse
Affiliation(s)
- Diyora Kurmaeva
- Centre for Advanced Technologies, Talabalar Shaharchasi 3A, 100041, Tashkent, Uzbekistan
| | - Yongxin Ye
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Inal Bakhytkyzy
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Dilbar Dalimova
- Centre for Advanced Technologies, Talabalar Shaharchasi 3A, 100041, Tashkent, Uzbekistan
| | - Shahlo Turdikulova
- Centre for Advanced Technologies, Talabalar Shaharchasi 3A, 100041, Tashkent, Uzbekistan
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
12
|
Amorim R, Magalhães CC, Borges F, Oliveira PJ, Teixeira J. From Non-Alcoholic Fatty Liver to Hepatocellular Carcinoma: A Story of (Mal)Adapted Mitochondria. BIOLOGY 2023; 12:biology12040595. [PMID: 37106795 PMCID: PMC10135755 DOI: 10.3390/biology12040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global pandemic affecting 25% of the world's population and is a serious health and economic concern worldwide. NAFLD is mainly the result of unhealthy dietary habits combined with sedentary lifestyle, although some genetic contributions to NAFLD have been documented. NAFLD is characterized by the excessive accumulation of triglycerides (TGs) in hepatocytes and encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL) to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although the molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood, metabolic-dysfunction-associated fatty liver disease is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify mitochondria formation through biogenesis or the opposite processes of fission and fusion and fragmentation. In NAFL, simple steatosis can be seen as an adaptive response to storing lipotoxic free fatty acids (FFAs) as inert TGs due to chronic perturbation in lipid metabolism and lipotoxic insults. However, when liver hepatocytes' adaptive mechanisms are overburdened, lipotoxicity occurs, contributing to reactive oxygen species (ROS) formation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Impaired mitochondrial fatty acid oxidation, reduction in mitochondrial quality, and disrupted mitochondrial function are associated with a decrease in the energy levels and impaired redox balance and negatively affect mitochondria hepatocyte tolerance towards damaging hits. However, the sequence of events underlying mitochondrial failure from steatosis to hepatocarcinoma is still yet to be fully clarified. This review provides an overview of our understanding of mitochondrial adaptation in initial NAFLD stages and highlights how hepatic mitochondrial dysfunction and heterogeneity contribute to disease pathophysiology progression, from steatosis to hepatocellular carcinoma. Improving our understanding of different aspects of hepatocytes' mitochondrial physiology in the context of disease development and progression is crucial to improving diagnosis, management, and therapy of NAFLD/NASH.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carina C Magalhães
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
13
|
Ferguson D, Eichler SJ, Yiew NKH, Colca JR, Cho K, Patti GJ, Shew TM, Lutkewitte AJ, Mukherjee S, McCommis KS, Niemi NM, Finck BN. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Mol Metab 2023; 70:101694. [PMID: 36801448 PMCID: PMC9989691 DOI: 10.1016/j.molmet.2023.101694] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE The mitochondrial pyruvate carrier (MPC) has emerged as a therapeutic target for treating insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). We evaluated whether MPC inhibitors (MPCi) might correct impairments in branched chain amino acid (BCAA) catabolism, which are predictive of developing diabetes and NASH. METHODS Circulating BCAA concentrations were measured in people with NASH and type 2 diabetes, who participated in a recent randomized, placebo-controlled Phase IIB clinical trial to test the efficacy and safety of the MPCi MSDC-0602K (EMMINENCE; NCT02784444). In this 52-week trial, patients were randomly assigned to placebo (n = 94) or 250 mg MSDC-0602K (n = 101). Human hepatoma cell lines and mouse primary hepatocytes were used to test the direct effects of various MPCi on BCAA catabolism in vitro. Lastly, we investigated how hepatocyte-specific deletion of MPC2 affects BCAA metabolism in the liver of obese mice and MSDC-0602K treatment of Zucker diabetic fatty (ZDF) rats. RESULTS In patients with NASH, MSDC-0602K treatment, which led to marked improvements in insulin sensitivity and diabetes, had decreased plasma concentrations of BCAAs compared to baseline while placebo had no effect. The rate-limiting enzyme in BCAA catabolism is the mitochondrial branched chain ketoacid dehydrogenase (BCKDH), which is deactivated by phosphorylation. In multiple human hepatoma cell lines, MPCi markedly reduced BCKDH phosphorylation and stimulated branched chain keto acid catabolism; an effect that required the BCKDH phosphatase PPM1K. Mechanistically, the effects of MPCi were linked to activation of the energy sensing AMP-dependent protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) kinase signaling cascades in vitro. BCKDH phosphorylation was reduced in liver of obese, hepatocyte-specific MPC2 knockout (LS-Mpc2-/-) mice compared to wild-type controls concomitant with activation of mTOR signaling in vivo. Finally, while MSDC-0602K treatment improved glucose homeostasis and increased the concentrations of some BCAA metabolites in ZDF rats, it did not lower plasma BCAA concentrations. CONCLUSIONS These data demonstrate novel cross talk between mitochondrial pyruvate and BCAA metabolism and suggest that MPC inhibition leads to lower plasma BCAA concentrations and BCKDH phosphorylation by activating the mTOR axis. However, the effects of MPCi on glucose homeostasis may be separable from its effects on BCAA concentrations.
Collapse
Affiliation(s)
- Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Sophie J Eichler
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Nicole K H Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Jerry R Colca
- Department of Biomedical Sciences, Western Michigan University School of Medicine, Kalamazoo, MI, Cirius Therapeutics, Kalamazoo, MI, United States
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, United States; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, United States
| | - Gary J Patti
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States; Department of Chemistry, Washington University in St. Louis, United States; Siteman Cancer Center, Washington University in St. Louis, United States; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, United States
| | - Trevor M Shew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Andrew J Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, United States
| | - Natalie M Niemi
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, United States
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States.
