1
|
Adhab AH, Altalbawy FMA, Mahdi MS, Baldaniya L, Omar TM, Ganesan S, Juneja B, Pathak PK, Mansoor AS, Radi UK, Abd NS, Kadhim M. NADPH Oxidases in Cancer Therapy-Induced Cardiotoxicity: Mechanisms and Therapeutic Approaches. Cardiovasc Toxicol 2025; 25:631-649. [PMID: 39966326 DOI: 10.1007/s12012-025-09976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Cancer therapy-induced cardiotoxicity remains a significant clinical challenge, limiting the efficacy of cancer treatments and impacting long-term survival and quality of life. NADPH oxidases, a family of enzymes that are able to generate reactive oxygen species (ROS), have emerged as key players in the pathogenesis of cardiotoxicity associated with various cancer therapies. This review comprehensively examines the role of NADPH oxidases in cancer therapy-induced cardiotoxicity, elucidating the underlying mechanisms and exploring potential therapeutic approaches. We discuss the structure and function of NADPH oxidases in the cardiovascular system and their involvement in cardiotoxicity induced by anthracyclines and ionizing radiation. The molecular mechanisms by which NADPH oxidase-derived ROS contribute to cardiac injury are explored, including direct oxidative damage, activation of pro-apoptotic pathways, mitochondrial dysfunction, vascular damage, inflammation, fibrosis, and others. Furthermore, we evaluate therapeutic strategies targeting NADPH oxidases, such as specific inhibitors, antioxidant therapies, natural products, and other cardioprotectors. The review also addresses current challenges in the field, including the need for isoform-specific targeting and the identification of reliable biomarkers. Finally, we highlight future research directions aimed at mitigating NADPH oxidase-mediated cardiotoxicity and alleviating cardiovascular side effects in cancer survivors. By synthesizing current knowledge and identifying knowledge gaps, this review provides a rationale for future studies and the development of novel cardioprotective strategies in cancer therapy.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | | | - Lalji Baldaniya
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bhanu Juneja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Munther Kadhim
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Kamal KY, Trombetta-Lima M. Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress. Int J Mol Sci 2025; 26:2802. [PMID: 40141444 PMCID: PMC11943188 DOI: 10.3390/ijms26062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical unloading leads to profound musculoskeletal degeneration, muscle wasting, and weakness. Understanding the specific signaling pathways involved is essential for uncovering effective interventions. This review provides new perspectives on mechanotransduction pathways, focusing on the critical roles of focal adhesions (FAs) and oxidative stress in skeletal muscle atrophy under mechanical unloading. As pivotal mechanosensors, FAs integrate mechanical and biochemical signals to sustain muscle structural integrity. When disrupted, these complexes impair force transmission, activating proteolytic pathways (e.g., ubiquitin-proteasome system) that accelerate atrophy. Oxidative stress, driven by mitochondrial dysfunction and NADPH oxidase-2 (NOX2) hyperactivation, exacerbates muscle degeneration through excessive reactive oxygen species (ROS) production, impaired repair mechanisms, and dysregulated redox signaling. The interplay between FA dysfunction and oxidative stress underscores the complexity of muscle atrophy pathogenesis: FA destabilization heightens oxidative damage, while ROS overproduction further disrupts FA integrity, creating a self-amplifying vicious cycle. Therapeutic strategies, such as NOX2 inhibitors, mitochondrial-targeted antioxidants, and FAK-activating compounds, promise to mitigate muscle atrophy by preserving mechanotransduction signaling and restoring redox balance. By elucidating these pathways, this review advances the understanding of muscle degeneration during unloading and identifies promising synergistic therapeutic targets, emphasizing the need for combinatorial approaches to disrupt the FA-ROS feedback loop.
