1
|
Jiang M, Li G, Yang K, Tao L. Role of vitamins in the development and treatment of osteoporosis (Review). Int J Mol Med 2025; 56:109. [PMID: 40376992 PMCID: PMC12101103 DOI: 10.3892/ijmm.2025.5550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
Osteoporosis has escalated into a pressing public health challenge amidst global demographic aging. Conventional diagnostic approaches and therapeutic interventions demonstrate growing limitations in both risk stratification and epidemiological control. In this context, serological monitoring and targeted nutrient supplementation emerge as promising preventive strategies. Vitamins, fundamental regulators of cellular homeostasis, demonstrate particular significance in bone remodeling processes. The present comprehensive review elucidates the pathophysiological mechanisms through which specific vitamins differentially modulate osteoblastic activity and osteoclastic regulation, summarizing contemporary evidence from the molecular to clinical research levels. While vitamin A exhibits dual effects, other vitamins predominantly show positive impacts on bone homeostasis. Oxidative stress and inflammation are key pathological changes associated with osteoporosis. Vitamins play a protective role by enhancing the expression of antioxidant enzymes, activating antioxidant pathways and inhibiting the secretion of inflammatory cytokines, thereby mitigating these conditions. Serum vitamin concentrations exhibit significant correlations with bone mineral density alterations and osteoporosis progression, providing predictive biomarkers for fracture risk assessment. However, serum vitamin profiles exhibit marked heterogeneity across osteoporosis risk strata, necessitating population‑specific therapeutic protocols. Precision‑adjusted supplementation strategies effectively attenuate pathological bone resorption while preserving physiological remodeling homeostasis. The present review systematically delineates the therapeutic potential of vitamins in osteoporotic management, underscoring the necessity for evidence‑based precision nutrient protocols tailored to at‑risk populations to prevent disease progression.
Collapse
Affiliation(s)
- Mingze Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Genghan Li
- First Department of Clinical Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
2
|
Yi T, Wu S, Yang Y, Li X, Yang S, Zhang Y, Zhang L, Hu Y, Zhang G, Li J, Yang D. Single-nucleus RNA sequencing reveals dynamic changes in the microenvironment of visceral adipose tissue and metabolic characteristics after cold exposure. Front Endocrinol (Lausanne) 2025; 16:1562431. [PMID: 40196457 PMCID: PMC11973077 DOI: 10.3389/fendo.2025.1562431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Visceral adipose tissue (VAT) plays a crucial role in regulating systemic metabolic balance. Excess accumulation of VAT is closely associated with various metabolic disorders, a process that involves the coordinated actions of multiple cell types within the tissue. Cold exposure, as a potential intervention, has been proposed to improve metabolic dysfunction. However, the heterogeneity of VAT and its comprehensive metabolic characteristics under cold exposure remain unclear. Methods We collected epididymal white adipose tissue (eWAT) of C57BL/6J mice after cold exposure at three different time points for single-nucleus RNA sequencing (snRNA-seq) analysis. Results We successfully identified ten major cell types in eWAT, enabling understanding of the dynamic changes in the eWAT microenvironment and its metabolic features during cold exposure. This study revealed that cold exposure for 1 day reduced cellular metabolic activity and intercellular communication in eWAT including receptor-ligand-based cell communication and metabolite-mediated interactions. However, after 14 days of cold acclimation, the metabolic activity of adipocytes was significantly enhanced, and intercellular metabolic communication was restored. Additionally, prolonged cold exposure promoted the formation of a distinct adipocyte subpopulation that may be associated with UCP1-independent thermogenesis. These changes may be a new homeostatic state established by VAT to adapt to the cold environment. The study also identified the importance of adipocytes, adipose stem and progenitor cells, myeloid cells, and endothelial cells in the process of cold adaptation. Discussion This research provides valuable insights into the cellular heterogeneity, adipocyte remodeling, and metabolic reprogramming in eWAT after cold exposure. It highlights the critical role of transcriptional dynamics in eWAT during cold exposure and provides new perspectives on the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Ting Yi
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Shuai Wu
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Yusha Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Xi Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Shuran Yang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongqiang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Li Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Yuyu Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Guanyu Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Jun Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Danfeng Yang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| |