| |
Collapse
|
14
|
Yook JS, Taxin ZH, Yuan B, Oikawa S, Auger C, Mutlu B, Puigserver P, Hui S, Kajimura S. The SLC25A47 locus controls gluconeogenesis and energy expenditure. Proc Natl Acad Sci U S A 2023; 120:e2216810120. [PMID: 36812201 PMCID: PMC9992842 DOI: 10.1073/pnas.2216810120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria provide essential metabolites and adenosine triphosphate (ATP) for the regulation of energy homeostasis. For instance, liver mitochondria are a vital source of gluconeogenic precursors under a fasted state. However, the regulatory mechanisms at the level of mitochondrial membrane transport are not fully understood. Here, we report that a liver-specific mitochondrial inner-membrane carrier SLC25A47 is required for hepatic gluconeogenesis and energy homeostasis. Genome-wide association studies found significant associations between SLC25A47 and fasting glucose, HbA1c, and cholesterol levels in humans. In mice, we demonstrated that liver-specific depletion of SLC25A47 impaired hepatic gluconeogenesis selectively from lactate, while significantly enhancing whole-body energy expenditure and the hepatic expression of FGF21. These metabolic changes were not a consequence of general liver dysfunction because acute SLC25A47 depletion in adult mice was sufficient to enhance hepatic FGF21 production, pyruvate tolerance, and insulin tolerance independent of liver damage and mitochondrial dysfunction. Mechanistically, SLC25A47 depletion leads to impaired hepatic pyruvate flux and malate accumulation in the mitochondria, thereby restricting hepatic gluconeogenesis. Together, the present study identified a crucial node in the liver mitochondria that regulates fasting-induced gluconeogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Zachary H. Taxin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Beste Mutlu
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
15
|
Harrison SA, Thang C, Bolze S, Dewitt S, Hallakou-Bozec S, Dubourg J, Bedossa P, Cusi K, Ratziu V, Grouin JM, Moller DE, Fouqueray P. Evaluation of PXL065 - deuterium-stabilized (R)-pioglitazone in patients with NASH: A phase II randomized placebo-controlled trial (DESTINY-1). J Hepatol 2023; 78:914-925. [PMID: 36804402 DOI: 10.1016/j.jhep.2023.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Pioglitazone (Pio) is efficacious in NASH, but its utility is limited by PPARγ-driven side effects. Pio is a mixture of two enantiomers (R, S). PXL065, deuterium-stabilized R-Pio, lacks PPARγ activity but retains non-genomic activity. We tested the hypothesis that PXL065 would have similar efficacy but a better safety profile than Pio in patients with NASH. METHODS Patients (≥8% liver fat, NAFLD activity score [NAS] ≥4, F1-F3) received daily doses of PXL065 (7.5, 15, 22.5 mg) or placebo 1:1:1:1 for 36 weeks. The primary endpoint was relative % change in liver fat content (LFC) on MRI-proton density fat fraction; liver histology, non-invasive tests, safety-tolerability, and pharmacokinetics were also assessed. RESULTS One hundred and seventeen patients were evaluated. All PXL065 groups met the primary endpoint (-21 to (-25% LFC, p = 0.008-0.02 vs. placebo); 40% (22.5 mg) achieved a ≥30% LFC reduction. Favorable trends in non-invasive tests including reductions in PIIINP (p = 0.02, 22.5 mg) and NAFLD fibrosis score (p = 0.04, 22.5 mg) were observed. On histology (n = 92), a ≥1 stage fibrosis improvement occurred in 40% (7.5 mg), 50% (15 mg, p = 0.06), and 35% (22.5 mg) vs. 17% for placebo; up to 50% of PXL065-treated patients achieved a ≥2 point NAS improvement without fibrosis worsening vs. 30% with placebo. Metabolic improvements included: HbA1c (-0.41% p = 0.003) and insulin sensitivity (HOMA-IR, p = 0.04; Adipo-IR, p = 0.002). Adiponectin increased (+114%, 22.5 mg, p <0.0001) vs. placebo. There was no dose-dependent effect on body weight or PXL065-related peripheral oedema signal. Overall, PXL065 was safe and well tolerated. Pharmacokinetics confirmed dose-proportional and higher steady state R- vs. S-Pio exposure. IMPACT AND IMPLICATIONS Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease. CONCLUSIONS PXL065 is a novel molecule which retains an efficacy profile in NASH similar to Pio with reduced potential for PPARγ-driven side effects. A pivotal clinical trial is warranted to confirm the histological benefits reported herein. IMPACT AND IMPLICATIONS Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Vlad Ratziu
- Sorbonne Université, ICAN, Hospital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France
| | | | | | | |
Collapse
|
16
|
Lipid-droplet associated mitochondria promote fatty-acid oxidation through a distinct bioenergetic pattern in male Wistar rats. Nat Commun 2023; 14:766. [PMID: 36765117 PMCID: PMC9918515 DOI: 10.1038/s41467-023-36432-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Mitochondria empower the liver to regulate lipid homeostasis by enabling fatty acid oxidation during starvation and lipogenesis during nutrient-rich conditions. It is unknown if mitochondria can seamlessly regulate these two distinct processes or if two discrete populations of mitochondria achieve these two functions in the liver. For the first time in the liver, we report the isolation of two distinct populations of mitochondria from male Wistar rats on an ad-libitum diet: cytoplasmic mitochondria and lipid droplet-associated mitochondria. Our studies show that while lipid droplet mitochondria exhibit higher fatty acid oxidation and are marked by enhanced levels of pACC2, MFN2, and CPT1 activity, cytoplasmic mitochondria are associated with higher respiration capacity. Notably, lipid droplet-associated mitochondria isolated from a non-alcoholic fatty liver disease (NAFLD) rat model are compromised for fatty acid oxidation. We demonstrate the importance of functional segregation of mitochondria as any aberration in lipid droplet-associated mitochondria may lead to NAFLD.
Collapse
|
17
|
McCommis KS, Finck BN. The Hepatic Mitochondrial Pyruvate Carrier as a Regulator of Systemic Metabolism and a Therapeutic Target for Treating Metabolic Disease. Biomolecules 2023; 13:261. [PMID: 36830630 PMCID: PMC9953669 DOI: 10.3390/biom13020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Pyruvate sits at an important metabolic crossroads of intermediary metabolism. As a product of glycolysis in the cytosol, it must be transported into the mitochondrial matrix for the energy stored in this nutrient to be fully harnessed to generate ATP or to become the building block of new biomolecules. Given the requirement for mitochondrial import, it is not surprising that the mitochondrial pyruvate carrier (MPC) has emerged as a target for therapeutic intervention in a variety of diseases characterized by altered mitochondrial and intermediary metabolism. In this review, we focus on the role of the MPC and related metabolic pathways in the liver in regulating hepatic and systemic energy metabolism and summarize the current state of targeting this pathway to treat diseases of the liver. Available evidence suggests that inhibiting the MPC in hepatocytes and other cells of the liver produces a variety of beneficial effects for treating type 2 diabetes and nonalcoholic steatohepatitis. We also highlight areas where our understanding is incomplete regarding the pleiotropic effects of MPC inhibition.
Collapse
Affiliation(s)
- Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Brian N. Finck
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
18
|
Rauckhorst AJ, Martinez GV, Andrade GM, Wen H, Kim JY, Simoni A, Mapuskar KA, Rastogi P, Steinbach EJ, McCormick ML, Allen BG, Pabla NS, Jackson AR, Coleman MC, Spitz DR, Taylor EB, Zepeda-Orozco D. Tubular Mitochondrial Pyruvate Carrier Disruption Elicits Redox Adaptations that Protect from Acute Kidney Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526492. [PMID: 36778297 PMCID: PMC9915694 DOI: 10.1101/2023.01.31.526492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Tubular metabolism changes markedly following acute kidney injury (AKI), but which changes are adaptive versus maladaptive remain poorly understood. In publicly available data sets, we noticed a consistent downregulation of the mitochondrial pyruvate carrier (MPC) after AKI, which we experimentally confirmed. To test the functional consequences of MPC downregulation, we generated novel tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice. 13C-glucose tracing, steady-state metabolomic profiling, and enzymatic activity assays revealed that MPC TubKO coordinately increased activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, MPC TubKO decreased markers of kidney injury and oxidative damage and strikingly increased survival. Our findings suggest that decreased mitochondrial pyruvate uptake is a central adaptive response following AKI and raise the possibility of therapeutically modulating the MPC to attenuate AKI severity.