Collapse
Affiliation(s)
- Khaled Y. Kamal
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9700 Groningen, The Netherlands;
| |
Collapse
|
3
|
Gómez Del Val A, Sánchez A, Freire-Agulleiro Ó, Martínez MP, Muñoz M, Olmos L, Medina JS, Comerma-Steffensen SG, Simonsen U, Rivera L, López M, Contreras C, Prieto D. Penile endothelial dysfunction, impaired redox metabolism and blunted mitochondrial bioenergetics in diet-induced obesity: Compensatory role of H 2O 2. Free Radic Biol Med 2025; 230:222-233. [PMID: 39929293 DOI: 10.1016/j.freeradbiomed.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Erectile dysfunction (ED) is considered an early manifestation of cardiovascular disease (CVD), endothelial dysfunction being the link between CVD and vasculogenic ED. Mitochondrial reactive oxygen species (mtROS) have been involved in the vascular complications of metabolic disorders. The aim of this study was to assess the impact of obesity on endothelial function, redox metabolism and mitochondrial bioenergetics of penile erectile tissue. METHODS Wistar rats were fed a high-fat diet (HFD) or standard diet (STD), and penile vascular function was assessed in microvascular myographs. mtROS levels were measured by mitoSOX (O2.-) and Amplex Red (H2O2) fluorimetry, and the effect of the mitochondrial antioxidant mitoTempo on endothelium-dependent relaxations was tested. Mitochondrial respiration of intact microarteries was assessed with an Agilent Seahorse XF Pro analyzer, and the expression of mitochondria redox regulators was analysed by Western blot. RESULTS Endothelium-dependent relaxations to acetylcholine (ACh) and to the mitoKATP channel activator BMS191095 were reduced in penile arteries from HFD. mtROS levels were significantly increased and associated with upregulation of the endothelial NADPH oxidase 4 (Nox4) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in HFD erectile tissue. MitoTempo inhibited endothelial relaxations in control and HFD penile arteries. The bioenergetic profile was significantly reduced in HFD penile arteries compared to STD rats. CONCLUSIONS Mitochondrial dysfunction with impaired bioenergetics and reduced mitoKATP channel-mediated relaxation underlie endothelial and vascular dysfunction of erectile tissue in obesity, despite a compensatory mechanism that enhances Nox4-derived endothelial vasodilator mtROS. Therapeutic strategies aimed to stabilize mitochondria could restore redox balance and improve mitochondrial bioenergetics thus preventing oxidative stress and vascular dysfunction underlying metabolic disease associated ED.
Collapse
Affiliation(s)
| | - Ana Sánchez
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Óscar Freire-Agulleiro
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pilar Martínez
- Department of Anatomy and Embriology, Madrid Complutense University, Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Lucia Olmos
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Luis Rivera
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dolores Prieto
- Department of Physiology, Madrid Complutense University, Madrid, Spain.
| |
Collapse
|
4
|
Cariati I, Bonanni R, Romagnoli C, Caprioli L, D’Arcangelo G, Tancredi V, Annino G. Bone Adaptations to a Whole Body Vibration Protocol in Murine Models of Different Ages: A Preliminary Study on Structural Changes and Biomarker Evaluation. J Funct Morphol Kinesiol 2025; 10:26. [PMID: 39846667 PMCID: PMC11755639 DOI: 10.3390/jfmk10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Whole body vibration (WBV) is a valuable tool to mitigate physiological adaptations related to age and inactivity. Although significant benefits have been found at the musculoskeletal level, including increased bone mass and reduced muscle atrophy, the underlying biological mechanisms remain largely unknown. Therefore, our study aimed to evaluate the effects of vibratory training on bone tissue in murine models of different age groups by investigating the structural and distribution changes in some crucial biomarkers involved in musculoskeletal homeostasis. Methods: Specifically, 4-, 12-, and 24-month-old mice were trained with a WBV protocol characterized by three series of 2 min and 30 s, interspersed with a recovery period of the same duration, on a 3-weekly frequency for 3 months. At the end of the training, histological and morphometric analyses were conducted, in association with immunohistochemical analysis to investigate changes in the distribution of fibronectin type III domain-containing protein 5 (FNDC5), NADPH oxidase 4 (NOX4), and sirtuin 1 (SIRT1). Results: Our preliminary results showed that WBV improves musculoskeletal health by preserving bone architecture and promoting up-regulation of FNDC5 and SIRT1 and down-regulation of NOX4. Conclusions: Our study confirms vibratory training as a viable alternative to counter musculoskeletal decline in elderly and/or sedentary subjects. Further investigations should be conducted to deepen knowledge in this field and explore the role of other molecular mediators in physiological adaptations to vibration.
