1
|
Shi L, He Y, Lian Y, Luo J, Zhu X, Zhao H. Melanin-concentrating hormone: A promising target for antidepressant treatment. Pharmacol Biochem Behav 2025; 250:173999. [PMID: 40081601 DOI: 10.1016/j.pbb.2025.173999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Depression represents a complex neuropsychiatric disorder with an escalating global health burden, characterized by heterogeneous pathophysiology and profound impairments in cognitive-emotional functioning. Current treatment methods have limited efficacy in some individuals and may induce undesirable side effects, necessitating the exploration of novel therapeutic targets and techniques. Emerging research has identified neuropeptide systems as pivotal regulators of mood-related circuits, with melanin-concentrating hormone (MCH) signaling emerging as a particularly promising candidate for antidepressant development. The potential involvement of MCH in the pathophysiology of depression was first proposed over two decades ago. Since then, accumulating evidence from recent studies has progressively illuminated its multifaceted roles in modulating depressive behaviors and underlying neurobiological mechanisms. This review systematically analyzes the mechanistic interplay between MCH signaling and depression pathophenotypes, including its relationship with the hypothalamic-pituitary-adrenal (HPA) axis, neurotransmitter systems, synaptic plasticity, and the regulation of sleep-wakefulness. Particular emphasis is placed on advancing the therapeutic rationale for MCH receptor 1 (MCHR1) antagonists, which demonstrate rapid-onset antidepressant efficacy in preclinical studies compared to traditional agents. Nonetheless, the antidepressant mechanism of the MCH system still requires further elucidation to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Lingchang Shi
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Ying He
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan 410208, China
| | - Yujun Lian
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jie Luo
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Zhu
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan 410208, China; Department of Science & Technology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan 410208, China.
| |
Collapse
|
2
|
Furman KL, Baron L, Lyons HC, Cha T, Evans JR, Manna J, Zhu L, Mattis J, Burgess CR. Melanin-Concentrating Hormone Projections to the Nucleus Accumbens Enhance the Reward Value of Food Consumption and Do Not Induce Feeding or REM Sleep. J Neurosci 2025; 45:e1725242024. [PMID: 39746823 PMCID: PMC11884387 DOI: 10.1523/jneurosci.1725-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature and promoted by factors other than energy deficit. When dysregulated, nonhomeostatic drives to consume can contribute to disorders of food intake, adding to the increasing prevalence of restrictive eating disorders and obesity. Melanin-concentrating hormone (MCH) neurons have been implicated in the regulation of feeding behavior, in addition to a number of other fundamental behaviors including sleep, anxiety, and maternal behavior. Several studies suggest that MCH peptide increases food consumption, while studies of MCH neurons show effects only on cued feeding, and others show no effect of MCH neuron manipulation on feeding. MCH neurons have widespread projections to diverse downstream brain regions, yet few studies have investigated the function of specific projections or differentiated the behaviors they regulate. Here we use optogenetics, in combination with different behavioral paradigms, to elucidate the role of MCH projections to the nucleus accumbens (NAc) in sleep and feeding behavior. We show that MCH neurons projecting to the NAc do not induce changes in baseline feeding or REM sleep but do enhance the preference for a food paired with optogenetic stimulation. Furthermore, this effect is diminished in female mice relative to males, in line with previous results suggesting sex differences in the functional role of MCH neurons. These results suggest that MCH projections to the NAc can enhance the rewarding value of consumed food.
Collapse
Affiliation(s)
- Katherine L Furman
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Lorelei Baron
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Hannah C Lyons
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Timothy Cha
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jack R Evans
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jayeeta Manna
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Joanna Mattis
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
3
|
Zhong BH, Nie N, Dong M. Molecular mechanisms of the obesity associated with Bardet-Biedl syndrome: An update. Obes Rev 2025; 26:e13859. [PMID: 39477210 DOI: 10.1111/obr.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 02/05/2025]
Abstract
Obesity is a prominent feature of Bardet-Biedl syndrome (BBS), which represents a major and growing public health problem. More than half of BBS patients carry mutations in one of eight genes that encode subunits of a protein complex known as the BBSome, which has emerged as a key regulator of energy and glucose homeostasis. However, the mechanisms underlying obesity in BBS are complex. Numerous studies have identified a high prevalence of insulin resistance and metabolic syndrome among individuals with BBS. However, the exact mechanisms are not fully understood. This review summarized evidence from experiments using mouse and cell models, focusing on the energy imbalance that leads to obesity in patients with BBS. The studies discussed in this review contribute to understanding the functional role of the BBSome in the obesity associated with BBS, laying the foundation for developing new preventive or therapeutic strategies for obese patients.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Nie
- Comprehensive Geriatric First Ward, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Furman KL, Baron L, Lyons HC, Cha T, Evans JR, Manna J, Zhu L, Mattis J, Burgess CR. Melanin concentrating hormone projections to the nucleus accumbens enhance the reward value of food consumption and do not induce feeding or REM sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622987. [PMID: 39605522 PMCID: PMC11601410 DOI: 10.1101/2024.11.11.622987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit. When dysregulated, non-homeostatic drives to consume can contribute to disorders of food intake, adding to the increasing prevalence of restrictive eating disorders and obesity. Melanin-concentrating hormone (MCH) neurons have been implicated in the regulation of feeding behavior, in addition to a number of other fundamental behaviors including sleep, anxiety, and maternal behavior. Several studies suggest that MCH peptide increases food consumption, while studies of MCH neurons show effects only on cued feeding, and others show no effect of MCH neuron manipulation on feeding. MCH neurons have widespread projections to diverse downstream brain regions yet few studies have investigated the function of specific projections or differentiated the behaviors they regulate. Here we use optogenetics, in combination with different behavioral paradigms, to elucidate the role of MCH projections to the nucleus accumbens (NAc) in sleep and feeding behavior. We show that MCH neurons projecting to the NAc do not induce changes in baseline feeding or REM sleep, but do enhance the preference for a food paired with optogenetic stimulation. Furthermore, this effect is diminished in female mice relative to males, in line with previous results suggesting sex differences in the functional role of MCH neurons. These results suggest that MCH projections to the NAc can enhance the rewarding value of consumed food.
