1
|
Munoz MD, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. Sci Rep 2023; 13:11808. [PMID: 37479751 PMCID: PMC10362023 DOI: 10.1038/s41598-023-37482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IRFKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IRFKO mice have profound insulin resistance, hyperglycemia, and whitening of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IRFKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IRFKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
Affiliation(s)
- Marcos David Munoz
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alexa Zamudio
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Maximilian McCann
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Victoria Gil
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Pingwen Xu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA.
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Chu C, Li T, Yu L, Li Y, Li M, Guo M, Zhao J, Zhai Q, Tian F, Chen W. A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease by Regulating the Microbiota-Metabolite-Brain Axis and Fibroblast Growth Factor 21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267589 DOI: 10.1021/acs.jafc.2c07606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective effect on PD remains elusive. Here, we found that an LPHC diet ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced motor deficits, decreased dopaminergic neuronal death, and increased the levels of striatal dopamine, serotonin, and their metabolites in PD mice. Levels of fibroblast growth factor 21 (FGF-21), a member of the fibroblast growth factor family, were elevated in PD mice following LPHC treatment. Furthermore, the administration of FGF-21 exerted a protective effect on MPTP-induced PC12 cells, similar to the effect of an LPHC diet in MPTP-induced mice. Sequencing of the 16S rDNA from fecal microbiota revealed that an LPHC diet normalized the gut bacterial composition imbalance in PD mice, as evidenced by the increased abundance of the genera Bifidobacterium, Ileibacterium, Turicibacter, and Blautia and decreased abundance of Bilophila, Alistipes, and Bacteroides. PICRUSt-predicted fecal microbiome function revealed that an LPHC diet suppressed lipopolysaccharide biosynthesis and the citrate cycle (TCA cycle), biosynthesis of ubiquinone and other terpenoid-quinones, and oxidative phosphorylation pathways caused by MPTP, and enhanced the biosynthesis of amino acids, carbohydrate metabolism, and biosynthesis of other secondary metabolites. A nonmetabolomic analysis of the serum and feces showed that an LPHC diet significantly increased the levels of aromatic amino acids (AAAs), including tryptophan, tyrosine, and phenylalanine. In addition, an LPHC diet elevated the serum concentrations of bile acids (BAs), particularly tauroursodeoxycholic acid (TUDCA) and taurine. Collectively, our current findings point to the potential mechanism of administering an LPHC diet in attenuating movement impairments in MPTP-induced PD mice, with AAAs, microbial metabolites (TUDCA and taurine), and FGF-21 as key mediators along the gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Li
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602, United States
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Munoz M, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. RESEARCH SQUARE 2023:rs.3.rs-2701883. [PMID: 37034803 PMCID: PMC10081364 DOI: 10.21203/rs.3.rs-2701883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IR FKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IR FKO mice have profound insulin resistance, hyperglycemia, and whitenng of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IR FKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IR FKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
|
4
|
Li X, Shan K, Li C, Zhou G. Intermittent Protein Diets Alter Hepatic Lipid Accumulation by Changing Tryptophan Metabolism in a Fast-Response Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3261-3272. [PMID: 36634216 DOI: 10.1021/acs.jafc.2c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In modern life, the fluctuation of dietary protein levels is common, in particular, for low-income populations. However, its effect on human health is little known. Alternating changes of low and high casein or pork protein were used to simulate the fluctuation of dietary protein content in mice. Hepatic lipid accumulation showed a fast response to alternating changes of low- and high-protein diets. Correspondingly, some gut microbiota and tryptophan metabolite composition also showed a fast response to dietary protein changes. The fast response of 3-hydroxykynurenine (3-HK) was proven to inhibit hepatic lipid accumulation in vitro. Therefore, intermittent protein diets modulated hepatic lipid accumulation through 3-HK. These findings highlighted the sensitivity of hepatic lipid accumulation to dietary protein levels.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095Nanjing, P. R. China