Collapse
Affiliation(s)
- Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Cristian Romagnoli
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, 00166 Rome, Italy;
| | - Lucio Caprioli
- Sports Engineering Laboratory, Department of Industrial Engineering, “Tor Vergata” University of Rome, 00133 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
- Sports Engineering Laboratory, Department of Industrial Engineering, “Tor Vergata” University of Rome, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| |
Collapse
|
5
|
Laskin GR, Rentería LI, Muller-Delp JM, Kim JS, Chase PB, Hwang HS, Gordon BS. Short-term aerobic exercise prevents development of glucocorticoid myopathic features in aged skeletal muscle in a sex-dependent manner. J Physiol 2025; 603:127-149. [PMID: 38861348 DOI: 10.1113/jp286334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Older adults are vulnerable to glucocorticoid-induced muscle atrophy and weakness, with sex potentially influencing their susceptibility to those effects. Aerobic exercise can reduce glucocorticoid-induced muscle atrophy in young rodents. However, it is unknown whether aerobic exercise can prevent glucocorticoid myopathy in aged muscle. The objectives of this study were to define the extent to which sex influences the development of glucocorticoid myopathy in aged muscle, and to determine the extent to which aerobic exercise training protects against myopathy development. Twenty-four-month-old female (n = 30) and male (n = 33) mice were randomized to either sedentary or aerobic exercise groups. Within their respective groups, mice were randomized to either daily treatment with dexamethasone (DEX) or saline. Upon completing treatments, the contractile properties of the triceps surae complex were assessed in situ. DEX marginally lowered muscle mass and soluble protein content in both sexes, which was attenuated by aerobic exercise only in females. DEX increased sub-tetanic force and rate of force development only in females, which was not influenced by aerobic exercise. Muscle fatigue was higher in both sexes following DEX, but aerobic exercise prevented fatigue induction only in females. The sex-specific differences to muscle function in response to DEX treatment coincided with sex-specific changes to the content of proteins related to calcium handling, mitochondrial quality control, reactive oxygen species production, and glucocorticoid receptor in muscle. These findings define several important sexually dimorphic changes to aged skeletal muscle physiology in response to glucocorticoid treatment and define the capacity of short-term aerobic exercise to protect against those changes. KEY POINTS: There are sexually dimorphic effects of glucocorticoids on aged skeletal muscle physiology. Glucocorticoid-induced changes to aged muscle contractile properties coincide with sex-specific differences in the content of calcium handling proteins. Aerobic exercise prevents glucocorticoid-induced fatigue only in aged females and coincides with differences in the content of mitochondrial quality control proteins and glucocorticoid receptors.
Collapse
Affiliation(s)
- Grant R Laskin
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Liliana I Rentería
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Jeong-Su Kim
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Hyun Seok Hwang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Bradley S Gordon
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
6
|
Jackson MJ. Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle. Free Radic Biol Med 2024; 225:494-500. [PMID: 39427746 DOI: 10.1016/j.freeradbiomed.2024.10.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of "effector" proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
7
|
Jackson MJ. Reactive oxygen species in age-related musculoskeletal decline: implications for nutritional intervention. Proc Nutr Soc 2024:1-9. [PMID: 39512110 DOI: 10.1017/s0029665124004877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Musculoskeletal disorders and age-related musculoskeletal decline are major contributors to the burden of ill health seen in older subjects. Despite this increased burden, these chronic disorders of old age receive a relatively small proportion of national research funds. Much has been learned about fundamental processes involved in ageing from basic science research and this is leading to identification of key pathways that mediate ageing which may help the search for interventions to reduce age-related musculoskeletal decline. This short review will focus on the role of reactive oxygen species in age-related skeletal muscle decline and on the implications of this work for potential nutritional interventions in sarcopenia. The key physiological role of reactive oxygen species is now known to be in mediating redox signalling in muscle and other tissues and ageing leads to disruption of such pathways. In muscle, this is reflected in an age-related attenuation of specific adaptations and responses to contractile activity that impacts the ability of skeletal muscle from ageing individuals to respond to exercise. These pathways provides potential targets for identification of logical interventions that may help maintain muscle mass and function during ageing.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Craige SM, Mammel RK, Amiri N, Willoughby OS, Drake JC. Interplay of ROS, mitochondrial quality, and exercise in aging: Potential role of spatially discrete signaling. Redox Biol 2024; 77:103371. [PMID: 39357424 PMCID: PMC11474192 DOI: 10.1016/j.redox.2024.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| | - Rebecca K Mammel
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Niloufar Amiri
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA; Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, 24061, USA
| | - Orion S Willoughby
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| |
Collapse
|
9
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 PMCID: PMC7617303 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Powers SK, Radak Z, Ji LL, Jackson M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:780-792. [PMID: 38719184 PMCID: PMC11336304 DOI: 10.1016/j.jshs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 05/22/2024]
Abstract
The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology, University of Florida, Gainesville, FL 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest 1123, Hungary
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St. Paul, MN 55455, USA
| | - Malcolm Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
11
|
Greggi C, Montanaro M, Scioli MG, Puzzuoli M, Gino Grillo S, Scimeca M, Mauriello A, Orlandi A, Gasbarra E, Iundusi R, Pucci S, Tarantino U. Modulation of Carnitine Palmitoyl Transferase 1b Expression and Activity in Muscle Pathophysiology in Osteoarthritis and Osteoporosis. Biomolecules 2024; 14:1289. [PMID: 39456222 PMCID: PMC11505991 DOI: 10.3390/biom14101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In the pathophysiology of osteoarthritis and osteoporosis, articular cartilage and bone represent the target tissues, respectively, but muscle is also involved. Since many changes in energy metabolism occur in muscle with aging, the aim of the present work was to investigate the involvement of carnitine palmitoyl transferase 1b (Cpt1b) in the muscle pathophysiology of the two diseases. Healthy subjects (CTR, n = 5), osteoarthritic (OA, n = 10), and osteoporotic (OP, n = 10) patients were enrolled. Gene expression analysis conducted on muscle and myoblasts showed up-regulation of CPT1B in OA patients; this result was confirmed by immunohistochemical and immunofluorescence analyses and enzyme activity assay, which showed increased Cpt1b activity in OA muscle. In addition, CPT1B expression resulted down-regulated in cultured OP myoblasts. Given the potential involvement of Cpt1b in the modulation of oxidative stress, we investigated ROS levels, which were found to be lower in OA myoblasts, and gene expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (Nox4), which resulted up-regulated in OA cells. Finally, the immunofluorescence of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3) showed a decreased expression in OP myoblasts, with respect to CTR and OA. Contextually, through an ultrastructural analysis conducted by Transmission Electron Microscopy (TEM), the presence of aberrant mitochondria was observed in OP muscle. This study highlights the potential role of Cpt1b in the regulation of muscle homeostasis in both osteoarthritis and osteoporosis, allowing for the expansion of the current knowledge of what are the molecular biological pathways involved in the regulation of muscle physiology in both diseases.