Collapse
|
3
|
Park JY, Ha ES, Lee J, Brun PJ, Kim Y, Chung SS, Hwang D, Lee SA, Park KS. The brown fat-specific overexpression of RBP4 improves thermoregulation and systemic metabolism by activating the canonical adrenergic signaling pathway. Exp Mol Med 2025; 57:554-566. [PMID: 40025173 PMCID: PMC11958748 DOI: 10.1038/s12276-025-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 03/04/2025] Open
Abstract
Retinol-binding protein 4 (RBP4), the sole specific carrier for retinol (vitamin A) in circulation, is highly expressed in liver and adipose tissues. Previous studies have demonstrated that RBP4 plays a role in cold-mediated adipose tissue browning and thermogenesis. However, the role of RBP4 in brown adipose tissue and its metabolic significance remain unclear. Here we generated and studied transgenic mice that express human RBP4 (hRBP4), specifically in brown adipocytes (UCP1-RBP4 mice), to better understand these uncertainties. When fed a chow diet, these mice presented significantly lower body weights and fat mass than their littermate controls. The UCP1-RBP4 mice also showed significant improvements in glucose clearance, enhanced energy expenditure and increased thermogenesis in response to a cold challenge. This was associated with increased lipolysis and fatty acid oxidation in brown adipose tissue, which was attributed to the activation of canonical adrenergic signaling pathways. In addition, high-performance liquid chromatography analysis revealed that plasma RBP4 and retinol levels were elevated in the UCP1-RBP4 mice, whereas their hepatic retinol levels decreased in parallel with a chow diet. Steady-state brown fat levels of total retinol were significantly elevated in the UCP1-RBP4 mice, suggesting that their retinol uptake was increased in RBP4-expressing brown adipocytes when fed a chow diet. These findings reveal a critical role for RBP4 in canonical adrenergic signaling that promotes lipid mobilization and oxidation in brown adipocytes, where the harnessed energy is dissipated as heat by adaptive thermogenesis.
Collapse
Affiliation(s)
- Jong Yoen Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Eun Sun Ha
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jimin Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeri Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Bioinformatics Institute, Bio-MAX, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ah Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- ProGen Co. Ltd., 07789, Seoul, Republic of Korea.
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zhao J, Liu Y, Zhou L, Liu Y. Retinol-Binding Protein 4 as a Biomarker in Cancer: Insights from a Pan-Cancer Analysis of Expression, Immune Infiltration, and Methylation. Genes (Basel) 2025; 16:150. [PMID: 40004479 PMCID: PMC11855459 DOI: 10.3390/genes16020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Retinol-binding protein 4 (RBP4) is primarily recognized for its role in retinoid transport, but has recently been implicated in cancer progression and prognosis. However, a comprehensive pan-cancer analysis of RBP4's expression, prognostic significance, and functional associations across various cancers is lacking. METHODS We conducted a pan-cancer analysis of RBP4 using data from public databases. RBP4 expression levels were examined in 33 tumor types, and correlations with clinical outcomes, immune cell infiltration, DNA methylation, and gene mutations were assessed. Enrichment analyses of RBP4 and its co-expressed genes were performed to explore associated biological pathways. Additionally, in vitro experiments were conducted to assess the effects of RBP4 on cell migration and proliferation. RESULTS RBP4 showed differential expression between tumor and normal tissues, with downregulation in 21 cancer types and upregulation in 6. High expression levels of RBP4 were associated with poor overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in specific cancers, notably in BRCA, HNSC, and STAD, whereas it was a favorable prognostic factor in cancers such as KIRP and MESO. RBP4 expression was also associated with immune cell infiltration, particularly with CD4+ Th2 cells and immune checkpoint genes. DNA methylation analysis suggested that the methylation of RBP4 may play a role in its regulatory mechanisms across cancer types. Enrichment analyses revealed that RBP4 and its co-expressed genes are involved in metabolism-related pathways and immune regulation. Functional assays indicated that RBP4 knockdown promoted tumor cell migration and proliferation. CONCLUSIONS This study provides a comprehensive pan-cancer analysis of RBP4, identifying its prognostic potential and possible involvement in tumor immunity and metabolism. Our findings suggest that RBP4 could serve as a novel biomarker and therapeutic target in cancer, although further experimental studies are required to elucidate its precise mechanisms in specific cancer types.