Collapse
Affiliation(s)
- Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Hsiang Wen
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Simoni
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael L. McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley R. Jackson
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mitchell C. Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Rauckhorst AJ, Borcherding N, Pape DJ, Kraus AS, Scerbo DA, Taylor EB. Mouse tissue harvest-induced hypoxia rapidly alters the in vivo metabolome, between-genotype metabolite level differences, and 13C-tracing enrichments. Mol Metab 2022; 66:101596. [PMID: 36100179 PMCID: PMC9589196 DOI: 10.1016/j.molmet.2022.101596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Metabolomics as an approach to solve biological problems is exponentially increasing in use. Thus, this a pivotal time for the adoption of best practices. It is well known that disrupted tissue oxygen supply rapidly alters cellular energy charge. However, the speed and extent to which delayed mouse tissue freezing after dissection alters the broad metabolome is not well described. Furthermore, how tissue genotype may modulate such metabolomic drift and the degree to which traced 13C-isotopologue distributions may change have not been addressed. METHODS By combined liquid chromatography (LC)- and gas chromatography (GC)-mass spectrometry (MS), we measured how levels of 255 mouse liver metabolites changed following 30-second, 1-minute, 3-minute, and 10-minute freezing delays. We then performed test-of-concept delay-to-freeze experiments evaluating broad metabolomic drift in mouse heart and skeletal muscle, differential metabolomic change between wildtype (WT) and mitochondrial pyruvate carrier (MPC) knockout mouse livers, and shifts in 13C-isotopologue abundances and enrichments traced from 13C-labled glucose into mouse liver. RESULTS Our data demonstrate that delayed mouse tissue freezing after dissection leads to rapid hypoxia-driven remodeling of the broad metabolome, induction of both false-negative and false-positive between-genotype differences, and restructuring of 13C-isotopologue distributions. Notably, we show that increased purine nucleotide degradation products are an especially high dynamic range marker of delayed liver and heart freezing. CONCLUSIONS Our findings provide a previously absent, systematic illustration of the extensive, multi-domain metabolomic changes occurring within the early minutes of delayed tissue freezing. They also provide a novel, detailed resource of mouse liver ex vivo, hypoxic metabolomic remodeling.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Alora S Kraus
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Diego A Scerbo
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
20
|
Monternier P, Singh J, Parasar P, Theurey P, DeWitt S, Jacques V, Klett E, Kaur N, Nagaraja TN, Moller DE, Hallakou‐Bozec S. Therapeutic potential of deuterium-stabilized (R)-pioglitazone-PXL065-for X-linked adrenoleukodystrophy. J Inherit Metab Dis 2022; 45:832-847. [PMID: 35510808 PMCID: PMC9545763 DOI: 10.1002/jimd.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
X-linked adrenoleukodystrophy (ALD) results from ABCD1 gene mutations which impair Very Long Chain Fatty Acids (VLCFA; C26:0 and C24:0) peroxisomal import and β-oxidation, leading to accumulation in plasma and tissues. Excess VLCFA drives impaired cellular functions (e.g. disrupted mitochondrial function), inflammation, and neurodegeneration. Major disease phenotypes include: adrenomyeloneuropathy (AMN), progressive spinal cord axonal degeneration, and cerebral ALD (C-ALD), inflammatory white matter demyelination and degeneration. No pharmacological treatment is available to-date for ALD. Pioglitazone, an anti-diabetic thiazolidinedione, exerts potential benefits in ALD models. Its mechanisms are genomic (PPARγ agonism) and nongenomic (mitochondrial pyruvate carrier-MPC, long-chain acyl-CoA synthetase 4-ACSL4, inhibition). However, its use is limited by PPARγ-driven side effects (e.g. weight gain, edema). PXL065 is a clinical-stage deuterium-stabilized (R)-enantiomer of pioglitazone which lacks PPARγ agonism but retains MPC activity. Here, we show that incubation of ALD patient-derived cells (both AMN and C-ALD) and glial cells from Abcd1-null mice with PXL065 resulted in: normalization of elevated VLCFA, improved mitochondrial function, and attenuated indices of inflammation. Compensatory peroxisomal transporter gene expression was also induced. Additionally, chronic treatment of Abcd1-null mice lowered VLCFA in plasma, brain and spinal cord and improved both neural histology (sciatic nerve) and neurobehavioral test performance. Several in vivo effects of PXL065 exceeded those achieved with pioglitazone. PXL065 was confirmed to lack PPARγ agonism but retained ACSL4 activity of pioglitazone. PXL065 has novel actions and mechanisms and exhibits a range of potential benefits in ALD models; further testing of this molecule in ALD patients is warranted.
Collapse
Affiliation(s)
| | - Jaspreet Singh
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Parveen Parasar
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | | | - Eric Klett
- Department of Medicine, Division of EndocrinologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Navtej Kaur
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | | |
Collapse
|
21
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
22
|
Yu L, Zhang X, Ye S, Lian H, Wang H, Ye J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J Clin Endocrinol Metab 2022; 107:1799-1811. [PMID: 35262698 PMCID: PMC8992328 DOI: 10.1210/clinem/dgac137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Obesity is associated with an increase in morbidity and mortality from coronavirus disease 2019 (COVID-19). The risk is related to the cytokine storm, a major contributor to multiorgan failure and a pathological character of COVID-19 patients with obesity. While the exact cause of the cytokine storm remains elusive, disorders in energy metabolism has provided insights into the mechanism. Emerging data suggest that adipose tissue in obesity contributes to the disorders in several ways. First, adipose tissue restricts the pulmonary function by generation of mechanical pressures to promote systemic hypoxia. Second, adipose tissue supplies a base for severe acute respiratory syndrome coronavirus 2 entry by overexpression of viral receptors [angiotensin-converting enzyme 2 and dipeptidyl peptidase 4]. Third, impaired antiviral responses of adipocytes and immune cells result in dysfunction of immunologic surveillance as well as the viral clearance systems. Fourth, chronic inflammation in obesity contributes to the cytokine storm by secreting more proinflammatory cytokines. Fifth, abnormal levels of adipokines increase the risk of a hyperimmune response to the virus in the lungs and other organs to enhance the cytokine storm. Mitochondrial dysfunction in adipocytes, immune cells, and other cell types (endothelial cells and platelets, etc) is a common cellular mechanism for the development of cytokine storm, which leads to the progression of mild COVID-19 to severe cases with multiorgan failure and high mortality. Correction of energy surplus through various approaches is recommended in the prevention and treatment of COVID-19 in the obese patients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Immunology, Institute of Precision Medicine, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Sarah Ye
- Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Hongkai Lian
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
- Corresponding author:
| |
Collapse
|
23
|
Kalo MB, Rezaei M. In vitro toxic interaction of arsenic and hyperglycemia in mitochondria: an important implication of increased vulnerability in pre-diabetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28375-28385. [PMID: 34993818 DOI: 10.1007/s11356-022-18513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollutants and lifestyle both contribute to the rapidly increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide. Evidence suggests that exposure to environmental contaminants such as arsenic is associated with impaired glucose metabolism and insulin signaling. In the present study, isolated rat liver mitochondria (1 mg/ml) were co-exposed to low concentration of arsenic trioxide (ATO) ( IC25 = 40 µM) and hyperglycemic condition (20, 40, 80, 160 mM glucose or 20, 40, 80, 160 mM pyruvate (PYR)). Mitochondrial dehydrogenase activity (complex II), glutathione content (GSH), reactive oxygen species (ROS), lipid peroxidation, mitochondrial membrane potential (ΔΨ), and mitochondrial swelling were then evaluated in the presence of ATO 40 µM and PYR 40 mM. Unexpectedly, glucose alone (20, 40, 80, 160 mM) had no toxic effect on mitochondria, even at very high concentrations and even when combined with ATO. Interestingly, PYR at low concentrations (≤ 10 mM) has a protective effect on mitochondria, but at higher concentrations (≥ 40 mM) with ATO, it decreased the complex II activity and increased mitochondrial ROS production, lipid peroxidation, GSH depletion, mitochondrial membrane damage, and swelling (p < 0.05). In conclusion, PYR but not glucose increased ATO mitochondrial toxicity even at low concentrations. These results suggest that pre-diabetics with non-clinical hyperglycemia, who are inevitably exposed to low concentrations of arsenic through food and water, may develop mitochondrial dysfunction that accelerates their progression to diabetes over time.
Collapse
Affiliation(s)
- Mersad Bagherpour Kalo
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
24
|
Gunasekar SK, Xie L, Kumar A, Hong J, Chheda PR, Kang C, Kern DM, My-Ta C, Maurer J, Heebink J, Gerber EE, Grzesik WJ, Elliot-Hudson M, Zhang Y, Key P, Kulkarni CA, Beals JW, Smith GI, Samuel I, Smith JK, Nau P, Imai Y, Sheldon RD, Taylor EB, Lerner DJ, Norris AW, Klein S, Brohawn SG, Kerns R, Sah R. Small molecule SWELL1 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes. Nat Commun 2022; 13:784. [PMID: 35145074 PMCID: PMC8831520 DOI: 10.1038/s41467-022-28435-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is associated with insulin resistance, impaired pancreatic β-cell insulin secretion, and nonalcoholic fatty liver disease. Tissue-specific SWELL1 ablation impairs insulin signaling in adipose, skeletal muscle, and endothelium, and impairs β-cell insulin secretion and glycemic control. Here, we show that ICl,SWELL and SWELL1 protein are reduced in adipose and β-cells in murine and human diabetes. Combining cryo-electron microscopy, molecular docking, medicinal chemistry, and functional studies, we define a structure activity relationship to rationally-design active derivatives of a SWELL1 channel inhibitor (DCPIB/SN-401), that bind the SWELL1 hexameric complex, restore SWELL1 protein, plasma membrane trafficking, signaling, glycemic control and islet insulin secretion via SWELL1-dependent mechanisms. In vivo, SN-401 restores glycemic control, reduces hepatic steatosis/injury, improves insulin-sensitivity and insulin secretion in murine diabetes. These findings demonstrate that SWELL1 channel modulators improve SWELL1-dependent systemic metabolism in Type 2 diabetes, representing a first-in-class therapeutic approach for diabetes and nonalcoholic fatty liver disease. Type 2 diabetes is associated with insulin resistance, impaired insulin secretion and liver steatosis. Here the authors report a proof-of-concept study for small molecule SWELL1 modulators as a therapeutic approach to treat diabetes and associated liver steatosis by enhancing systemic insulin-sensitivity and insulin secretion in mice.