Collapse
Affiliation(s)
- Chiara Greggi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Martina Puzzuoli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Sonia Gino Grillo
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (A.M.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
- Faculty of Medicine and Surgery, University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania
| | - Elena Gasbarra
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
| | - Riccardo Iundusi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
| | - Sabina Pucci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
- Faculty of Medicine and Surgery, University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania
| |
Collapse
|
12
|
Meneses-Valdés R, Gallero S, Henríquez-Olguín C, Jensen TE. Exploring NADPH oxidases 2 and 4 in cardiac and skeletal muscle adaptations - A cross-tissue comparison. Free Radic Biol Med 2024; 223:296-305. [PMID: 39069268 DOI: 10.1016/j.freeradbiomed.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Striated muscle cells, encompassing cardiac myocytes and skeletal muscle fibers, are fundamental to athletic performance, facilitating blood circulation and coordinated movement through contraction. Despite their distinct functional roles, these muscle types exhibit similarities in cytoarchitecture, protein expression, and excitation-contraction coupling. Both muscle types also undergo molecular remodeling in energy metabolism and cell size in response to acute and repeated exercise stimuli to enhance exercise performance. Reactive oxygen species (ROS) produced by NADPH oxidase (NOX) isoforms 2 and 4 have emerged as signaling molecules that regulate exercise adaptations. This review systematically compares NOX2 and NOX4 expression, regulation, and roles in cardiac and skeletal muscle responses across exercise modalities. We highlight the many gaps in our knowledge and opportunities to let future skeletal muscle research into NOX-dependent mechanisms be inspired by cardiac muscle studies and vice versa. Understanding these processes could enhance the development of exercise routines to optimize human performance and health strategies that capitalize on the advantages of physical activity.
Collapse
Affiliation(s)
- Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Advanced Center for Chronic Diseases (ACCDiS) and Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark.
| |
Collapse
|
13
|
Craige SM, Kaur G, Bond JM, Caliz AD, Kant S, Keaney JF. Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. Antioxid Redox Signal 2024. [PMID: 39213161 DOI: 10.1089/ars.2024.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.
Collapse
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Gaganpreet Kaur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Bond
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, Virginia, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Kano R, Kusano T, Takeda R, Shirakawa H, Poole DC, Kano Y, Hoshino D. Eccentric contraction increases hydrogen peroxide levels and alters gene expression through Nox2 in skeletal muscle of male mice. J Appl Physiol (1985) 2024; 137:778-788. [PMID: 39052772 DOI: 10.1152/japplphysiol.00335.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the key signaling factors regulating skeletal muscle adaptation to muscle contractions. Eccentric (ECC) and concentric (CONC) contractions drive different muscle adaptations with ECC resulting in greater changes. The present investigation tested the hypothesis that ECC produces higher cytosolic and mitochondrial H2O2 concentrations [H2O2] and alters gene expression more than CONC. Cytosolic and mitochondrial H2O2-sensitive fluorescent proteins, HyPer7 and MLS-HyPer7, were expressed in the anterior tibialis muscle of C57BL6J male mice. Before and for 60 min after either CONC or ECC (100 Hz, 50 contractions), [H2O2]cyto and [H2O2]mito were measured by in vivo fluorescence microscopy. RNA sequencing was performed in control (noncontracted), CONC, and ECC muscles to identify genes impacted by the contractions. [H2O2]cyto immediately after ECC was greater than after CONC (CONC: +6%, ECC: +11% vs. rest, P < 0.05) and remained higher for at least 60 min into recovery. In contrast, the elevation of [H2O2]mito was independent of the contraction modes (time; P < 0.0042, contraction mode; P = 0.4965). The impact of ECC on [H2O2]cyto was abolished by NADPH oxidase 2 (Nox2) inhibition (GSK2795039). Differentially expressed genes were not present after CONC or ECC + GSK but were found after ECC and were enriched for vascular development and apoptosis-related genes, among others. In conclusion, in mouse anterior tibialis, ECC, but not CONC, evokes a pronounced cytosolic H2O2 response, caused by Nox2, that is mechanistically linked to gene expression modifications.NEW & NOTEWORTHY This in vivo model successfully characterized the effects of eccentric (ECC) and concentric (CONC) contractions on cytosolic and mitochondrial [H2O2] in mouse skeletal muscle. Compared with CONC, ECC induced higher and more sustained [H2O2]cyto-an effect that was abolished by Nox2 inhibition. ECC-induced [H2O2]cyto elevations were requisite for altered gene expression.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Tatsuya Kusano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Reo Takeda
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
15
|
Dzubanova M, Bond JM, Craige SM, Tencerova M. NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism. Front Cell Dev Biol 2024; 12:1432668. [PMID: 39188529 PMCID: PMC11345137 DOI: 10.3389/fcell.2024.1432668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.