| |
Collapse
|
5
|
zadeh MAM, Afrasyabi S, Mohamadi ZA. The effects of exercise training induced calories expenditure on type 2 diabetes related cardio metabolic physiological parameters and adipocytokines. J Diabetes Metab Disord 2022; 21:1219-1231. [PMID: 36404859 PMCID: PMC9672291 DOI: 10.1007/s40200-021-00808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Background Recently, many studies have examined the effects of various training on pro-inflammatory and anti-inflammatory adipocytes. The results of these studies are contradictory. Some have reported positive effects and others have reported negative effects. However, there is no research to study the effect of exercise on similar energy expenditures on adipocytes. Hence the purpose of this study was the effects exercise training induced calories expenditure on type 2 diabetes related cardio metabolic physiological parameters and adipocytokines. Methods Sixty-eight men patients with type 2 diabetes [12 weeks] were randomized to 4 groups according to training regimens. the groups are [1] HIIT [n = 17], [2] RT[n = 17], [3] AT[n = 18], and [4] AT + RT n = 16]. For 12 weeks [4 days/week, 20–30 min/season], participants performed training sessions with 300 kcal energy expenditure. Before and after 12 weeks interventions, Anthropometric and physiological variables and Glucose, insulin, FFA, LDL, HDL, TG, TC collected and analyses. Leptin, SFRP5, LGR4 and Irisin levels in Serum were assessment by ELISA. Results Serum irisin concentrations were significantly higher in AT [%20.4] compared to other groups. Leptin, SFRP5 and LGR4 were significantly higher in HIIT [%-21.7, %48.1 and %30.9 respectively] compared to other groups. Serum SFRP5 concentrations were significantly increased in 4 groups[P > 0.05]. However, leptin and LGR4 were significantly decreased and increased in 3 groups expect in RT group[P > 0.05]. And irisin concentrations were significantly increased in AT group only[P > 0.05]. And many variables indicated positive and negative relationship between together [P > 0.05]. Conclusions The findings of the present study showed that if exercised with energy expenditure equal to HIIT training, it has the greatest effect on improving inflammatory and anti-inflammatory indicators in type 2 diabetic patients, as well as glycemic and lipid-chemical variables.
Collapse
Affiliation(s)
- Mahmoud Asle Mohammadi zadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| | - Saleh Afrasyabi
- Department of Sports Science, Farhangian University, Bushehr, Iran
| | - Zaynab Asle Mohamadi
- Department of Physical Education and Sport Sciences, Islamic Azad University Science and Research Branch, Ahvaz, Iran
| |
Collapse
|
6
|
Trautman ME, Richardson NE, Lamming DW. Protein restriction and branched-chain amino acid restriction promote geroprotective shifts in metabolism. Aging Cell 2022; 21:e13626. [PMID: 35526271 PMCID: PMC9197406 DOI: 10.1111/acel.13626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 01/20/2023] Open
Abstract
The proportion of humans suffering from age‐related diseases is increasing around the world, and creative solutions are needed to promote healthy longevity. Recent work has clearly shown that a calorie is not just a calorie—and that low protein diets are associated with reduced mortality in humans and promote metabolic health and extended lifespan in rodents. Many of the benefits of protein restriction on metabolism and aging are the result of decreased consumption of the three branched‐chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we discuss the emerging evidence that BCAAs are critical modulators of healthy metabolism and longevity in rodents and humans, as well as the physiological and molecular mechanisms that may drive the benefits of BCAA restriction. Our results illustrate that protein quality—the specific composition of dietary protein—may be a previously unappreciated driver of metabolic dysfunction and that reducing dietary BCAAs may be a promising new approach to delay and prevent diseases of aging.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Interdepartmental Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison Wisconsin USA
| | - Nicole E. Richardson
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Dudley W. Lamming
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
7
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|