Collapse
Affiliation(s)
- Susheel K Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Juan Hong
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Pratik R Chheda
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Chen Kang
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Kern
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Chau My-Ta
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua Maurer
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - John Heebink
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva E Gerber
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Wojciech J Grzesik
- Stead Family Department of Pediatrics, Endocrinology and Diabetes Division, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Macaulay Elliot-Hudson
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, IA, USA
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Phillip Key
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Chaitanya A Kulkarni
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Joseph W Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, USA
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, USA
| | - Isaac Samuel
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Jessica K Smith
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Peter Nau
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Yumi Imai
- Department of Internal Medicine, Cardiovascular Division, University of Iowa, Iowa City, IA, USA
| | - Ryan D Sheldon
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Daniel J Lerner
- Senseion Therapeutics Inc, BioGenerator Labs, St Louis, MO, USA
| | - Andrew W Norris
- Stead Family Department of Pediatrics, Endocrinology and Diabetes Division, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Robert Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Identification of Novel Mitochondrial Pyruvate Carrier Inhibitors by Homology Modeling and Pharmacophore-Based Virtual Screening. Biomedicines 2022; 10:biomedicines10020365. [PMID: 35203575 PMCID: PMC8962382 DOI: 10.3390/biomedicines10020365] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is an inner-mitochondrial membrane protein complex that has emerged as a drug target for treating a variety of human conditions. A heterodimer of two proteins, MPC1 and MPC2, comprises the functional MPC complex in higher organisms; however, the structure of this complex, including the critical residues that mediate binding of pyruvate and inhibitors, remain to be determined. Using homology modeling, we identified a putative substrate-binding cavity in the MPC dimer. Three amino acid residues (Phe66 (MPC1) and Asn100 and Lys49 (MPC2)) were validated by mutagenesis experiments to be important for substrate and inhibitor binding. Using this information, we developed a pharmacophore model and then performed a virtual screen of a chemical library. We identified five new non-indole MPC inhibitors, four with IC50 values in the nanomolar range that were up to 7-fold more potent than the canonical inhibitor UK-5099. These novel compounds possess drug-like properties and complied with Lipinski's Rule of Five. They are predicted to have good aqueous solubility, oral bioavailability, and metabolic stability. Collectively, these studies provide important information about the structure-function relationships of the MPC complex and for future drug discovery efforts targeting the MPC.
Collapse
|
26
|
Mitochondrial pyruvate carrier inhibitors improve metabolic parameters in diet-induced obese mice. J Biol Chem 2021; 298:101554. [PMID: 34973337 PMCID: PMC8808181 DOI: 10.1016/j.jbc.2021.101554] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is an inner mitochondrial membrane complex that plays a critical role in intermediary metabolism. Inhibition of the MPC, especially in liver, may have efficacy for treating type 2 diabetes mellitus. Herein, we examined the antidiabetic effects of zaprinast and 7ACC2, small molecules which have been reported to act as MPC inhibitors. Both compounds activated a bioluminescence resonance energy transfer–based MPC reporter assay (reporter sensitive to pyruvate) and potently inhibited pyruvate-mediated respiration in isolated mitochondria. Furthermore, zaprinast and 7ACC2 acutely improved glucose tolerance in diet-induced obese mice in vivo. Although some findings were suggestive of improved insulin sensitivity, hyperinsulinemic–euglycemic clamp studies did not detect enhanced insulin action in response to 7ACC2 treatment. Rather, our data suggest acute glucose-lowering effects of MPC inhibition may be due to suppressed hepatic gluconeogenesis. Finally, we used reporter sensitive to pyruvate to screen a chemical library of drugs and identified 35 potentially novel MPC modulators. Using available evidence, we generated a pharmacophore model to prioritize which hits to pursue. Our analysis revealed carsalam and six quinolone antibiotics, as well as 7ACC1, share a common pharmacophore with 7ACC2. We validated that these compounds are novel inhibitors of the MPC and suppress hepatocyte glucose production and demonstrated that one quinolone (nalidixic acid) improved glucose tolerance in obese mice. In conclusion, these data demonstrate the feasibility of therapeutic targeting of the MPC for treating diabetes and provide scaffolds that can be used to develop potent and novel classes of MPC inhibitors.
Collapse
|
27
|
Abstract
The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Melissa Inigo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Stanisław Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
28
|
Xue C, Li G, Bao Z, Zhou Z, Li L. Mitochondrial pyruvate carrier 1: a novel prognostic biomarker that predicts favourable patient survival in cancer. Cancer Cell Int 2021; 21:288. [PMID: 34059057 PMCID: PMC8166087 DOI: 10.1186/s12935-021-01996-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial pyruvate carrier 1 (MPC1) is a key metabolic protein that regulates the transport of pyruvate into the mitochondrial inner membrane. MPC1 deficiency may cause metabolic reprogramming. However, whether and how MPC1 controls mitochondrial oxidative capacity in cancer are still relatively unknown. MPC1 deficiency was recently found to be strongly associated with various diseases and cancer hallmarks. We utilized online databases and uncovered that MPC1 expression is lower in many cancer tissues than in adjacent normal tissues. In addition, MPC1 expression was found to be substantially altered in five cancer types: breast-invasive carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), and prostate adenocarcinoma (PRAD). However, in KIRC, LUAD, PAAD, and PRAD, high MPC1 expression is closely associated with favourable prognosis. Low MPC1 expression in BRCA is significantly associated with shorter overall survival time. MPC1 expression shows strong positive and negative correlations with immune cell infiltration in thymoma (THYM) and thyroid carcinoma (THCA). Furthermore, we have comprehensively summarized the current literature regarding the metabolic reprogramming effects of MPC1 in various cancers. As shown in the literature, MPC1 expression is significantly decreased in cancer tissue and associated with poor prognosis. We discuss the potential metabolism-altering effects of MPC1 in cancer, including decreased pyruvate transport ability; impaired pyruvate-driven oxidative phosphorylation (OXPHOS); and increased lactate production, glucose consumption, and glycolytic capacity, and the underlying mechanisms. These activities facilitate tumour progression, migration, and invasion. MPC1 is a novel cancer biomarker and potentially powerful therapeutic target for cancer diagnosis and treatment. Further studies aimed at slowing cancer progression are in progress.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China.