Collapse
Affiliation(s)
- Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Jacob M. Bond
- Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Siobhan M. Craige
- Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
16
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Gerrard SD, Yonke JA, McMillan RP, Sunny NE, El-Kadi SW. Medium-Chain Fatty Acid Feeding Reduces Oxidation and Causes Panacinar Steatosis in Livers of Neonatal Pigs. J Nutr 2024; 154:908-920. [PMID: 38253226 DOI: 10.1016/j.tjnut.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Medium-chain fatty acids (MCFAs) are commonly used to enhance the caloric content of infant formulas. We previously reported that pigs fed MCFA developed hepatic steatosis when compared to those fed isocaloric long-chain fatty acid (LCFA) rich formula. OBJECTIVES The objectives of this study were to investigate: 1) whether MCFA and LCFA feeding affect hepatic fatty acid oxidation, and 2) how fat type alters the expression of hepatic fatty acid metabolic genes. METHODS Twenty-six, 7-d-old pigs were fed a low-energy control (CONT) formula, or 2 isocaloric high-energy formulas rich in LCFA or MCFA for 22 days. Livers were collected for examining ex vivo fatty acid oxidation, fatty acid content, and mRNA expression of fatty acid metabolic genes. RESULTS Liver fat was 20% for pigs in the MCFA compared with 2.9% and 4.6% for those in the CONT and LCFA groups (P < 0.05). MCFA-fed pigs had greater amounts of hepatic laurate, myristate, palmitate, and palmitoleate (14, 34, 49, and 9.3 mg · g-1) than those fed LCFA and CONT (1.8, 1.9, 19, 1.5 mg · g-1) formulas (P ≤ 0.05). Hepatic laurate and palmitate oxidation was reduced for pigs fed MCFA (29 mmol · mg-1 · h-1) compared with those fed CONT (54 mmol · mg-1 · h-1) and LCFA (51 mmol · mg-1 · h-1) formulas (P < 0.05). Expression of fatty acid synthase 3 (FASN-3), fatty acid binding protein 1 (FABP-1), and acetyl-CoA carboxylase 1 (ACACA-1) were 8-, 6-, and 2-fold greater for pigs in the MCFA than those in the LCFA and CONT groups (P < 0.05). CONCLUSIONS Feeding MCFA resulted in hepatic steatosis compared with an isocaloric formula rich in LCFA. Steatosis occurred concomitantly with reduced fatty acid oxidation but greater mRNA expression of fatty acid synthetic and catabolic genes.
Collapse
Affiliation(s)
- Samuel D Gerrard
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Joseph A Yonke
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ryan P McMillan
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
18
|
Saydi A, Behpoor N, Khamis Abadi F, Jung F, Kordi N. Modulation of pulmonary oxidative status in methamphetamine-withdrawn rats, comparing the effects of continuous training and NBS superfood supplementation. Clin Hemorheol Microcirc 2024; 88:373-384. [PMID: 39031345 DOI: 10.3233/ch-242306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
OBJECTIVE This study aimed to investigate the effects of six weeks of continuous training and Nutrition Bio-shield (NBS) Superfood Supplementation on the state of oxidative stress by the expression of Nrf2, NOX4, superoxide dismutase, and malondialdehyde genes in the lungs of rats after methamphetamine withdrawal. METHODS Forty male Wistar rats were randomly divided into five groups (n = 8, per group), undergoing methamphetamine administration (six weeks, 5 mg/kg ip, and once per day) followed by a 21-day withdrawal period. The rats were supplemented NBS superfood at a dosage of 25 g/kg per day for six weeks. The training protocol was 30 minutes of daily continuous training (treadmill running), five days a week for six weeks. The regimen escalated from a pace of 3 m/min for the initial 5 minutes, to 5 m/min for the following 5 minutes, culminating at 8 m/min for the remainder of the session, all at a 0° incline. A one-way analysis of variance was performed to analyze the gene expression of Nrf2, NOX4, MDA, and SOD in the lungs tissue of rats. RESULTS The results indicated that, in the experimental groups which underwent continuous training and NBS Superfood supplementation, the expression of the Nrf2 gene exhibited a significant elevation compared to the control group (P < 0.05), while the NOX4, MDA, and SOD genes expression exhibited a significant decline in comparison to the control group (P < 0.05). CONCLUSION In general, both exercise interventions and NBS superfood supplementation, when employed separately or in combination after methamphetamine withdrawal, can enhance the state of oxidative stress in the lung.