8
|
Fotheringham AK, Solon-Biet SM, Bielefeldt-Ohmann H, McCarthy DA, McMahon AC, Ruohonen K, Li I, Sullivan MA, Whiddett RO, Borg DJ, Cogger VC, Ballard WO, Turner N, Melvin RG, Raubenheimer D, Le Couteur DG, Simpson SJ, Forbes JM. Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. iScience 2021; 24:103308. [PMID: 34820603 PMCID: PMC8602032 DOI: 10.1016/j.isci.2021.103308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys balance many byproducts of the metabolism of dietary components. Previous studies examining dietary effects on kidney health are generally of short duration and manipulate a single macronutrient. Here, kidney function and structure were examined in C57BL/6J mice randomized to consume one of a spectrum of macronutrient combinations (protein [5%–60%], carbohydrate [20%–75%], and fat [20%–75%]) from weaning to late-middle age (15 months). Individual and interactive impacts of macronutrients on kidney health were modeled. Dietary protein had the greatest influence on kidney function, where chronic low protein intake decreased glomerular filtration rates and kidney mass, whereas it increased kidney immune infiltration and structural injury. Kidney outcomes did not align with cardiometabolic risk factors including glucose intolerance, overweight/obesity, dyslipidemia, and hypertension in mice with chronic low protein consumption. This study highlights that protein intake over a lifespan is an important determinant of kidney function independent of cardiometabolic changes. Chronic high macronutrient intake from any source increases kidney function (GFR) Low protein intake led to greater kidney tubular structural injury and inflammation Lower protein intake decreased kidney mass and glomerular filtration capacity Kidney outcomes did not align with longevity or cardiometabolic outcomes
Collapse
Affiliation(s)
- Amelia K Fotheringham
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney 2006, NSW, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, QLD, Australia.,School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane 4067, QLD, Australia
| | - Domenica A McCarthy
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Aisling C McMahon
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Kari Ruohonen
- Animal Nutrition and Health, Cargill, Sandnes, Norway
| | - Isaac Li
- Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Rani O Whiddett
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Danielle J Borg
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, NSW 2052, Australia
| | - Richard G Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth 55812, MN, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| |
Collapse
|
9
|
|
10
|
Huang C, Santofimia-Castaño P, Iovanna J. NUPR1: A Critical Regulator of the Antioxidant System. Cancers (Basel) 2021; 13:cancers13153670. [PMID: 34359572 PMCID: PMC8345110 DOI: 10.3390/cancers13153670] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Nuclear protein 1 (NUPR1) is activated in cellular stress and is expressed at high levels in cancer cells. Much evidence has been gathered supporting its critical role in regulating the antioxidant system. Our review aims to summarize the literature data on the impact of NUPR1 on the oxidative stress response via such a regulatory role and how its inhibition induces reactive oxygen species-mediated cell death, such as ferroptosis. Abstract Nuclear protein 1 (NUPR1) is a small intrinsically disordered protein (IDP) activated in response to various types of cellular stress, including endoplasmic reticulum (ER) stress and oxidative stress. Reactive oxygen species (ROS) are mainly produced during mitochondrial oxidative metabolism, and directly impact redox homeostasis and oxidative stress. Ferroptosis is a ROS-dependent programmed cell death driven by an iron-mediated redox reaction. Substantial evidence supports a maintenance role of the stress-inducible protein NUPR1 on cancer cell metabolism that confers chemotherapeutic resistance by upregulating mitochondrial function-associated genes and various antioxidant genes in cancer cells. NUPR1, identified as an antagonist of ferroptosis, plays an important role in redox reactions. This review summarizes the current knowledge on the mechanism behind the observed impact of NUPR1 on mitochondrial function, energy metabolism, iron metabolism, and the antioxidant system. The therapeutic potential of genetic or pharmacological inhibition of NUPR1 in cancer is also discussed. Understanding the role of NUPR1 in the antioxidant system and the mechanisms behind its regulation of ferroptosis may promote the development of more efficacious strategies for cancer therapy.
