1
|
Zhuang Y, Zhang X, Zhang S, Sun Y, Wang H, Chen Y, Zhang H, Zou P, Feng Y, Lu X, Chen P, Xu Y, Li JZ, Gao H, Jin L, Kong X. Chaperone-mediated autophagy manipulates PGC1α stability and governs energy metabolism under thermal stress. Nat Commun 2025; 16:4455. [PMID: 40360527 PMCID: PMC12075589 DOI: 10.1038/s41467-025-59618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Thermogenic proteins are down-regulated under thermal stress, including PGC1α· However, the molecular mechanisms are not fully understood. Here, we addressed that chaperone-mediated autophagy could regulate the stability of PGC1α under thermal stress. In mice, knockdown of Lamp2a, one of the two components of CMA, in BAT showed increased PGC1α protein and improved metabolic phenotypes. Combining the proteomics of brown adipose tissue (BAT), structure prediction, co-immunoprecipitation- mass spectrum and biochemical assays, we found that PARK7, a Parkinson's disease causative protein, could sense the temperature changes and interact with LAMP2A and HSC70, respectively, subsequently manipulate the activity of CMA. Knockout of Park7 specific in BAT promoted BAT whitening, leading to impaired insulin sensitivity and energy expenditure at thermoneutrality. Moreover, inhibiting the activity of CMA by knockdown of LAMP2A reversed the effects induced by Park7 ablation. These findings suggest CMA is required for BAT to sustain thermoneutrality-induced whitening through degradation of PGC1α.
Collapse
Affiliation(s)
- Yixiao Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Hui Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuxuan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hanyin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Penglai Zou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yonghao Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaodan Lu
- Precisional Medical Center, Jilin Province People's Hospital, Changchun, 130021, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yi Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - John Zhong Li
- Department of Molecular Biology and Biochemistry, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Song SL, Chen XY, Zhao J, Li YY, Xiong YM, Lv L, Chang J, Wang H, Li XH, Qin ZF. Effects of the Fungicide Prothioconazole on Lipid Metabolism in Mice: Whitening Alterations of Brown Adipose Tissue. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18155-18166. [PMID: 39361549 DOI: 10.1021/acs.est.4c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
With considerable concerns about the associations between metabolic disorders and agricultural biocides, there are scattered data suggesting that the triazole fungicide prothioconazole (PTC) at lower doses than the no observed adverse effect level of 5000 μg/kg/d possibly has the potential to disrupt glycolipid metabolism in mammals. Here, we investigated the effects of 50, 500, and 5000 μg/kg/d of PTC on glycolipid metabolism in mice following 8 weeks of administration via drinking water, with specific attention on brown adipose tissue (BAT) and white adipose tissue (WAT) in addition to the liver. We found that along with the increased serum triglyceride level in the 5000 μg/kg/d group, small fatty vacuoles occurred in livers in all treatment groups, indicating lipid accumulation. No change in WAT was observed, but PTC caused BAT whitening, characterized by adipocyte hypertrophy, more unilocular adipocytes with enlarged lipid droplets, reduced UCP1 levels, and down-regulated Doi2 expression, and even the dose of 50 μg/kg/d was effective. Transcriptomic analysis revealed immune inhibition and circadian rhythm disturbance in BAT from the 5000 μg/kg/d group, which are in agreement with BAT whitening and inactivation. On employing the C3H10T1/2 cells in vitro, we found that PTC treatment concentration-dependently promoted lipid accumulation in brown adipocytes, along with altered expression of thermogenesis-related and circadian genes. Taken together, our study shows that low doses of PTC caused BAT whitening, calling for much attention to the new target by pollutants.