Collapse
Affiliation(s)
- Katherine L. Furman
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
| | - Lorelei Baron
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Hannah C. Lyons
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Neurology, University of Michigan, Ann Arbor, MI USA
| | - Timothy Cha
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Jack R. Evans
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Jayeeta Manna
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI USA
| | - Joanna Mattis
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
- Department of Neurology, University of Michigan, Ann Arbor, MI USA
| | - Christian R. Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
5
|
Spencer CD, Miller PA, Williams-Ikhenoba JG, Nikolova RG, Chee MJ. Regulation of the Mouse Ventral Tegmental Area by Melanin-Concentrating Hormone. J Neurosci 2024; 44:e0790232024. [PMID: 38806249 PMCID: PMC11223476 DOI: 10.1523/jneurosci.0790-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Melanin-concentrating hormone (MCH) acts via its sole receptor MCHR1 in rodents and is an important regulator of homeostatic behaviors like feeding, sleep, and mood to impact overall energy balance. The loss of MCH signaling by MCH or MCHR1 deletion produces hyperactive mice with increased energy expenditure, and these effects are consistently associated with a hyperdopaminergic state. We recently showed that MCH suppresses dopamine release in the nucleus accumbens, which principally receives dopaminergic projections from the ventral tegmental area (VTA), but the mechanisms underlying MCH-regulated dopamine release are not clearly defined. MCHR1 expression is widespread and includes dopaminergic VTA cells. However, as the VTA is a neurochemically diverse structure, we assessed Mchr1 gene expression at glutamatergic, GABAergic, and dopaminergic VTA cells and determined if MCH inhibited the activity of VTA cells and/or their local microcircuit. Mchr1 expression was robust in major VTA cell types, including most dopaminergic (78%) or glutamatergic cells (52%) and some GABAergic cells (38%). Interestingly, MCH directly inhibited dopaminergic and GABAergic cells but did not regulate the activity of glutamatergic cells. Rather, MCH produced a delayed increase in excitatory input to dopamine cells and a corresponding decrease in GABAergic input to glutamatergic VTA cells. Our findings suggested that MCH may acutely suppress dopamine release while disinhibiting local glutamatergic signaling to restore dopamine levels. This indicated that the VTA is a target of MCH action, which may provide bidirectional regulation of energy balance.
Collapse
Affiliation(s)
- Carl Duncan Spencer
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Persephone A Miller
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | | | - Ralitsa G Nikolova
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
6
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
7
|
Kuebler IRK, Suárez M, Wakabayashi KT. Sex differences and sex-specific regulation of motivated behavior by Melanin-concentrating hormone: a short review. Biol Sex Differ 2024; 15:33. [PMID: 38570844 PMCID: PMC10993549 DOI: 10.1186/s13293-024-00608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA
| | - Mauricio Suárez
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA.
- Rural Drug Addiction Research Center, University of Nebraska-Lincoln, 660 N 12th St., Lincoln, NE, 68588, USA.
| |
Collapse
|
8
|
Everett T, Ten Eyck TW, Wu CH, Shelowitz AL, Stansbury SM, Firek A, Setlow B, McIntyre JC. Cilia loss on distinct neuron populations differentially alters cocaine-induced locomotion and reward. J Psychopharmacol 2024; 38:200-212. [PMID: 38151883 PMCID: PMC11078551 DOI: 10.1177/02698811231219058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuronal primary cilia are being recognized for their role in mediating signaling associated with a variety of neurobehaviors, including responses to drugs of abuse. They function as signaling hubs, enriched with a diverse array of G-protein coupled receptors (GPCRs), including several associated with motivation and drug-related behaviors. However, our understanding of how cilia regulate neuronal function and behavior is still limited. AIMS The objective of the current study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to cocaine. METHODS To test the consequences of cilia loss on cocaine-induced locomotion and reward-related behavior, we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. RESULTS Cilia ablation on either population of neurons failed to significantly alter acute locomotor responses to cocaine at a range of doses. With repeated administration, mice lacking cilia on GAD2-GABAergic neurons showed no difference in locomotor sensitization to cocaine compared to wild-type (WT) littermates, whereas mice lacking cilia on dopaminergic neurons exhibited reduced locomotor sensitization to cocaine at 10 and 30 mg/kg. Mice lacking cilia on GAD2-GABAergic neurons showed no difference in cocaine conditioned place preference (CPP), whereas mice lacking cilia on dopaminergic neurons exhibited reduced CPP compared to WT littermates. CONCLUSIONS Combined with previous findings using amphetamine, our results show that behavioral effects of cilia ablation are cell- and drug type-specific, and that neuronal cilia contribute to modulation of both the locomotor-inducing and rewarding properties of cocaine.