Collapse
Affiliation(s)
- Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Naser Behpoor
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Fatemeh Khamis Abadi
- Department of Sport Physiology, Faculty of Human Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
19
|
Espinosa A, Casas M, Jaimovich E. Energy (and Reactive Oxygen Species Generation) Saving Distribution of Mitochondria for the Activation of ATP Production in Skeletal Muscle. Antioxidants (Basel) 2023; 12:1624. [PMID: 37627619 PMCID: PMC10451830 DOI: 10.3390/antiox12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Exercise produces oxidants from a variety of intracellular sources, including NADPH oxidases (NOX) and mitochondria. Exercise-derived reactive oxygen species (ROS) are beneficial, and the amount and location of these ROS is important to avoid muscle damage associated with oxidative stress. We discuss here some of the evidence that involves ROS production associated with skeletal muscle contraction and the potential oxidative stress associated with muscle contraction. We also discuss the potential role of H2O2 produced after NOX activation in the regulation of glucose transport in skeletal muscle. Finally, we propose a model based on evidence for the role of different populations of mitochondria in skeletal muscle in the regulation of ATP production upon exercise. The subsarcolemmal population of mitochondria has the enzymatic and metabolic components to establish a high mitochondrial membrane potential when fissioned at rest but lacks the capacity to produce ATP. Calcium entry into the mitochondria will further increase the metabolic input. Upon exercise, subsarcolemmal mitochondria will fuse to intermyofibrillar mitochondria and will transfer the mitochondria membrane potential to them. These mitochondria are rich in ATP synthase and will subsequentially produce the ATP needed for muscle contraction in long-term exercise. These events will optimize energy use and minimize mitochondria ROS production.
Collapse
Affiliation(s)
- Alejandra Espinosa
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile; (A.E.)
- San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaiso, San Felipe 2172972, Chile
| | - Mariana Casas
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile; (A.E.)
| | - Enrique Jaimovich
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile; (A.E.)
| |
Collapse
|
20
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
21
|
Galmés S, Rupérez AI, Sánchez J, Moreno LA, Foraita R, Hebestreit A, Molnár D, Palou A, Picó C. KLB and NOX4 expression levels as potential blood-based transcriptional biomarkers of physical activity in children. Sci Rep 2023; 13:5563. [PMID: 37019912 PMCID: PMC10074339 DOI: 10.1038/s41598-023-31537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Insufficient physical activity (PA) in children is considered one of the major contributors to obesity and cardiometabolic complications later in life. Although regular exercise may contribute to disease prevention and health promotion, reliable early biomarkers are required to objectively discern people performing low PA from those who exercise enough. Here, we aimed to identify potential transcript-based biomarkers through the analysis of a whole-genome microarray in peripheral blood cells (PBC) from physically less active (n = 10) comparing with more active (n = 10) children. A set of genes differentially expressed (p < 0.01, Limma test) in less physically active children were identified, including the down-regulation of genes related to cardiometabolic benefits and improved skeletal function (KLB, NOX4, and SYPL2), and the up-regulation of genes whose elevated expression levels are associated with metabolic complications (IRX5, UBD, and MGP). The analysis of the enriched pathways significantly affected by PA levels were those associated with protein catabolism, skeletal morphogenesis, and wound healing, among others, which may suggest a differential impact of low PA on these processes. Microarray analysis comparing children according to their usual PA has revealed potential PBC transcript-based biomarkers that may be useful in early discerning children expending high sedentary time and its associated negative consequences.