Collapse
|
11
|
Dommerholt MB, Blankestijn M, Vieira‐Lara MA, van Dijk TH, Wolters H, Koster MH, Gerding A, van Os RP, Bloks VW, Bakker BM, Kruit JK, Jonker JW. Short-term protein restriction at advanced age stimulates FGF21 signalling, energy expenditure and browning of white adipose tissue. FEBS J 2021; 288:2257-2277. [PMID: 33089625 PMCID: PMC8048886 DOI: 10.1111/febs.15604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Dietary protein restriction has been demonstrated to improve metabolic health under various conditions. However, the relevance of ageing and age-related decline in metabolic flexibility on the effects of dietary protein restriction has not been addressed. Therefore, we investigated the effect of short-term dietary protein restriction on metabolic health in young and aged mice. Young adult (3 months old) and aged (18 months old) C57Bl/6J mice were subjected to a 3-month dietary protein restriction. Outcome parameters included fibroblast growth factor 21 (FGF21) levels, muscle strength, glucose tolerance, energy expenditure (EE) and transcriptomics of brown and white adipose tissue (WAT). Here, we report that a low-protein diet had beneficial effects in aged mice by reducing some aspects of age-related metabolic decline. These effects were characterized by increased plasma levels of FGF21, browning of subcutaneous WAT, increased body temperature and EE, while no changes were observed in glucose homeostasis and insulin sensitivity. Moreover, the low-protein diet used in this study was well-tolerated in aged mice indicated by the absence of adverse effects on body weight, locomotor activity and muscle performance. In conclusion, our study demonstrates that a short-term reduction in dietary protein intake can impact age-related metabolic health alongside increased FGF21 signalling, without negatively affecting muscle function. These findings highlight the potential of protein restriction as a strategy to induce EE and browning of WAT in aged individuals.
Collapse
Affiliation(s)
- Marleen B. Dommerholt
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Maaike Blankestijn
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Marcel A. Vieira‐Lara
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Henk Wolters
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Mirjam H. Koster
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Albert Gerding
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Ronald P. van Os
- Mouse Clinic for Cancer and AgingCentral Animal FacilityUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent W. Bloks
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Barbara M. Bakker
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Janine K. Kruit
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Johan W. Jonker
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
12
|
Knudsen JR, Li Z, Persson KW, Li J, Henriquez-Olguin C, Jensen TE. Contraction-regulated mTORC1 and protein synthesis: Influence of AMPK and glycogen. J Physiol 2020; 598:2637-2649. [PMID: 32372406 DOI: 10.1113/jp279780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS AMP-activated protein kinase (AMPK)-dependent Raptor Ser792 phosphorylation does not influence mechanistic target of rapamycin complex 1 (mTORC1)-S6K1 activation by intense muscle contraction. α2 -AMPK activity-deficient mice have lower contraction-stimulated protein synthesis. Increasing glycogen activates mTORC1-S6K1. Normalizing muscle glycogen content rescues reduced protein synthesis in AMPK-deficient mice. ABSTRACT The mechansitic target of rapamycin complex 1 (mTORC1)-S6K1 signalling pathway regulates muscle growth-related protein synthesis and is antagonized by AMP-activated protein kinase (AMPK) in multiple cell types. Resistance exercise stimulates skeletal muscle mTORC1-S6K1 and AMPK signalling and post-contraction protein synthesis. Glycogen inhibits AMPK and has been proposed as a pro-anabolic stimulus. The present study aimed to investigate how muscle mTORC1-S6K1 signalling and protein synthesis respond to resistance exercise-mimicking contraction in the absence of AMPK and with glycogen manipulation. Resistance exercise-mimicking unilateral in situ contraction of musculus quadriceps femoris in anaesthetized wild-type and dominant negative α2 AMPK kinase dead transgenic (KD-AMPK) mice, measuring muscle mTORC1 and AMPK signalling immediately (0 h) and 4 h post-contraction, and protein-synthesis at 4 h. Muscle glycogen manipulation by 5 day oral gavage of the glycogen phosphorylase inhibitor CP316819 and sucrose (80 g L-1 ) in the drinking water prior to in situ contraction. The mTORC1-S6K1 and AMPK signalling axes were coactivated immediately post-contraction, despite potent AMPK-dependent