| |
Collapse
|
29
|
Kanoni S, Kumar S, Amerikanou C, Kurth MJ, Stathopoulou MG, Bourgeois S, Masson C, Kannt A, Cesarini L, Kontoe MS, Milanović M, Roig FJ, Beribaka M, Campolo J, Jiménez-Hernández N, Milošević N, Llorens C, Smyrnioudis I, Francino MP, Milić N, Kaliora AC, Trivella MG, Ruddock MW, Medić-Stojanoska M, Gastaldelli A, Lamont J, Deloukas P, Dedoussis GV, Visvikis-Siest S. Nutrigenetic Interactions Might Modulate the Antioxidant and Anti-Inflammatory Status in Mastiha-Supplemented Patients With NAFLD. Front Immunol 2021; 12:683028. [PMID: 34025683 PMCID: PMC8138178 DOI: 10.3389/fimmu.2021.683028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease with no therapeutic consensus. Oxidation and inflammation are hallmarks in the progression of this complex disease, which also involves interactions between the genetic background and the environment. Mastiha is a natural nutritional supplement known to possess antioxidant and anti-inflammatory properties. This study investigated how a 6-month Mastiha supplementation (2.1 g/day) could impact the antioxidant and inflammatory status of patients with NAFLD, and whether genetic variants significantly mediate these effects. We recruited 98 patients with obesity (BMI ≥ 30 kg/m2) and NAFLD and randomly allocated them to either the Mastiha or the placebo group for 6 months. The anti-oxidative and inflammatory status was assessed at baseline and post-treatment. Genome-wide genetic data was also obtained from all participants, to investigate gene-by-Mastiha interactions. NAFLD patients with severe obesity (BMI > 35kg/m2) taking the Mastiha had significantly higher total antioxidant status (TAS) compared to the corresponding placebo group (P value=0.008). We did not observe any other significant change in the investigated biomarkers as a result of Mastiha supplementation alone. We identified several novel gene-by-Mastiha interaction associations with levels of cytokines and antioxidant biomarkers. Some of the identified genetic loci are implicated in the pathological pathways of NAFLD, including the lanosterol synthase gene (LSS) associated with glutathione peroxidase activity (Gpx) levels, the mitochondrial pyruvate carrier-1 gene (MPC1) and the sphingolipid transporter-1 gene (SPNS1) associated with hemoglobin levels, the transforming growth factor‐beta‐induced gene (TGFBI) and the micro-RNA 129-1 (MIR129-1) associated with IL-6 and the granzyme B gene (GZMB) associated with IL-10 levels. Within the MAST4HEALTH randomized clinical trial (NCT03135873, www.clinicaltrials.gov) Mastiha supplementation improved the TAS levels among NAFLD patients with severe obesity. We identified several novel genome-wide significant nutrigenetic interactions, influencing the antioxidant and inflammatory status in NAFLD.
Collapse
Affiliation(s)
- Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Satish Kumar
- EA_1122, IGE-PCV, Université de Loraine, Nancy, France
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Mary Jo Kurth
- Randox Laboratories Ltd (RANDOX), Crumlin, United Kingdom
| | | | - Stephane Bourgeois
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Aimo Kannt
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Lucia Cesarini
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Maja Milanović
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Francisco J Roig
- Biotechvana, Parc Científic, Universitat de València, Valencia, Spain.,Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Mirjana Beribaka
- Department of Biology, Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Jonica Campolo
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Institute of Clinical Physiology National Research Council, Pisa, Italy
| | - Nuria Jiménez-Hernández
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitária i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | | | - Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Valencia, Spain
| | | | - M Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitária i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Nataša Milić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Andriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Maria Giovanna Trivella
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Institute of Clinical Physiology National Research Council, Pisa, Italy
| | - Mark W Ruddock
- Randox Laboratories Ltd (RANDOX), Crumlin, United Kingdom
| | - Milica Medić-Stojanoska
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | | | - John Lamont
- Randox Laboratories Ltd (RANDOX), Crumlin, United Kingdom
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, United Kingdom
| | - George V Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | | |
Collapse
|
30
|
Xue M, Zeng Y, Lin R, Qu HQ, Zhang T, Zhang XD, Liang Y, Zhen Y, Chen H, Huang Z, Hu H, Zheng P, Hakonarson H, Zhou L, Sun B. Metabolomic profiling of anaerobic and aerobic energy metabolic pathways in chronic obstructive pulmonary disease. Exp Biol Med (Maywood) 2021; 246:1586-1596. [PMID: 33957804 DOI: 10.1177/15353702211008808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While there is no cure for chronic obstructive pulmonary disease (COPD), its progressive nature and the formidable challenge to manage its symptoms warrant a more extensive study of the pathogenesis and related mechanisms. A new emphasis on COPD study is the change of energy metabolism. For the first time, this study investigated the anaerobic and aerobic energy metabolic pathways in COPD using the metabolomic approach. Metabolomic analysis was used to investigate energy metabolites in 140 COPD patients. The significance of energy metabolism in COPD was comprehensively explored by the Global Initiative for Chronic Obstructive Lung Disease-GOLD grading, acute exacerbation vs. stable phase (either clinical stability or four-week stable phase), age group, smoking index, lung function, and COPD Assessment Test (CAT) score. Through comprehensive evaluation, we found that COPD patients have a significant imbalance in the aerobic and anaerobic energy metabolisms in resting state, and a high tendency of anaerobic energy supply mechanism that correlates positively with disease progression. This study highlighted the significance of anaerobic and low-efficiency energy supply pathways in lung injury and linked it to the energy-inflammation-lung ventilatory function and the motion limitation mechanism in COPD patients, which implies a novel therapeutic direction for this devastating disease.
Collapse
Affiliation(s)
- Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yifeng Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Runpei Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Teng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Xiaohua Douglas Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Yueting Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yingjie Zhen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhifeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Haisheng Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Divisions of Human Genetics and Pulmonary Medicine, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
31
|
Cluntun AA, Badolia R, Lettlova S, Parnell KM, Shankar TS, Diakos NA, Olson KA, Taleb I, Tatum SM, Berg JA, Cunningham CN, Van Ry T, Bott AJ, Krokidi AT, Fogarty S, Skedros S, Swiatek WI, Yu X, Luo B, Merx S, Navankasattusas S, Cox JE, Ducker GS, Holland WL, McKellar SH, Rutter J, Drakos SG. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab 2021; 33:629-648.e10. [PMID: 33333007 PMCID: PMC7933116 DOI: 10.1016/j.cmet.2020.12.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandra Lettlova
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - K Mark Parnell
- Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
| | - Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nikolaos A Diakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristofor A Olson
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Corey N Cunningham
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Tyler Van Ry
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Aspasia Thodou Krokidi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah Fogarty
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sophia Skedros
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Wojciech I Swiatek
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Xuejing Yu
- University of Utah, School of Medicine, Salt Lake City, UT 84132, USA; Division of Cardiothoracic Surgery, Department of Surgery, Salt Lake City, UT 84132, USA
| | - Bai Luo
- Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Shannon Merx
- Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen H McKellar
- University of Utah, School of Medicine, Salt Lake City, UT 84132, USA; Division of Cardiothoracic Surgery, Department of Surgery, Salt Lake City, UT 84132, USA; U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA.
| |
Collapse
|
32
|
Abstract
Background Mitochondrial oxidative function plays a key role in the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance (IR). Recent studies reported that fatty liver might not be a result of decreased mitochondrial fat oxidation caused by mitochondrial damage. Rather, NAFLD and IR induce an elevation in mitochondrial function that covers the increased demand for carbon intermediates and ATP caused by elevated lipogenesis and gluconeogenesis. Furthermore, mitochondria play a role in regulating hepatic insulin sensitivity and lipogenesis by modulating redox-sensitive signaling pathways. Scope of review We review the contradictory studies indicating that NAFLD and hyperglycemia can either increase or decrease mitochondrial oxidative capacity in the liver. We summarize mechanisms regulating mitochondrial heterogeneity inside the same cell and discuss how these mechanisms may determine the role of mitochondria in NAFLD. We further discuss the role of endogenous antioxidants in controlling mitochondrial H2O2 release and redox-mediated signaling. We describe the emerging concept that the subcellular location of cellular antioxidants is a key determinant of their effects on NAFLD. Major conclusions The balance of fat oxidation versus accumulation depends on mitochondrial fuel preference rather than ATP-synthesizing respiration. As such, therapies targeting fuel preference might be more suitable for treating NAFLD. Similarly, suppressing maladaptive antioxidants, rather than interfering with physiological mitochondrial H2O2-mediated signaling, may allow the maintenance of intact hepatic insulin signaling in NAFLD. Exploration of the subcellular compartmentalization of different antioxidant systems and the unique functions of specific mitochondrial subpopulations may offer new intervention points to treat NAFLD. Mitochondrial function has been reported to be increased or decreased in NAFLD. Functionally independent subpopulations of mitochondria can clarify the conundrum of these conflicting reports. Maladaptive antioxidants decreasing mitochondrial H2O2 and promoting NAFLD are discussed. Therapies targeting mitochondria to treat NAFLD are discussed.