Collapse
Affiliation(s)
- Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Tyler W. Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Chang-Hung Wu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | | | - Sofia M. Stansbury
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Alexandra Firek
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| |
Collapse
|
9
|
Kuebler IRK, Liu Y, Bueno Álvarez BS, Huber NM, Jolton JA, Dasari R, Wakabayashi KT. Melanin-concentrating hormone receptor antagonism differentially attenuates nicotine experience-dependent locomotor behavior in female and male rats. Pharmacol Biochem Behav 2023; 232:173649. [PMID: 37793486 PMCID: PMC10985048 DOI: 10.1016/j.pbb.2023.173649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Nicotine is a significant public health concern because it is the primary pharmacological agent in tobacco use disorder. One neural system that has been implicated in the symptoms of several substance use disorders is the melanin-concentrating hormone (MCH) system. MCH regulates various motivated behaviors depending on sex, yet little is known of how this interaction affects experience with drugs of abuse, particularly nicotine. The goal of this study was to determine the effect of MCH receptor antagonism on experience-dependent nicotine-induced locomotion after chronic exposure, particularly on the expression of locomotor sensitization. Adult female and male Wistar rats were given saline then cumulative doses of nicotine (0.1, 0.32, 0.56, and 1.0 mg/kg) intraperitoneally to determine the acute effects of nicotine (day 1). Next, rats were treated with 1.0 mg/kg nicotine for 6 days, given an identical series of cumulative doses (day 8), and then kept in a drug-free state for 6 days. On day 15, rats were pretreated with vehicle or the MCH receptor antagonist GW803430 (10 or 30 mg/kg) before another series of cumulative doses to assess response to chronic nicotine. After vehicle, male rats increased nicotine locomotor activation from day 1 to day 15, and both sexes showed a sensitized response when normalized to saline. The lower dose of GW803430 decreased locomotion compared to vehicle in females, while the higher dose decreased locomotion in males. Both sexes showed nicotine dose-dependent effects of GW803430, strongest at lower doses of nicotine. Controlling for sex-based locomotor differences revealed that females are more sensitive to GW803430. The high dose of GW803430 also decreased saline locomotion in males. Together, the results of our study suggest that MCH is involved in the expression of nicotine locomotor sensitization, and that MCH regulates these nicotine behavioral symptoms differently across sex.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Youxi Liu
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Bárbara S Bueno Álvarez
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Noah M Huber
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Raaga Dasari
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America; Rural Drug Addiction Research Center, University of Nebraska-Lincoln, 660 N 12th St., Lincoln, NE 68588, United States of America.
| |
Collapse
|
10
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
11
|
Abstract
OBJECTIVE Due to the phenotypic heterogeneity and etiological complexity of bipolar disorder (BD), many patients do not respond well to the current medications, and developing novel effective treatment is necessary. Whether any BD genome-wide association study (GWAS) risk genes were targets of existing drugs or novel drugs that can be repurposed in the clinical treatment of BD is a hot topic in the GWAS era of BD. METHODS A list of 425 protein-coding BD risk genes was distilled through the BD GWAS, and 4479 protein-coding druggable targets were retrieved from the druggable genome. The overlapped genes/targets were subjected to further analyses in DrugBank, Pharos, and DGIdb datasets in terms of their FDA status, mechanism of action and primary indication, to identify their potential for repurposing. RESULTS We identified 58 BD GWAS risk genes grouped as the druggable targets, and several genes were given higher priority. These BD risk genes were targets of antipsychotics, antidepressants, antiepileptics, calcium channel antagonists, as well as anxiolytics and analgesics, either existing clinically-approved drugs for BD or the drugs than can be repurposed for treatment of BD in the future. Those genes were also likely relevant to BD pathophysiology, as many of them encode ion channel, ion transporter or neurotransmitter receptor, or the mice manipulating those genes are likely to mimic the phenotypes manifest in BD patients. CONCLUSIONS This study identifies several targets that may facilitate the discovery of novel treatments in BD, and implies the value of conducting GWAS into clinical translation.