Ser792 phosphorylation on the mTORC1 subunit raptor. KD-AMPK muscles displayed normal mTORC1-S6K1 activation at 0 h and 4 h post-exercise, although there was impaired contraction-stimulated protein synthesis 4 h post-contraction. Pharmacological/dietary elevation of muscle glycogen content augmented contraction-stimulated mTORC1-S6K1-S6 signalling and rescued the reduced protein synthesis-response in KD-AMPK to wild-type levels. mTORC-S6K1 signalling is not influenced by α2 -AMPK during or after intense muscle contraction. Elevated glycogen augments mTORC1-S6K1 signalling. α2 -AMPK-deficient KD-AMPK mice display impaired contraction-induced muscle protein synthesis, which can be rescued by normalizing muscle glycogen content.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar W Persson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Fibroblast Growth Factor 21 and the Adaptive Response to Nutritional Challenges. Int J Mol Sci 2019; 20:ijms20194692. [PMID: 31546675 PMCID: PMC6801670 DOI: 10.3390/ijms20194692] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The Fibroblast Growth Factor 21 (FGF21) is considered an attractive therapeutic target for obesity and obesity-related disorders due to its beneficial effects in lipid and carbohydrate metabolism. FGF21 response is essential under stressful conditions and its metabolic effects depend on the inducer factor or stress condition. FGF21 seems to be the key signal which communicates and coordinates the metabolic response to reverse different nutritional stresses and restores the metabolic homeostasis. This review is focused on describing individually the FGF21-dependent metabolic response activated by some of the most common nutritional challenges, the signal pathways triggering this response, and the impact of this response on global homeostasis. We consider that this is essential knowledge to identify the potential role of FGF21 in the onset and progression of some of the most prevalent metabolic pathologies and to understand the potential of FGF21 as a target for these diseases. After this review, we conclude that more research is needed to understand the mechanisms underlying the role of FGF21 in macronutrient preference and food intake behavior, but also in β-klotho regulation and the activity of the fibroblast activation protein (FAP) to uncover its therapeutic potential as a way to increase the FGF21 signaling.
Collapse
|
14
|
Li Z, Rasmussen TS, Rasmussen ML, Li J, Henríquez Olguín C, Kot W, Nielsen DS, Jensen TE. The Gut Microbiome on a Periodized Low-Protein Diet Is Associated With Improved Metabolic Health. Front Microbiol 2019; 10:709. [PMID: 31019501 PMCID: PMC6458274 DOI: 10.3389/fmicb.2019.00709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
A periodized (14 days on/14 days off) 5% low protein-high carbohydrate (pLPHC) diet protects against weight gain, improves glucose tolerance in mice and interacts with concurrent voluntary activity wheel training on several parameters including weight maintenance and liver FGF21 secretion. The gut microbiome (GM) responds to both diet and exercise and may influence host metabolism. This study compared the cecal GM after a 13.5-week intervention study in mice on a variety of dietary interventions ± concurrent voluntary exercise training in activity wheels. The diets included chronic chow diet, LPHC diet, 40 E% high protein-low carbohydrate (HPLC) diet, an obesigenic chronic high-fat diet (HFD) and the pLPHC diet. Our hypothesis was that the GM changes with pLPHC diet would generally reflect the improved metabolic health of the host and interact with concurrent exercise training. The GM analyses revealed greater abundance phylum Bacteroidetes and the genus Akkermansia on chronic and periodized LPHC and higher abundance of Oscillospira and Oscillibacter on HFD. The differences in diet-induced GM correlated strongly with the differences in a range of host metabolic health-measures. In contrast, no significant effect of concurrent exercise training was observed. In conclusion, pLPHC diet elicits substantial changes in the GM. In contrast, only subtle and non-significant effects of concurrent activity wheel exercise were observed. The pLPHC-associated microbiome may contribute to the healthier host phenotype observed in these mice.
Collapse
Affiliation(s)
- Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Torben Sølbeck Rasmussen
- Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Line Rasmussen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henríquez Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Witold Kot
- Department of Environmental Sciences, Aarhus University, Roskilde, Denmark
| | - Dennis Sandris Nielsen
- Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|