Collapse
Affiliation(s)
- Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Cra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Azahara I Rupérez
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Sciences, University of Zaragoza, 50009, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2) and Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Cra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Luis A Moreno
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health Sciences, University of Zaragoza, 50009, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2) and Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359, Bremen, Germany
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359, Bremen, Germany
| | - Dénes Molnár
- Medical School and National Laboratories of Human Reproduction, University of Pécs, 7624, Pécs, Hungary
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Cra. Valldemossa Km 7.5, 07122, Palma, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Cra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
22
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
23
|
Nabeebaccus AA, Reumiller CM, Shen J, Zoccarato A, Santos CXC, Shah AM. The regulation of cardiac intermediary metabolism by NADPH oxidases. Cardiovasc Res 2023; 118:3305-3319. [PMID: 35325070 PMCID: PMC9847558 DOI: 10.1093/cvr/cvac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
NADPH oxidases (NOXs), enzymes whose primary function is to generate reactive oxygen species, are important regulators of the heart's physiological function and response to pathological insults. The role of NOX-driven redox signalling in pathophysiological myocardial remodelling, including processes such as interstitial fibrosis, contractile dysfunction, cellular hypertrophy, and cell survival, is well recognized. While the NOX2 isoform promotes many detrimental effects, the NOX4 isoform has attracted considerable attention as a driver of adaptive stress responses both during pathology and under physiological states such as exercise. Recent studies have begun to define some of the NOX4-modulated mechanisms that may underlie these adaptive responses. In particular, novel functions of NOX4 in driving cellular metabolic changes have emerged. Alterations in cellular metabolism are a recognized hallmark of the heart's response to physiological and pathological stresses. In this review, we highlight the emerging roles of NOX enzymes as important modulators of cellular intermediary metabolism in the heart, linking stress responses not only to myocardial energetics but also other functions. The novel interplay of NOX-modulated redox signalling pathways and intermediary metabolism in the heart is unravelling a new aspect of the fascinating biology of these enzymes which will inform a better understanding of how they drive adaptive responses. We also discuss the implications of these new findings for therapeutic approaches that target metabolism in cardiac disease.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Christina M Reumiller
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jie Shen
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Anna Zoccarato
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
24
|
Chen D, Zhang HF, Yuan TY, Sun SC, Wang RR, Wang SB, Fang LH, Lyu Y, Du GH. Puerarin-V prevents the progression of hypoxia- and monocrotaline-induced pulmonary hypertension in rodent models. Acta Pharmacol Sin 2022; 43:2325-2339. [PMID: 35190697 PMCID: PMC9433387 DOI: 10.1038/s41401-022-00865-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
Abstract
Pulmonary hypertension (PH) is a cardiopulmonary disease characterized by a progressive increase in pulmonary vascular resistance. One of the initial pathogenic factors of PH is pulmonary arterial remodeling under various stimuli. Current marketed drugs against PH mainly relieve symptoms without significant improvement in overall prognosis. Discovering and developing new therapeutic drugs that interfere with vascular remodeling is in urgent need. Puerarin is an isoflavone compound extracted from the root of Kudzu vine, which is widely used in the treatment of cardiovascular diseases. In the present study, we evaluated the efficacy of puerarin in the treatment of experimental PH. PH was induced in rats by a single injection of MCT (50 mg/kg, sc), and in mice by exposure to hypoxia (10% O2) for 14 days. After MCT injection the rats were administered puerarin (10, 30, 100 mg · kg-1 · d-1, i.g.) for 28 days, whereas hypoxia-treated mice were pre-administered puerarin (60 mg · kg-1 · d-1, i.g.) for 7 days. We showed that puerarin administration exerted significant protective effects in both experimental PH rodent models, evidenced by significantly reduced right ventricular systolic pressure (RVSP) and lung injury, improved pulmonary artery blood flow as well as pulmonary vasodilation and contraction function, inhibited inflammatory responses in lung tissues, improved resistance to apoptosis and abnormal proliferation in lung tissues, attenuated right ventricular injury and remodeling, and maintained normal function of the right ventricle. We revealed that MCT and hypoxia treatment significantly downregulated BMPR2/Smad signaling in the lung tissues and PPARγ/PI3K/Akt signaling in the lung tissues and right ventricles, which were restored by puerarin administration. In addition, we showed that a novel crystal type V (Puer-V) exerted better therapeutic effects than the crude form of puerarin (Puer). Furthermore, Puer-V was more efficient than bosentan (a positive control drug) in alleviating the abnormal structural changes and dysfunction of lung tissues and right ventricles. In conclusion, this study provides experimental evidence for developing Puer-V as a novel therapeutic drug to treat PH.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Fang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shu-Chan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ran-Ran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lyu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
25
|
Nichenko AS, Specht KS, Craige SM, Drake JC. Sensing local energetics to acutely regulate mitophagy in skeletal muscle. Front Cell Dev Biol 2022; 10:987317. [PMID: 36105350 PMCID: PMC9465048 DOI: 10.3389/fcell.2022.987317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023] Open
Abstract
The energetic requirements of skeletal muscle to sustain movement, as during exercise, is met largely by mitochondria, which form an intricate, interconnected reticulum. Maintenance of a healthy mitochondrial reticulum is essential for skeletal muscle function, suggesting quality control pathways are spatially governed. Mitophagy, the process by which damaged and/or dysfunctional regions of the mitochondrial reticulum are removed and degraded, has emerged as an integral part of the molecular response to exercise. Upregulation of mitophagy in response to acute exercise is directly connected to energetic sensing mechanisms through AMPK. In this review, we discuss the connection of mitophagy to muscle energetics and how AMPK may spatially control mitophagy through multiple potential means.