Collapse
Affiliation(s)
- Hao-Xiang Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
12
|
Sankhe AS, Bordeleau D, Alfonso DIM, Wittman G, Chee MJ. Loss of glutamatergic signalling from MCH neurons reduced anxiety-like behaviours in novel environments. J Neuroendocrinol 2023; 35:e13222. [PMID: 36529144 DOI: 10.1111/jne.13222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Melanin-concentrating hormone (MCH) neurons within the hypothalamus are heterogeneous and can coexpress additional neuropeptides and transmitters. The majority of MCH neurons express vesicular transporters to package glutamate for synaptic release, and MCH neurons can directly innervate downstream neurons via glutamate release. Although glutamatergic signalling from MCH neurons may support physiological and behavioural roles that are independent of MCH (e.g., in glucose homeostasis and nutrient-sensing), it can also mediate similar roles to MCH in the regulation of energy balance. In addition to energy balance, the MCH system has also been implicated in mood disorders, as MCH receptor antagonists have anxiolytic and anti-depressive effects. However, the contribution of glutamatergic signalling from MCH neurons to mood-related functions have not been investigated. We crossed Mch-cre mice with floxed-Vglut2 mice to delete the expression of the vesicular glutamate transporter 2 (Vglut2) and disable glutamatergic signalling specifically from MCH neurons. The resulting Mch-Vglut2-KO mice showed Vglut2 deletion from over 75% of MCH neurons, and although we did not observe changes in depressive-like behaviours, we found that Mch-Vglut2-KO mice displayed anxiety-like behaviours. Mch-Vglut2-KO mice showed reduced exploratory activity when placed in a new cage and were quicker to consume food placed in the centre of a novel open arena. These findings showed that Vglut2 deletion from MCH neurons resulted in anxiolytic actions and suggested that the anxiogenic effects of glutamate are similar to those of the MCH peptide. Taken together, these findings suggest that glutamate and MCH may synergize to regulate and promote anxiety-like behaviour.
Collapse
Affiliation(s)
- Aditi S Sankhe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Dillon Bordeleau
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Gábor Wittman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA, USA
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
13
|
He X, Li Y, Zhang N, Huang J, Ming X, Guo R, Hu Y, Ji P, Guo F. Melanin-concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala in mice. Front Pharmacol 2022; 13:906057. [PMID: 36016574 PMCID: PMC9395614 DOI: 10.3389/fphar.2022.906057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The limbic system plays a pivotal role in stress-induced anxiety and intestinal disorders, but how the functional circuits between nuclei within the limbic system are engaged in the processing is still unclear. In our study, the results of fluorescence gold retrograde tracing and fluorescence immunohistochemistry showed that the melanin-concentrating hormone (MCH) neurons of the lateral hypothalamic area (LHA) projected to the basolateral amygdala (BLA). Both chemogenetic activation of MCH neurons and microinjection of MCH into the BLA induced anxiety disorder in mice, which were reversed by intra-BLA microinjection of MCH receptor 1 (MCHR1) blocker SNAP-94847. In the chronic acute combining stress (CACS) stimulated mice, SNAP94847 administrated in the BLA ameliorated anxiety-like behaviors and improved intestinal dysfunction via reducing intestinal permeability and inflammation. In conclusion, MCHergic circuit from the LHA to the BLA participates in the regulation of anxiety-like behavior in mice, and this neural pathway is related to the intestinal dysfunction in CACS mice by regulating intestinal permeability and inflammation.
Collapse
Affiliation(s)
- Xiaoman He
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuhang Li
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinfang Huang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Hu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
- *Correspondence: Feifei Guo,
| |
Collapse
|
14
|
Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Mol Psychiatry 2022; 27:2927-2939. [PMID: 35351989 DOI: 10.1038/s41380-022-01523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial genomic loci significantly associated with clinical risk of bipolar disorder (BD), and studies combining techniques of genetics, neuroscience, neuroimaging, and pharmacology are believed to help tackle clinical problems (e.g., identifying novel therapeutic targets). However, translating findings of psychiatric genetics into biological mechanisms underlying BD pathogenesis remains less successful. Biological impacts of majority of BD GWAS risk loci are obscure, and the involvement of many GWAS risk genes in this illness is yet to be investigated. It is thus necessary to review the progress of applying BD GWAS risk genes in the research and intervention of the disorder. A comprehensive literature search found that a number of such risk genes had been investigated in cellular or animal models, even before they were highlighted in BD GWAS. Intriguingly, manipulation of many BD risk genes (e.g., ANK3, CACNA1C, CACNA1B, HOMER1, KCNB1, MCHR1, NCAN, SHANK2 etc.) resulted in altered murine behaviors largely restoring BD clinical manifestations, including mania-like symptoms such as hyperactivity, anxiolytic-like behavior, as well as antidepressant-like behavior, and these abnormalities could be attenuated by mood stabilizers. In addition to recapitulating phenotypic characteristics of BD, some GWAS risk genes further provided clues for the neurobiology of this illness, such as aberrant activation and functional connectivity of brain areas in the limbic system, and modulated dendritic spine morphogenesis as well as synaptic plasticity and transmission. Therefore, BD GWAS risk genes are undoubtedly pivotal resources for modeling this illness, and might be translational therapeutic targets in the future clinical management of BD. We discuss both promising prospects and cautions in utilizing the bulk of useful resources generated by GWAS studies. Systematic integrations of findings from genetic and neuroscience studies are called for to promote our understanding and intervention of BD.