Collapse
|
33
|
Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM, Soto J, Rauckhorst AJ, Tayyari F, Pewa AD, Gray LR, Teesch LM, Puchalska P, Funari TR, McGlauflin R, Zimmerman K, Kutschke WJ, Cassier T, Hitchcock S, Lin K, Kato KM, Stueve JL, Haff L, Weiss RM, Cox JE, Rutter J, Taylor EB, Crawford PA, Lewandowski ED, Des Rosiers C, Abel ED. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat Metab 2020; 2:1248-1264. [PMID: 33106689 PMCID: PMC8015649 DOI: 10.1038/s42255-020-00288-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
In addition to fatty acids, glucose and lactate are important myocardial substrates under physiologic and stress conditions. They are metabolized to pyruvate, which enters mitochondria via the mitochondrial pyruvate carrier (MPC) for citric acid cycle metabolism. In the present study, we show that MPC-mediated mitochondrial pyruvate utilization is essential for the partitioning of glucose-derived cytosolic metabolic intermediates, which modulate myocardial stress adaptation. Mice with cardiomyocyte-restricted deletion of subunit 1 of MPC (cMPC1-/-) developed age-dependent pathologic cardiac hypertrophy, transitioning to a dilated cardiomyopathy and premature death. Hypertrophied hearts accumulated lactate, pyruvate and glycogen, and displayed increased protein O-linked N-acetylglucosamine, which was prevented by increasing availability of non-glucose substrates in vivo by a ketogenic diet (KD) or a high-fat diet, which reversed the structural, metabolic and functional remodelling of non-stressed cMPC1-/- hearts. Although concurrent short-term KDs did not rescue cMPC1-/- hearts from rapid decompensation and early mortality after pressure overload, 3 weeks of a KD before transverse aortic constriction was sufficient to rescue this phenotype. Together, our results highlight the centrality of pyruvate metabolism to myocardial metabolism and function.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Cardiomegaly/diagnostic imaging
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Constriction, Pathologic
- Cytosol/metabolism
- Diet, High-Fat
- Diet, Ketogenic
- Echocardiography
- In Vitro Techniques
- Mice
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Pyruvic Acid/metabolism
- Stress, Physiological/genetics
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Yuan Zhang
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul V Taufalele
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jesse D Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Jonas Maximilian Marx
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Friedrich-Schiller University of Jena, Jena, Germany
| | - Jamie Soto
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Mouse Metabolic Phenotyping Core, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Fariba Tayyari
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alvin D Pewa
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lawrence R Gray
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynn M Teesch
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Patrycja Puchalska
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Trevor R Funari
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rose McGlauflin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William J Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Cassier
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shannon Hitchcock
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin Lin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin M Kato
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jennifer L Stueve
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lauren Haff
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - James E Cox
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter A Crawford
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - E Douglas Lewandowski
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montreal, Canada
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Liu R, Chen L, Wang Z, Zheng X, Hou Z, Zhao D, Long J, Liu J. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. J Nutr Biochem 2020; 88:108503. [PMID: 32956825 DOI: 10.1016/j.jnutbio.2020.108503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on preventing obesity are well known; however, the underlying mechanism by which n-3 PUFAs influence tricarboxylic acid (TCA) cycle under obesity remains unclear. We randomly divided male C57BL/6 mice into 5 groups (n=10) and fed for 12 weeks as follows: mice fed a normal diet (Con, 10% kcal); mice fed a high-fat diet (HFD, lard, 60% kcal); and mice fed a high-fat diet (60% kcal) substituting half the lard with safflower oil (SO), safflower oil and fish oil (SF) and fish oil (FO), respectively. Then we treated HepG2 cells with palmitic acid and DHA for 24 h. We found that body weight in FO group was significantly lower than it in HFD and SO groups. N-3 PUFAs reduced the transcription and translation of TCA cycle enzymes, including IDH1, IDH2, SDHA, FH and MDH2, to enhance mitochondrial function in vivo and vitro. DHA significantly inhibited protein expression of the mTORC1 signaling pathway, increased p-AKT protein expression to alleviate insulin resistance and improved mitochondrial oxygen consumption rate and glycolysis ability in HepG2 cells. In addition, the expressions of IDH2 and SDHB were reduced by rapamycin. N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
35
|
Chella Krishnan K, Floyd RR, Sabir S, Jayasekera DW, Leon-Mimila PV, Jones AE, Cortez AA, Shravah V, Péterfy M, Stiles L, Canizales-Quinteros S, Divakaruni AS, Huertas-Vazquez A, Lusis AJ. Liver Pyruvate Kinase Promotes NAFLD/NASH in Both Mice and Humans in a Sex-Specific Manner. Cell Mol Gastroenterol Hepatol 2020; 11:389-406. [PMID: 32942044 PMCID: PMC7788245 DOI: 10.1016/j.jcmgh.2020.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The etiology of nonalcoholic fatty liver disease (NAFLD) is poorly understood, with males and certain populations exhibiting markedly increased susceptibility. Using a systems genetics approach involving multi-omic analysis of ∼100 diverse inbred strains of mice, we recently identified several candidate genes driving NAFLD. We investigated the role of one of these, liver pyruvate kinase (L-PK or Pklr), in NAFLD by using patient samples and mouse models. METHODS We examined L-PK expression in mice of both sexes and in a cohort of bariatric surgery patients. We used liver-specific loss- and gain-of-function strategies in independent animal models of diet-induced steatosis and fibrosis. After treatment, we measured several metabolic phenotypes including obesity, insulin resistance, dyslipidemia, liver steatosis, and fibrosis. Liver tissues were used for gene expression and immunoblotting, and liver mitochondria bioenergetics was characterized. RESULTS In both mice and humans, L-PK expression is up-regulated in males via testosterone and is strongly associated with NAFLD severity. In a steatosis model, L-PK silencing in male mice improved glucose tolerance, insulin sensitivity, and lactate/pyruvate tolerance compared with controls. Furthermore, these animals had reduced plasma cholesterol levels and intrahepatic triglyceride accumulation. Conversely, L-PK overexpression in male mice resulted in augmented disease phenotypes. In contrast, female mice overexpressing L-PK were unaffected. Mechanistically, L-PK altered mitochondrial pyruvate flux and its incorporation into citrate, and this, in turn, increased liver triglycerides via up-regulated de novo lipogenesis and increased PNPLA3 levels accompanied by mitochondrial dysfunction. Also, L-PK increased plasma cholesterol levels via increased PCSK9 levels. On the other hand, L-PK silencing reduced de novo lipogenesis and PNPLA3 and PCSK9 levels and improved mitochondrial function. Finally, in fibrosis model, we demonstrate that L-PK silencing in male mice reduced both liver steatosis and fibrosis, accompanied by reduced de novo lipogenesis and improved mitochondrial function. CONCLUSIONS L-PK acts in a male-specific manner in the development of liver steatosis and fibrosis. Because NAFLD/nonalcoholic steatohepatitis exhibit sexual dimorphism, our results have important implications for the development of personalized therapeutics.