Collapse
Affiliation(s)
| | | | | | - Yi Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.)
| |
Collapse
|
5
|
Zhang M, Traspov A, Yang J, Zheng M, Kharzinova VR, Ai H, Zinovieva NA, Huang L. Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars. Commun Biol 2025; 8:116. [PMID: 39856249 PMCID: PMC11759952 DOI: 10.1038/s42003-025-07536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China. Demographic analysis revealed the appearance of Russian wild boars in Far East of Asia (RUA) and Europe (RUE) after the last glacial maximum till ~ 10 thousand years ago. Recent gene flow (<100 years) from RUA to RUE reflects human-mediated introductions. Cold-region wild boars exhibit strong selection signatures indicative of genetic adaptation to cold climates. Further pathway and transcriptomic analyses reveal a novel cold resistance mechanism centered on enhanced vitamin A metabolism and catalysis, involving the reuse of UGT2B31 and rhythm regulation by ANGPTL8, RLN3 and ZBTB20. This may compensate for the pig's lack of brown fat/UCP1 thermogenesis. These findings provide new insights into the molecular basis of cold adaptation and improve our understanding of Eurasian wild boar migration history.
Collapse
Affiliation(s)
- Mingpeng Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, P.R. China
| | - Aleksei Traspov
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Jiawen Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Min Zheng
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Veronika R Kharzinova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Huashui Ai
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| | - Natalia A Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
6
|
Paris JR, Nitta Fernandes FA, Pirri F, Greco S, Gerdol M, Pallavicini A, Benoiste M, Cornec C, Zane L, Haas B, Le Bohec C, Trucchi E. Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment. Mol Ecol 2024:e17552. [PMID: 39415606 DOI: 10.1111/mec.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Flávia A Nitta Fernandes
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Federica Pirri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marine Benoiste
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Clément Cornec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Lyon, Saint-Etienne, France
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
| | - Brian Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
7
|
Wang Y, Chen H, Wang Y, Zhang H, Weng Q, Liu Y, Xu M. Seasonal changes in vitamin A metabolism-related factors in the oviduct of Chinese brown frog (Rana dybowskii). J Steroid Biochem Mol Biol 2024; 243:106583. [PMID: 38992392 DOI: 10.1016/j.jsbmb.2024.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
The oviduct of the Chinese brown frog (Rana dybowskii) expands during pre-brumation rather than the breeding period, exhibiting a special physiological feature. Vitamin A is essential for the proper growth and development of many organisms, including the reproductive system such as ovary and oviduct. Vitamin A is metabolized into retinoic acid, which is crucial for oviduct formation. This study examined the relationship between oviducal expansion and vitamin A metabolism. We observed a significant increase in the weight and diameter of the oviduct in Rana dybowskii during pre-brumation. Vitamin A and its active metabolite, retinoic acid, notably increased during pre-brumation. The mRNA levels of retinol binding protein 4 (rbp4) and its receptor stra6 gene, involved in vitamin A transport, were elevated during pre-brumation compared to the breeding period. In the vitamin A metabolic pathway, the mRNA expression level of retinoic acid synthase aldh1a2 decreased significantly during pre-brumation, while the mRNA levels of retinoic acid α receptor (rarα) and the retinoic acid catabolic enzyme cyp26a1 increased significantly during pre-brumation, but not during the breeding period. Immunohistochemical results showed that Rbp4, Stra6, Aldh1a2, Rarα, and Cyp26a1 were expressed in ampulla region of the oviduct. Western blot results indicated that Aldh1a2 expression was lower, while Rbp4, Stra6, RARα, and Cyp26a1 were higher during pre-brumation compared to the breeding period. Transcriptome analyses further identified differential genes in the oviduct and found enrichment of differential genes in the vitamin A metabolism pathway, providing evidences for our study. These results suggest that the vitamin A metabolic pathway is more active during pre-brumation compared to the breeding period, and retinoic acid may regulate pre-brumation oviductal expansion through Rarα-mediated autocrine/paracrine modulation.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haohan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
8
|
Fan J, Hu J. Retinol binding protein 4 and type 2 diabetes: from insulin resistance to pancreatic β-cell function. Endocrine 2024; 85:1020-1034. [PMID: 38520616 DOI: 10.1007/s12020-024-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND AIM Retinol binding protein 4 (RBP4) is an adipokine that has been explored as a key biomarker of type 2 diabetes mellitus (T2DM) in recent years. Researchers have conducted a series of experiments to understand the interplay between RBP4 and T2DM, including its role in insulin resistance and pancreatic β-cell function. The results of these studies indicate that RBP4 has a significant influence on T2DM and is considered a potential biomarker of T2DM. However, there have also been some controversies about the relationship between RBP4 levels and T2DM. In this review, we update and summarize recent studies focused on the relationship between RBP4 and T2DM and its role in insulin resistance and pancreatic β-cell function to clarify the existing controversy and provide evidence for future studies. We also assessed the potential therapeutic applications of RBP4 in treating T2DM. METHODS A narrative review. RESULTS Overall, there were significant associations between RBP4 levels, insulin resistance, pancreatic β-cell function, and T2DM. CONCLUSIONS More mechanistic studies are needed to determine the role of RBP4 in the onset of T2DM, especially in terms of pancreatic β-cell function. In addition, further studies are required to evaluate the effects of drug intervention, lifestyle intervention, and bariatric surgery on RBP4 levels to control T2DM and the role of reducing RBP4 levels in improving insulin sensitivity and pancreatic β-cell function.