Collapse
|
15
|
Orikasa C. Social Network Plasticity of Mice Parental Behavior. Front Neurosci 2022; 16:882850. [PMID: 35747212 PMCID: PMC9209706 DOI: 10.3389/fnins.2022.882850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neural plasticity occurs during developmental stages and is essential for sexual differentiation of the brain and the ensuing sex-dependent behavioral changes in adults. Maternal behavior is primarily affected by sex-related differences in the brain; however, chronic social isolation even in mature male mice can induce maternal retrieving and crouching behavior when they are first exposed to pups. Social milieus influence the inherent behavior of adults and alter the molecular architecture in the brain, thereby allowing higher levels of associated gene expression and molecular activity. This review explores the possibility that although the development of neural circuits is closely associated with maternal behavior, the brain can still retain its neuroplasticity in adults from a neuromolecular perspective. In addition, neuronal machinery such as neurotransmitters and neuropeptides might influence sociobehavioral changes. This review also discusses that the neural circuits regulating behaviors such as parenting and infanticide (including neglect behavior), might be controlled by neural relay on melanin concentrating hormone (MCH)–oxytocin in the hypothalamus during the positive and negative mode of action in maternal behavior. Furthermore, MCH–oxytocin neural relay might contribute to the anxiolytic effect on maternal behavior, which is involved with reward circuits.
Collapse
|
16
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Zhou X, Risold PY, Alvarez-Bolado G. Development of the GABAergic and glutamatergic neurons of the lateral hypothalamus. J Chem Neuroanat 2021; 116:101997. [PMID: 34182088 DOI: 10.1016/j.jchemneu.2021.101997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
In the last few years we assist to an unexpected deluge of genomic data on hypothalamic development and structure. Perhaps most surprisingly, the Lateral Zone has received much attention too. The new information focuses first of all on transcriptional heterogeneity. Many already known and a number of hitherto unknown lateral hypothalamic neurons have been described to an enormous degree of detail. Maybe the most surprising novel discoveries are two: First, some restricted regions of the embryonic forebrain neuroepithelium generate specific LHA neurons, either GABAergic or glutamatergic. Second, evidence is mounting that supports the existence of numerous kinds of "bilingual" lateral hypothalamic neurons, expressing (and releasing) glutamate and GABA both as well as assorted neuropeptides. This is not accepted by all, and it could be that genomic researchers need a common set of rules to interpret their data (sensitivity, significance, age of analysis). In any case, some of the new results appear to confirm hypotheses about the ability of the hypothalamus and in particular its Lateral Zone to achieve physiological flexibility on a fixed connectivity ("biochemical switching"). Furthermore, the results succinctly reviewed here are the basis for future advances, since the transcriptional databases generated can now be mined e.g. for adhesion genes, to figure out the causes of the peculiar histology of the Lateral Zone; or for ion channel genes, to clarify present and future electrophysiological data. And with the specific expression data about small subpopulations of neurons, their connections can now be specifically labeled, revealing novel relations with functional significance.
Collapse
Affiliation(s)
- Xunlei Zhou
- Dept. Neuroanatomy, University of Heidelberg School of Medicine, D-69120, Heidelberg, Germany
| | - Pierre-Yves Risold
- Neurosciences Intégratives et Cliniques EA481, Université de Bourgogne Franche-Comté, 25000, Besançon, France
| | - Gonzalo Alvarez-Bolado
- Dept. Neuroanatomy, University of Heidelberg School of Medicine, D-69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Izawa S, Yoneshiro T, Kondoh K, Nakagiri S, Okamatsu-Ogura Y, Terao A, Minokoshi Y, Yamanaka A, Kimura K. Melanin-concentrating hormone-producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. J Physiol 2021; 600:815-827. [PMID: 33899241 DOI: 10.1113/jp281241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Melanin-concentrating hormone (MCH) neuron-ablated mice exhibit increased energy expenditure and reduced fat weight. Increased brown adipose tissue (BAT) activity and locomotor activity-independent energy expenditure contributed to body weight reduction in MCH neuron-ablated mice. MCH neurons send inhibitory input to the medullary raphe nucleus to modulate BAT activity. ABSTRACT Hypothalamic melanin-concentrating hormone (MCH) peptide robustly affects energy homeostasis. However, it is unclear whether and how MCH-producing neurons, which contain and release a variety of neuropeptides/transmitters, regulate energy expenditure in the central nervous system and peripheral tissues. We thus examined the regulation of energy expenditure by MCH neurons, focusing on interscapular brown adipose tissue (BAT) activity. MCH neuron-ablated mice exhibited reduced body weight, increased oxygen consumption, and increased BAT activity, which improved locomotor activity-independent energy expenditure. Trans-neuronal retrograde tracing with the recombinant pseudorabies virus revealed that MCH neurons innervate BAT via the sympathetic premotor region in the medullary raphe nucleus (MRN). MRN neurons were activated by MCH neuron ablation. Therefore, endogenous MCH neuron activity negatively modulates energy expenditure via BAT inhibition. MRN neurons might receive inhibitory input from MCH neurons to suppress BAT activity.