Collapse
Affiliation(s)
- Karthickeyan Chella Krishnan
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Correspondence Address correspondence to: Karthickeyan Chella Krishnan, PhD, UCLA Department of Medicine/Division of Cardiology, 650 Charles E. Young Drive South, Box 951679, Los Angeles, California 90095-1679. fax: (310) 794-7345, or
| | - Raquel R. Floyd
- Department of Biology, University of California, Los Angeles, California
| | - Simon Sabir
- Department of Psychology, University of California, Los Angeles, California
| | - Dulshan W. Jayasekera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California
| | - Paola V. Leon-Mimila
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Unidad de Genómica de Poblaciones Aplicada a la Salud, Mexico City, Mexico
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Angel A. Cortez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Varun Shravah
- Department of Chemistry, University of California, Los Angeles, California
| | - Miklós Péterfy
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, California
| | - Linsey Stiles
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, California
| | - Samuel Canizales-Quinteros
- Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Unidad de Genómica de Poblaciones Aplicada a la Salud, Mexico City, Mexico
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Adriana Huertas-Vazquez
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California
| | - Aldons J. Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California,Department of Human Genetics, University of California, Los Angeles, California,Aldons J. Lusis, PhD, UCLA Department of Medicine/Division of Cardiology, 650 Charles E. Young Drive South, Box 951679, Los Angeles, California 90095-1679.
| |
Collapse
|
36
|
Tompkins SC, Sheldon RD, Rauckhorst AJ, Noterman MF, Solst SR, Buchanan JL, Mapuskar KA, Pewa AD, Gray LR, Oonthonpan L, Sharma A, Scerbo DA, Dupuy AJ, Spitz DR, Taylor EB. Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. Cell Rep 2020; 28:2608-2619.e6. [PMID: 31484072 PMCID: PMC6746334 DOI: 10.1016/j.celrep.2019.07.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers. Tompkins et al. utilize stable glutamine isotope tracers in vivo and ex vivo to demonstrate hepatocyte MPC disruption increases TCA cycle glutamine utilization at the expense of glutathione synthesis and decreases hepatocellular tumorigenesis.
Collapse
Affiliation(s)
- Sean C Tompkins
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Rauckhorst
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Maria F Noterman
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Jane L Buchanan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Alvin D Pewa
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lawrence R Gray
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lalita Oonthonpan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Arpit Sharma
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Diego A Scerbo
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
37
|
Wang S, Zhang J, Deng X, Zhao Y, Xu K. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Biochimie 2020; 179:1-13. [PMID: 32898647 DOI: 10.1016/j.biochi.2020.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
The homeostasis of mitochondrial functional state is intimately in relation with SIRT3 (sirtuin3). SIRT3, the deacetylase mainly anchored in mitochondria, acts as a modulator of metabolic regulation via manipulating the activity and function of downstream targets at post-translational modification levels. The features of energy sensing and ADP-ribose transference of SIRT3 have also been reported. Recently, accumulating SIRT3-focusing evidences have suggested its complicated role in a series of adverse events such as metabolic disorders, aging-related diseases, coupled with tumors, in which SIRT3 regulates the progress of corresponding biochemical reactions by targeting key mediators. By systematically summarizing the downstream deacetylated proteins of the SIRT3 axis, this review aims to give a comprehensive introduction to the main metabolic pathways and diseases of the molecules involved in acetylation modification, which is expected to provide a direction for further exploration of the pathogenesis and therapeutic targets of the above diseases.
Collapse
Affiliation(s)
- Shuhan Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junli Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoling Deng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajuan Zhao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keshu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
38
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
39
|
Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules 2020; 10:biom10081162. [PMID: 32784379 PMCID: PMC7464753 DOI: 10.3390/biom10081162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease.
Collapse
Affiliation(s)
- Jane L. Buchanan
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
40
|
Li R, Huang X, Liang X, Su M, Lai KP, Chen J. Integrated omics analysis reveals the alteration of gut microbe-metabolites in obese adults. Brief Bioinform 2020; 22:5882185. [PMID: 32770198 DOI: 10.1093/bib/bbaa165] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, a risk to health, is a global problem in modern society. The prevalence of obesity was approximately 13% among world's adult population. Recently, several reports suggested that the interference of gut microbiota composition and function is associated with metabolic disorders, including obesity. Gut microbiota produce a board range of metabolites involved in energy and glucose homeostasis, leading to the alteration in host metabolism. However, systematic evaluation of the relationship between gut microbiota, gut metabolite and host metabolite profiles in obese adults is still lacking. In this study, we used comparative metagenomics and metabolomics analysis to determine the gut microbiota and gut-host metabolite profiles in six normal and obese adults of Chinese origin, respectively. Following the functional and pathway analysis, we aimed to understand the possible impact of gut microbiota on the host metabolites via the change in gut metabolites. The result showed that the change in gut microbiota may result in the modulation of gut metabolites contributing to glycolysis, tricarboxylic acid cycle and homolactic fermentation. Furthermore, integrated metabolomic analysis demonstrated a possible positive correlation of dysregulated metabolites in the gut and host, including l-phenylalanine, l-tyrosine, uric acid, kynurenic acid, cholesterol sulfate and glucosamine, which were reported to contribute to metabolic disorders such as obesity and diabetes. The findings of this study provide the possible association between gut microbiota-metabolites and host metabolism in obese adults. The identified metabolite changes could serve as biomarkers for the evaluation of obesity and metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Min Su
- Guilin Medical University
| | | | | |
Collapse
|
41
|
The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020; 10:biom10071068. [PMID: 32708919 PMCID: PMC7407832 DOI: 10.3390/biom10071068] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer.
Collapse
|
42
|
Zhu H, Wan H, Wu L, Li Q, Liu S, Duan S, Huang Z, Zhang C, Zhang B, Xing C, Yuan Y. Mitochondrial pyruvate carrier: a potential target for diabetic nephropathy. BMC Nephrol 2020; 21:274. [PMID: 32664896 PMCID: PMC7362444 DOI: 10.1186/s12882-020-01931-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Mitochondrial dysfunction contributes to the pathogenesis of diabetic nephropathy (DN). Mitochondrial pyruvate carrier 1 (MPC1) and mitochondrial pyruvate carrier 2 (MPC2) play a bottleneck role in the transport of pyruvate into mitochondrial across the mitochondrial inner membrane. A previous study showed that increasing mitochondrial pyruvate carrier content might ameliorate diabetic kidney disease in db/db mice. However, the expression status of MPC1 and MPC2 in patients with DN is unclear. Methods Patients with primary glomerulonephropathy (PGN, n = 30), PGN with diabetes mellitus (PGN-DM, n = 30) and diabetic nephropathy (DN, n = 30) were included. MPC1 and MPC2 protein levels were examined by immunohistochemistry. The expression of MPC in different groups was evaluated by the Kruskal-Wallis test. Spearman’s rank correlation was performed for correlation analysis between MPC levels and clinical factors. Results Both MPC1 and MPC2 were localized in renal tubules. Levels of MPC1 and MPC2 were lower in DN patients than in PGN patients and in PGN patients with DM, whereas there were no differences in MPC1 and MPC2 levels among DN stage II to stage IV. Moreover, both MPC1 and MPC2 levels were significantly correlated with serum creatinine, BUN and eGFR in patients with DN, whereas no analogous trend was observed in nondiabetic kidney disease. Conclusions Our study indicated that MPC localized in renal tubules, which were significantly decreased in DN. MPC was associated with clinical features, especially those representing renal functions.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Huiting Wan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Qing Li
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Suyan Duan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Zhimin Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Chengning Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China.
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. of China.
| |
Collapse
|
43
|
Liu X, Yu J, Zhao J, Guo J, Zhang M, Liu L. Glucose challenge metabolomics implicates the change of organic acid profiles in hyperlipidemic subjects. Biomed Chromatogr 2020; 34:e4815. [PMID: 32115742 DOI: 10.1002/bmc.4815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/02/2020] [Accepted: 02/26/2020] [Indexed: 01/17/2023]
Abstract
Hyperlipidemia (HLP) is a major risk factor of diabetes and cardiovascular disease. Here, we applied gas chromatography-mass spectrometry to study differences in postprandial organic acid profiles in healthy and HLP subjects. In fasting status, six intermediates of the tricarboxylic acid cycle showed significant differences in HLP and healthy controls (P < 0.05). The percentage changes of 17 metabolites including three intermediates of the tricarboxylic acid cycle were significantly different during the oral glucose tolerance test. Postprandial changes in ethylmalonic acid and pimelic acid were negatively associated with HOMA-IR (homeostasis model assessment of insulin resistance; all P < 0.05) in the HLP group. Postprandial metabolism of organic acid profiles revealed energy metabolism perturbations in HLP. Our findings provide new insights into the complex physiological regulation of HLP postprandial metabolism.