Collapse
Affiliation(s)
- Jiahua Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Clinical Nutrition, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China.
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China
| |
Collapse
|
9
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, Functions, and Implications of Selected Lipocalins in Human Disease. Int J Mol Sci 2024; 25:4290. [PMID: 38673873 PMCID: PMC11050150 DOI: 10.3390/ijms25084290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).
Collapse
Affiliation(s)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
10
|
Steinhoff JS, Wagner C, Taschler U, Wulff S, Kiefer MF, Petricek KM, Wowro SJ, Oster M, Flores RE, Yang N, Li C, Meng Y, Sommerfeld M, Weger S, Henze A, Raila J, Lass A, Schupp M. Acute retinol mobilization by retinol-binding protein 4 in mouse liver induces fibroblast growth factor 21 expression. J Lipid Res 2022; 63:100268. [PMID: 36030930 PMCID: PMC9493389 DOI: 10.1016/j.jlr.2022.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatocytes secrete retinol-binding protein 4 (RBP4) into circulation, thereby mobilizing vitamin A from the liver to provide retinol for extrahepatic tissues. Obesity and insulin resistance are associated with elevated RBP4 levels in the blood. However, in a previous study, we observed that chronically increased RBP4 by forced Rbp4 expression in the liver does not impair glucose homeostasis in mice. Here, we investigated the effects of an acute mobilization of hepatic vitamin A stores by hepatic overexpression of RBP4 in mice. We show that hepatic retinol mobilization decreases body fat content and enhances fat turnover. Mechanistically, we found that acute retinol mobilization increases hepatic expression and serum levels of fibroblast growth factor 21 (FGF21), which is regulated by retinol mobilization and retinoic acid in primary hepatocytes. Moreover, we provide evidence that the insulin-sensitizing effect of FGF21 is associated with organ-specific adaptations in retinoid homeostasis. Taken together, our findings identify a novel crosstalk between retinoid homeostasis and FGF21 in mice with acute RBP4-mediated retinol mobilization from the liver.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sascha Wulff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Marie F Kiefer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Sylvia J Wowro
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Moritz Oster
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Roberto E Flores
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Na Yang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Chen Li
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yueming Meng
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Manuela Sommerfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Stefan Weger
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Campus Benjamin Franklin, Berlin, Germany
| | - Andrea Henze
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle, Germany; Junior Research Group ProAID, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany.
| |
Collapse
|
11
|
Effects of Low Temperature on Antioxidant and Heat Shock Protein Expression Profiles and Transcriptomic Responses in Crayfish ( Cherax destructor). Antioxidants (Basel) 2022; 11:antiox11091779. [PMID: 36139854 PMCID: PMC9495765 DOI: 10.3390/antiox11091779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Low temperature is a critical factor restricting the growth and survival of aquatic animals, but research on the mechanism of response to low temperature in Cherax destructor is limited. C. destructor is one of the most important freshwater crustaceans with strong adaptability in Australia, and it has been commercialized gradually in recent years. Here, growth indicators, antioxidant parameters, anti-stress gene expression, and transcriptome sequencing were used on crayfish following 8 weeks of low-temperature acclimation. The results showed that weight gain, length gain, and molting rates decreased as the temperature decreased. The activity of antioxidant enzymes decreased, while the content of antioxidant substances and the expression of anti-stress genes increased. Transcriptome sequencing identified 589 differentially expressed genes, 279 of which were upregulated and 310 downregulated. The gene functions and pathways for endocrine disorders, glucose metabolism, antioxidant defense, and immune responses were identified. In conclusion, although low-temperature acclimation inhibited the basal metabolism and immune ability of crayfish, it also increased the antioxidant substance content and anti-stress-gene expression to protect the organism from low-temperature damage. This study provided molecular insights into the study of low-temperature responses of low-temperature-tolerant crustacean species.