Collapse
Affiliation(s)
- Shuntaro Izawa
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Takeshi Yoneshiro
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shohei Nakagiri
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Akira Terao
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Department of Biology, School of Biological Sciences, Tokai University, Sapporo, 005-8601, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
19
|
Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021; 15:639313. [PMID: 33828450 PMCID: PMC8019792 DOI: 10.3389/fnins.2021.639313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
The lateral hypothalamus (LH) is classically implicated in sleep-wake control. It is the main source of orexin/hypocretin and melanin-concentrating hormone (MCH) neuropeptides in the brain, which have been both implicated in arousal state switching. These neuropeptides are produced by non-overlapping LH neurons, which both project widely throughout the brain, where release of orexin and MCH activates specific postsynaptic G-protein-coupled receptors. Optogenetic manipulations of orexin and MCH neurons during sleep indicate that they promote awakening and REM sleep, respectively. However, recordings from orexin and MCH neurons in awake, moving animals suggest that they also act outside sleep/wake switching. Here, we review recent studies showing that both orexin and MCH neurons can rapidly (sub-second-timescale) change their firing when awake animals experience external stimuli, or during self-paced exploration of objects and places. However, the sensory-behavioral correlates of orexin and MCH neural activation can be quite different. Orexin neurons are generally more dynamic, with about 2/3rds of them activated before and during self-initiated running, and most activated by sensory stimulation across sensory modalities. MCH neurons are activated in a more select manner, for example upon self-paced investigation of novel objects and by certain other novel stimuli. We discuss optogenetic and chemogenetic manipulations of orexin and MCH neurons, which combined with pharmacological blockade of orexin and MCH receptors, imply that these rapid LH dynamics shape fundamental cognitive and motor processes due to orexin and MCH neuropeptide actions in the awake brain. Finally, we contemplate whether the awake control of psychomotor brain functions by orexin and MCH are distinct from their “arousal” effects.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
20
|
Lord MN, Subramanian K, Kanoski SE, Noble EE. Melanin-concentrating hormone and food intake control: Sites of action, peptide interactions, and appetition. Peptides 2021; 137:170476. [PMID: 33370567 PMCID: PMC8025943 DOI: 10.1016/j.peptides.2020.170476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.
Collapse
Affiliation(s)
- Magen N Lord
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA
| | - Keshav Subramanian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA.
| |
Collapse
|
21
|
MCH-R1 Antagonist GPS18169, a Pseudopeptide, Is a Peripheral Anti-Obesity Agent in Mice. Molecules 2021; 26:molecules26051291. [PMID: 33673598 PMCID: PMC7957705 DOI: 10.3390/molecules26051291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19 amino acid long peptide found in the brain of animals, including fishes, batrachians, and mammals. MCH is implicated in appetite and/or energy homeostasis. Antagonists at its receptor (MCH-R1) could be major tools (or ultimately drugs) to understand the mechanism of MCH action and to fight the obesity syndrome that is a worldwide societal health problem. Ever since the deorphanisation of the MCH receptor, we cloned, expressed, and characterized the receptor MCH-R1 and started a vast medicinal chemistry program aiming at the discovery of such usable compounds. In the present final work, we describe GPS18169, a pseudopeptide antagonist at the MCH-R1 receptor with an affinity in the nanomolar range and a Ki for its antagonistic effect in the 20 picomolar range. Its metabolic stability is rather ameliorated compared to its initial parent compound, the antagonist S38151. We tested it in an in vivo experiment using high diet mice. GPS18169 was found to be active in limiting the accumulation of adipose tissues and, correlatively, we observed a normalization of the insulin level in the treated animals, while no change in food or water consumption was observed.
Collapse
|
22
|
Stanojlovic M, Pallais JP, Kotz CM. Inhibition of Orexin/Hypocretin Neurons Ameliorates Elevated Physical Activity and Energy Expenditure in the A53T Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:E795. [PMID: 33466831 PMCID: PMC7830608 DOI: 10.3390/ijms22020795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aside from the classical motor symptoms, Parkinson's disease also has various non-classical symptoms. Interestingly, orexin neurons, involved in the regulation of exploratory locomotion, spontaneous physical activity, and energy expenditure, are affected in Parkinson's. In this study, we hypothesized that Parkinson's-disease-associated pathology affects orexin neurons and therefore impairs functions they regulate. To test this, we used a transgenic animal model of Parkinson's, the A53T mouse. We measured body composition, exploratory locomotion, spontaneous physical activity, and energy expenditure. Further, we assessed alpha-synuclein accumulation, inflammation, and astrogliosis. Finally, we hypothesized that chemogenetic inhibition of orexin neurons would ameliorate observed impairments in the A53T mice. We showed that aging in A53T mice was accompanied by reductions in fat mass and increases in exploratory locomotion, spontaneous physical activity, and energy expenditure. We detected the presence of alpha-synuclein accumulations in orexin neurons, increased astrogliosis, and microglial activation. Moreover, loss of inhibitory pre-synaptic terminals and a reduced number of orexin cells were observed in A53T mice. As hypothesized, this chemogenetic intervention mitigated the behavioral disturbances induced by Parkinson's disease pathology. This study implicates the involvement of orexin in early Parkinson's-disease-associated impairment of hypothalamic-regulated physiological functions and highlights the importance of orexin neurons in Parkinson's disease symptomology.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