Collapse
|
26
|
Knudsen JR, Madsen AB, Li Z, Andersen NR, Schjerling P, Jensen TE. Gene deletion of γ-actin impairs insulin-stimulated skeletal muscle glucose uptake in growing mice but not in mature adult mice. Physiol Rep 2022; 10:e15183. [PMID: 35224890 PMCID: PMC8882697 DOI: 10.14814/phy2.15183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 04/14/2023] Open
Abstract
The cortical cytoskeleton, consisting of the cytoplasmic actin isoforms β and/or γ-actin, has been implicated in insulin-stimulated GLUT4 translocation and glucose uptake in muscle and adipose cell culture. Furthermore, transgenic inhibition of multiple actin-regulating proteins in muscle inhibits insulin-stimulated muscle glucose uptake. The current study tested if γ-actin was required for insulin-stimulated glucose uptake in mouse skeletal muscle. Based on our previously reported age-dependent phenotype in muscle-specific β-actin gene deletion (-/- ) mice, we included cohorts of growing 8-14 weeks old and mature 18-32 weeks old muscle-specific γ-actin-/- mice or wild-type littermates. In growing mice, insulin significantly increased the glucose uptake in slow-twitch oxidative soleus and fast-twitch glycolytic EDL muscles from wild-type mice, but not γ-actin-/- . In relative values, the maximal insulin-stimulated glucose uptake was reduced by ~50% in soleus and by ~70% in EDL muscles from growing γ-actin-/- mice compared to growing wild-type mice. In contrast, the insulin-stimulated glucose uptake responses in mature adult γ-actin-/- soleus and EDL muscles were indistinguishable from the responses in wild-type muscles. Mature adult insulin-stimulated phosphorylations on Akt, p70S6K, and ULK1 were not significantly affected by genotype. Hence, insulin-stimulated muscle glucose uptake shows an age-dependent impairment in young growing but not in fully grown γ-actin-/- mice, bearing phenotypic resemblance to β-actin-/- mice. Overall, γ-actin does not appear required for insulin-stimulated muscle glucose uptake in adulthood. Furthermore, our data emphasize the need to consider the rapid growth of young mice as a potential confounder in transgenic mouse phenotyping studies.
Collapse
Affiliation(s)
- Jonas R. Knudsen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Agnete B. Madsen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Zhencheng Li
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Nicoline R. Andersen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Peter Schjerling
- Department of Orthopedic Surgery MInstitute of Sports Medicine CopenhagenBispebjerg HospitalCopenhagenDenmark
| | - Thomas E. Jensen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
Xirouchaki CE, Jia Y, McGrath MJ, Greatorex S, Tran M, Merry TL, Hong D, Eramo MJ, Broome SC, Woodhead JST, D’souza RF, Gallagher J, Salimova E, Huang C, Schittenhelm RB, Sadoshima J, Watt MJ, Mitchell CA, Tiganis T. Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. SCIENCE ADVANCES 2021; 7:eabl4988. [PMID: 34910515 PMCID: PMC8673768 DOI: 10.1126/sciadv.abl4988] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/26/2021] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity.
Collapse
Affiliation(s)
- Chrysovalantou E. Xirouchaki
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Yaoyao Jia
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Spencer Greatorex
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Melanie Tran
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Troy L. Merry
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Dawn Hong
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan S. T. Woodhead
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Randall F. D’souza
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jenny Gallagher
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University,
Clayton, Victoria 3800, Australia
| | - Cheng Huang
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Monash Proteomics and Metabolomics Facility, Monash
University, Clayton, Victoria 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Monash Proteomics and Metabolomics Facility, Monash
University, Clayton, Victoria 3800, Australia
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine,
Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ
07103, USA
| | - Matthew J. Watt
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Physiology, Monash University, Clayton,
Victoria 3800, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Monash Metabolic Phenotyping Facility, Monash
University, Clayton, Victoria 3800, Australia
| |
Collapse
|
28
|
Brown OI, Bridge KI, Kearney MT. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells 2021; 10:cells10092315. [PMID: 34571964 PMCID: PMC8469180 DOI: 10.3390/cells10092315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
Collapse
|
29
|
Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10040537. [PMID: 33808211 PMCID: PMC8066165 DOI: 10.3390/antiox10040537] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.
Collapse
Affiliation(s)
- Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Rodrigo S. Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Corinne Dupuy
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Denise P. Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Ruy A. Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Correspondence:
| |
Collapse
|