Collapse
Affiliation(s)
- Xiaowei Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jiaying Yu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jinhui Zhao
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jing Guo
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Mingjia Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Liyan Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
44
|
Gansemer ER, McCommis KS, Martino M, King-McAlpin AQ, Potthoff MJ, Finck BN, Taylor EB, Rutkowski DT. NADPH and Glutathione Redox Link TCA Cycle Activity to Endoplasmic Reticulum Homeostasis. iScience 2020; 23:101116. [PMID: 32417402 PMCID: PMC7254477 DOI: 10.1016/j.isci.2020.101116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
Many metabolic diseases disrupt endoplasmic reticulum (ER) homeostasis, but little is known about how metabolic activity is communicated to the ER. Here, we show in hepatocytes and other metabolically active cells that decreasing the availability of substrate for the tricarboxylic acid (TCA) cycle diminished NADPH production, elevated glutathione oxidation, led to altered oxidative maturation of ER client proteins, and attenuated ER stress. This attenuation was prevented when glutathione oxidation was disfavored. ER stress was also alleviated by inhibiting either TCA-dependent NADPH production or Glutathione Reductase. Conversely, stimulating TCA activity increased NADPH production, glutathione reduction, and ER stress. Validating these findings, deletion of the Mitochondrial Pyruvate Carrier-which is known to decrease TCA cycle activity and protect the liver from steatohepatitis-also diminished NADPH, elevated glutathione oxidation, and alleviated ER stress. Together, our results demonstrate a novel pathway by which mitochondrial metabolic activity is communicated to the ER through the relay of redox metabolites.
Collapse
Affiliation(s)
- Erica R Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle S McCommis
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Michael Martino
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Abdul Qaadir King-McAlpin
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Obesity Research Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Brian N Finck
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Eric B Taylor
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Obesity Research Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
45
|
An Integrated Multi-Omics Analysis Defines Key Pathway Alterations in a Diet-Induced Obesity Mouse Model. Metabolites 2020; 10:metabo10030080. [PMID: 32106514 PMCID: PMC7143281 DOI: 10.3390/metabo10030080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/26/2023] Open
Abstract
Obesity is a multifactorial disease with many complications and related diseases and has become a global epidemic. To thoroughly understand the impact of obesity on whole organism homeostasis, it is helpful to utilize a systems biological approach combining gene expression and metabolomics across tissues and biofluids together with metagenomics of gut microbial diversity. Here, we present a multi-omics study on liver, muscle, adipose tissue, urine, plasma, and feces on mice fed a high-fat diet (HFD). Gene expression analyses showed alterations in genes related to lipid and energy metabolism and inflammation in liver and adipose tissue. The integration of metabolomics data across tissues and biofluids identified major differences in liver TCA cycle, where malate, succinate and oxaloacetate were found to be increased in HFD mice. This finding was supported by gene expression analysis of TCA-related enzymes in liver, where expression of malate dehydrogenase was found to be decreased. Investigations of the microbiome showed enrichment of Lachnospiraceae, Ruminococcaceae, Streptococcaceae and Lactobacillaceae in the HFD group. Our findings help elucidate how the whole organism metabolome and transcriptome are integrated and regulated during obesity.
Collapse
|
46
|
Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metab 2020; 31:284-300.e7. [PMID: 31813825 PMCID: PMC7004878 DOI: 10.1016/j.cmet.2019.11.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023]
Abstract
Although metabolic adaptations have been demonstrated to be essential for tumor cell proliferation, the metabolic underpinnings of tumor initiation are poorly understood. We found that the earliest stages of colorectal cancer (CRC) initiation are marked by a glycolytic metabolic signature, including downregulation of the mitochondrial pyruvate carrier (MPC), which couples glycolysis and glucose oxidation through mitochondrial pyruvate import. Genetic studies in Drosophila suggest that this downregulation is required because hyperplasia caused by loss of the Apc or Notch tumor suppressors in intestinal stem cells can be completely blocked by MPC overexpression. Moreover, in two distinct CRC mouse models, loss of Mpc1 prior to a tumorigenic stimulus doubled the frequency of adenoma formation and produced higher grade tumors. MPC loss was associated with a glycolytic metabolic phenotype and increased expression of stem cell markers. These data suggest that changes in cellular pyruvate metabolism are necessary and sufficient to promote cancer initiation.
Collapse
|
47
|
Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020; 63:5031-5073. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.
Collapse
Affiliation(s)
- F Anthony Romero
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Christopher T Jones
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Yingzi Xu
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Martijn Fenaux
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Randall L Halcomb
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| |
Collapse
|
48
|
Colca J. NASH (nonalcoholic steatohepatitis), diabetes, and macrovascular disease: multiple chronic conditions and a potential treatment at the metabolic root. Expert Opin Investig Drugs 2020; 29:191-196. [PMID: 31928475 DOI: 10.1080/13543784.2020.1715940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: NASH and type 2 diabetes (T2D) are clinical definitions that overlap and result from metabolic dysfunction caused by over-nutrition relative to metabolic need. This volume details drug development programs aimed at specific NASH pathology with a focus on liver outcomes; this commentary suggests a metabolic approach that should not be overlooked based on a new understanding of insulin sensitizers.Areas covered: The overlap of NASH and T2D with respect to metabolic syndrome is discussed in the context of new understandings of insulin sensitizers. Adverse clinical outcomes in subjects with advanced NAFLD (e.g. NASH) and advanced metabolic dysfunction (e.g., T2D) are primarily due to cardiovascular issues. Clinical evidence suggests that insulin resistance and hyperinsulinemia predict adverse cardiovascular outcomes. NALFD/NASH significantly contributes to insulin resistance and hyperinsulinemia. A new insulin sensitizer that targets the newly identified mitochondrial pyruvate carrier could provide an approach.Expert opinion: A metabolic approach is needed for the treatment of NASH. Clinical studies are underway to determine whether a new insulin sensitizer that targets pyruvate metabolism can impact NASH, T2D, and cardiovascular disease. A broader view of metabolic disease may provide a more assessable way to track therapeutic benefit.
Collapse
Affiliation(s)
- Jerry Colca
- Cirius Therapeutics, Kalamazoo, MI, USA.,Cirius Therapeutics, San Diago, CA, USA
| |
Collapse
|
49
|
Fernández-García J, Altea-Manzano P, Pranzini E, Fendt SM. Stable Isotopes for Tracing Mammalian-Cell Metabolism In Vivo. Trends Biochem Sci 2020; 45:185-201. [PMID: 31955965 DOI: 10.1016/j.tibs.2019.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Metabolism is at the cornerstone of all cellular functions and mounting evidence of its deregulation in different diseases emphasizes the importance of a comprehensive understanding of metabolic regulation at the whole-organism level. Stable-isotope measurements are a powerful tool for probing cellular metabolism and, as a result, are increasingly used to study metabolism in in vivo settings. The additional complexity of in vivo metabolic measurements requires paying special attention to experimental design and data interpretation. Here, we review recent work where in vivo stable-isotope measurements have been used to address relevant biological questions within an in vivo context, summarize different experimental and data interpretation approaches and their limitations, and discuss future opportunities in the field.
Collapse
Affiliation(s)
- Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium.
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Erica Pranzini
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium; Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
50
|
Altea-Manzano P, Broekaert D, Duarte JAG, Fernández-García J, Planque M, Fendt SM. Analyzing the Metabolism of Metastases in Mice. Methods Mol Biol 2020; 2088:93-118. [PMID: 31893372 DOI: 10.1007/978-1-0716-0159-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis formation is the leading cause of death in cancer patients. It has recently emerged that cancer cells adapt their metabolism to successfully transition through the metastatic cascade. Consequently, measuring and analyzing the in vivo metabolism of metastases has the potential to reveal novel treatment strategies to prevent metastasis formation. Here, we describe two different metastasis mouse models and how their metabolism can be analyzed with metabolomics and 13C tracer analysis.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - João A G Duarte
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|