| | - Catherine M. Kotz
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
- Minneapolis VA Health Care System, GRECC, 1 Veterans Dr, Minneapolis, MN 55417, USA
| |
Collapse
|
23
|
Kobayashi Y, Okada T, Miki D, Sekino Y, Koganezawa N, Shirao T, Diniz GB, Saito Y. Properties of primary cilia in melanin-concentrating hormone receptor 1-bearing hippocampal neurons in vivo and in vitro. Neurochem Int 2020; 142:104902. [PMID: 33197527 DOI: 10.1016/j.neuint.2020.104902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022]
Abstract
The primary cilium is a solitary organelle that organizes a sensitive signaling hub in a highly ordered microenvironment. Cilia are plastic structures, changing their length in response to bioactive substances, and ciliary length may be regulated to ensure efficient signaling capacity. Mammalian brain neurons possess primary cilia that are enriched in a set of G protein-coupled receptors (GPCRs), including the feeding-related melanin-concentrating hormone (MCH) receptor 1 (MCHR1). We previously demonstrated a novel biological phenomenon, ciliary MCHR1-mediated cilia length shortening through Gi/o and Akt signaling, using a simple cell culture model of human retinal pigmented epithelial RPE1 cells exogenously expressing MCHR1. In the present study, we characterized the properties of endogenous MCHR1-expressing primary cilia in hippocampal neurons in rodents. Using cultured dissociated rat hippocampal neurons in vitro, we showed that MCH triggered cilia length reduction involved in MCHR1-Gi/o and -Akt signaling. In rat hippocampal slice cultures with preservation of the cytoarchitecture and cell populations, ciliary MCHR1 was abundantly located in the CA1 and CA3 regions, but not in the dentate gyrus. Notably, treatment of slice cultures with MCH induced Gi/o- and Akt-dependent cilia shortening in the CA1 region without influencing cilia length in the CA3 region. Regarding the in vivo mouse brain, we observed higher levels of ciliary MCHR1 in the CA1 and CA3 regions as well as in slice cultures. In the starved state mice, a marked increase in MCH mRNA expression was detected in the lateral hypothalamus. Furthermore, MCHR1-positive cilia length in the hippocampal CA1 region was significantly shortened in fasted mice compared with fed mice. The present findings focused on the hippocampus provide a potential approach to investigate how MCHR1-driven cilia shortening regulates neuronal activity and physiological function toward feeding and memory tasks.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Tomoya Okada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Daisuke Miki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan; AlzMed,Inc., UT South Clinical Research Building, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8485, Japan
| | - Giovanne B Diniz
- Department of Neurosurgery, Yale School of Medicine, 310 Cedar St, New Haven, CT, 06520, USA
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
| |
Collapse
|
24
|
Ramos C, Roberts JB, Jasso KR, Ten Eyck TW, Everett T, Pozo P, Setlow B, McIntyre JC. Neuron-specific cilia loss differentially alters locomotor responses to amphetamine in mice. J Neurosci Res 2020; 99:827-842. [PMID: 33175436 DOI: 10.1002/jnr.24755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
Abstract
The neural mechanisms that underlie responses to drugs of abuse are complex, and impacted by a number of neuromodulatory peptides. Within the past 10 years it has been discovered that several of the receptors for neuromodulators are enriched in the primary cilia of neurons. Primary cilia are microtubule-based organelles that project from the surface of nearly all mammalian cells, including neurons. Despite what we know about cilia, our understanding of how cilia regulate neuronal function and behavior is still limited. The primary objective of this study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to amphetamine. To test the consequences of cilia loss on amphetamine-induced locomotor activity we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. Cilia loss had no effect on baseline locomotion in either mouse strain. In mice lacking cilia on dopaminergic neurons, locomotor activity compared to wild- type mice was reduced in both sexes in response to acute administration of 3.0 mg/kg amphetamine. In contrast, changes in the locomotor response to amphetamine in mice lacking cilia on GAD2-GABAergic neurons were primarily driven by reductions in locomotor activity in males. Following repeated amphetamine administration (1.0 mg kg-1 day-1 over 5 days), mice lacking cilia on GAD2-GABAergic neurons exhibited enhanced sensitization of the locomotor stimulant response to the drug, whereas mice lacking cilia on dopaminergic neurons did not differ from wild-type controls. These results indicate that cilia play neuron-specific roles in both acute and neuroplastic responses to psychostimulant drugs of abuse.