Collapse
|
12
|
Visceral and body adiposity are negatively associated with vitamin A nutritional status independently of Body Mass Index and recommended intake of vitamin A in Brazilian Women. J Nutr Biochem 2022; 109:109120. [DOI: 10.1016/j.jnutbio.2022.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
|
13
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
14
|
Miller AP, Black M, Amengual J. Fenretinide inhibits vitamin A formation from β-carotene and regulates carotenoid levels in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159070. [PMID: 34742949 PMCID: PMC8688340 DOI: 10.1016/j.bbalip.2021.159070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
N-[4-hydroxyphenyl]retinamide, commonly known as fenretinide, a synthetic retinoid with pleiotropic benefits for human health, is currently utilized in clinical trials for cancer, cystic fibrosis, and COVID-19. However, fenretinide reduces plasma vitamin A levels by interacting with retinol-binding protein 4 (RBP4), which often results in reversible night blindness in patients. Cell culture and in vitro studies show that fenretinide binds and inhibits the activity of β-carotene oxygenase 1 (BCO1), the enzyme responsible for endogenous vitamin A formation. Whether fenretinide inhibits vitamin A synthesis in mammals, however, remains unknown. The goal of this study was to determine if the inhibition of BCO1 by fenretinide affects vitamin A formation in mice fed β-carotene. Our results show that wild-type mice treated with fenretinide for ten days had a reduction in tissue vitamin A stores accompanied by a two-fold increase in β-carotene in plasma (P < 0.01) and several tissues. These effects persisted in RBP4-deficient mice and were independent of changes in intestinal β-carotene absorption, suggesting that fenretinide inhibits vitamin A synthesis in mice. Using Bco1-/- and Bco2-/- mice we also show that fenretinide regulates intestinal carotenoid and vitamin E uptake by activating vitamin A signaling during short-term vitamin A deficiency. This study provides a deeper understanding of the impact of fenretinide on vitamin A, carotenoid, and vitamin E homeostasis, which is crucial for the pharmacological utilization of this retinoid.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
15
|
Xue T, Xu H, Du Y, Ding J, Su Y, Lin Z. Browning of white adipocytes by gold nanocluster mediated electromagnetic induction heating hyperthermia. NANOSCALE 2022; 14:1187-1194. [PMID: 35005765 DOI: 10.1039/d1nr07263c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Browning of white adipose tissue (WAT) is becoming an attractive therapeutic target for obesity. Great efforts have been made to develop effective approaches to induce browning. Unfortunately, the current methods suffer from a series of disadvantages, such as low efficiency, unsatisfactory stability, and side effects. Herein, we report a new approach to induce browning of 3T3-L1 white adipocytes based on electromagnetic induction heating (EIH) hyperthermia. In particular, adipocyte-targeting aptamer modified gold nanoclusters (Apt-AuNCs) were employed as the mediators of EIH. Apt-AuNCs had good biocompatibility and excellent targeting performance with white adipocytes. After Apt-AuNCs/EIH treatment, adipocytes with characteristic multilocular and small lipid droplets increased, and the content of triglycerides reduced effectively. Apt-AuNCs/EIH treatment also significantly increased the mitochondrial activity in adipocytes. Meanwhile, the mRNA levels of key genes that are involved in browning, for example UCP1, PRDM16, PPARγ, and PGC-1α, were upregulated. Finally, the induction mechanism of Apt-AuNCs/EIH on browning of white adipocytes was explained by the synergistic effects of EIH hyperthermia and pharmacological action of AuNCs. To the best of our knowledge, this is the first attempt on induction of browning by metal nanocluster-mediated EIH hyperthermia, thus providing an interesting and efficient channel for obesity treatment.
Collapse
Affiliation(s)
- Tiantian Xue
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Hejie Xu
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yanhui Du
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Jialuo Ding
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yu Su
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhenkun Lin
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
16
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
17
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
18
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
19
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
20
|
Steinhoff JS, Lass A, Schupp M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front Physiol 2021; 12:659977. [PMID: 33790810 PMCID: PMC8006376 DOI: 10.3389/fphys.2021.659977] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|