Collapse
Affiliation(s)
- Carlos Ramos
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jonté B Roberts
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kalene R Jasso
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Patricia Pozo
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Jeremy C McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE, Kanoski SE. Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-specific manner. Neuropharmacology 2020; 178:108270. [PMID: 32795460 PMCID: PMC7544677 DOI: 10.1016/j.neuropharm.2020.108270] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 01/13/2023]
Abstract
Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced in the lateral hypothalamus and zona incerta that increases food intake. The neuronal pathways and behavioral mechanisms mediating the orexigenic effects of MCH are poorly understood, as is the extent to which MCH-mediated feeding outcomes are sex-dependent. Here we investigate the hypothesis that MCH-producing neurons act in the nucleus accumbens shell (ACBsh) to promote feeding behavior and motivation for palatable food in a sex-dependent manner. We utilized ACBsh MCH receptor (MCH1R)-directed pharmacology as well as a dual virus chemogenetic approach to selectively activate MCH neurons that project to the ACBsh. Results reveal that both ACBsh MCH1R activation and activating ACBsh-projecting MCH neurons increase consumption of standard chow and palatable sucrose in male rats without affecting motivated operant responding for sucrose, general activity levels, or anxiety-like behavior. In contrast, food intake was not affected in female rats by either ACBsh MCH1R activation or ACBsh-projecting MCH neuron activation. To determine a mechanism for this sexual dimorphism, we investigated whether the orexigenic effect of ACBsh MCH1R activation is reduced by endogenous estradiol signaling. In ovariectomized female rats on a cyclic regimen of either estradiol (EB) or oil vehicle, ACBsh MCH1R activation increased feeding only in oil-treated rats, suggesting that EB attenuates the ability of ACBsh MCH signaling to promote food intake. Collective results show that MCH ACBsh signaling promotes feeding in an estrogen- and sex-dependent manner, thus identifying novel neurobiological mechanisms through which MCH and female sex hormones interact to influence food intake.
Collapse
Affiliation(s)
- Sarah J Terrill
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States
| | - Keshav S Subramanian
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States
| | - Rae Lan
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States
| | - Clarissa M Liu
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States
| | - Alyssa M Cortella
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, 129 Barrow Hall, Athens, GA, 30602, United States.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
26
|
Diniz GB, Battagello DS, Klein MO, Bono BSM, Ferreira JGP, Motta‐Teixeira LC, Duarte JCG, Presse F, Nahon J, Adamantidis A, Chee MJ, Sita LV, Bittencourt JC. Ciliary melanin‐concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS in a sex‐independent manner. J Neurosci Res 2020; 98:2045-2071. [DOI: 10.1002/jnr.24651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giovanne B. Diniz
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
- Department of Neurosurgery Yale School of Medicine New Haven CT USA
| | - Daniella S. Battagello
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Marianne O. Klein
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | | | - Jozélia G. P. Ferreira
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Livia C. Motta‐Teixeira
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Jessica C. G. Duarte
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Françoise Presse
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) Université Côte d’AzurCNRS Valbonne France
| | - Jean‐Louis Nahon
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) Université Côte d’AzurCNRS Valbonne France
| | | | - Melissa J. Chee
- Department of Neuroscience Carleton University Ottawa ON Canada
| | - Luciane V. Sita
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Jackson C. Bittencourt
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
- Center for Neuroscience and Behavior Institute of Psychology University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
27
|
Morganstern I, Gulati G, Leibowitz SF. Role of melanin-concentrating hormone in drug use disorders. Brain Res 2020; 1741:146872. [PMID: 32360868 DOI: 10.1016/j.brainres.2020.146872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide primarily transcribed in the lateral hypothalamus (LH), with vast projections to many areas throughout the central nervous system that play an important role in motivated behaviors and drug use. Anatomical, pharmacological and genetic studies implicate MCH in mediating the intake and reinforcement of commonly abused substances, acting by influencing several systems including the mesolimbic dopaminergic system, glutamatergic as well as GABAergic signaling and being modulated by inflammatory neuroimmune pathways. Further support for the role of MCH in controlling behavior related to drug use will be discussed as it relates to cerebral ventricular volume transmission and intracellular molecules including cocaine- and amphetamine-regulated transcript peptide, dopamine- and cAMP-regulated phosphoprotein 32 kDa. The primary goal of this review is to introduce and summarize current literature surrounding the role of MCH in mediating the intake and reinforcement of commonly abused drugs, such as alcohol, cocaine, amphetamine, nicotine and opiates.
Collapse
Affiliation(s)
| | - Gazal Gulati
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
28
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone (MCH) System: A Tale of Two Peptides. Front Neurosci 2019; 13:1280. [PMID: 31849590 PMCID: PMC6901935 DOI: 10.3389/fnins.2019.01280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
The melanin-concentrating hormone (MCH) system is a robust integrator of exogenous and endogenous information, modulating arousal and energy balance in mammals. Its predominant function in teleosts, however, is to concentrate melanin in the scales, contributing to the adaptive color change observed in several teleost species. These contrasting functions resulted from a gene duplication that occurred after the teleost divergence, which resulted in the generation of two MCH-coding genes in this clade, which acquired distinctive sequences, distribution, and functions, examined in detail here. We also describe the distribution of MCH immunoreactivity and gene expression in a large number of species, in an attempt to identify its core elements. While initially originated as a periventricular peptide, with an intimate relationship with the third ventricle, multiple events of lateral migration occurred during evolution, making the ventrolateral and dorsolateral hypothalamus the predominant sites of MCH in teleosts and mammals, respectively. Substantial differences between species can be identified, likely reflecting differences in habitat and behavior. This observation aligns well with the idea that MCH is a major integrator of internal and external information, ensuring an appropriate response to ensure the organism’s homeostasis. New studies on the MCH system in species that have not yet been investigated will help us understand more precisely how these habitat changes are connected to the hypothalamic neurochemical circuits, paving the way to new intervention strategies that may be used with pharmacological purposes.
Collapse
Affiliation(s)
- Giovanne B Diniz
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|