Collapse
Affiliation(s)
- Shi-Lin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huili Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xing Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Veverová K, Laczó J, Katonová A, Horáková H, Matušková V, Angelucci F, Laczó M, Nedelská Z, Hort J, Wang HL, Zhang J, Shi L, Fei Fang E, Vyhnálek M. Alterations of human CSF and serum-based mitophagy biomarkers in the continuum of Alzheimer disease. Autophagy 2024; 20:1868-1878. [PMID: 38695174 PMCID: PMC11262225 DOI: 10.1080/15548627.2024.2340408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/04/2024] [Indexed: 07/23/2024] Open
Abstract
Defective mitophagy is consistently found in postmortem brain and iPSC-derived neurons from Alzheimer disease (AD) patients. However, there is a lack of extensive examination of mitophagy status in serum or cerebrospinal fluid (CSF), and the clinical potential of mitophagy biomarkers has not been tested. We quantified biomarkers of mitophagy/autophagy and lysosomal degradation (PINK1, BNIP3L and TFEB) in CSF and serum from 246 individuals, covering mild cognitive impairment due to AD (MCI-AD, n = 100), dementia due to AD (AD-dementia, n = 100), and cognitively unimpaired individuals (CU, n = 46), recruited from the Czech Brain Aging Study. Cognitive function and brain atrophy were also assessed. Our data show that serum and CSF PINK1 and serum BNIP3L were higher, and serum TFEB was lower in individuals with AD than in corresponding CU individuals. Additionally, the magnitude of mitophagy impairment correlated with the severity of clinical indicators in AD patients. Specifically, levels of PINK1 positively correlated with phosphorylated (p)-MAPT/tau (181), total (t)-MAPT/tau, NEFL (neurofilament light chain), and NRGN (neurogranin) levels in CSF and negatively with memory, executive function, and language domain. Serum TFEB levels negatively correlated with NEFL and positively with executive function and language. This study reveals mitophagy impairment reflected in biofluid biomarkers of individuals with AD and associated with more advanced AD pathology.Abbreviation: Aβ: amyloid beta; AD: Alzheimer disease; AVs: autophagic vacuoles; BNIP3L: BCL2 interacting protein 3 like; CU: cognitively unimpaired; CSF: cerebrospinal fluid; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCI: mild cognitive impairment; NRGN: neurogranin; NEFL: neurofilament light chain; p-MAPT/tau: phosphorylated microtubule associated protein tau; PINK1: PTEN induced kinase 1; t-MAPT/tau: total microtubule associated protein tau; TFEB: transcription factor EB; TMT: Trail Making Test.
Collapse
Affiliation(s)
- Kateřina Veverová
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Alžběta Katonová
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Hana Horáková
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Veronika Matušková
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martina Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zuzana Nedelská
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Martin Vyhnálek
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Canali S, Fischer AW, Nguyen M, Anderson K, Wu L, Graham AR, Hsiao CJ, Bankar C, Dussault N, Ritchie V, Goodridge M, Sparrow T, Pannoni A, Tse SW, Woo V, Klovdahl K, Iacovelli J, Huang E. Lipid-encapsulated mRNA encoding an extended serum half-life interleukin-22 ameliorates metabolic disease in mice. Mol Metab 2024; 86:101965. [PMID: 38871178 PMCID: PMC11296054 DOI: 10.1016/j.molmet.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Interleukin (IL)-22 is a potential therapeutic protein for the treatment of metabolic diseases such as obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease due to its involvement in multiple cellular pathways and observed hepatoprotective effects. The short serum half-life of IL-22 has previously limited its use in clinical applications; however, the development of mRNA-lipid nanoparticle (LNP) technology offers a novel therapeutic approach that uses a host-generated IL-22 fusion protein. In the present study, the effects of administration of an mRNA-LNP encoding IL-22 on metabolic disease parameters was investigated in various mouse models. METHODS C57BL/6NCrl mice were used to confirm mouse serum albumin (MSA)-IL-22 protein expression prior to assessments in C57BL/6NTac and CETP/ApoB transgenic mouse models of metabolic disease. Mice were fed either regular chow or a modified amylin liver nonalcoholic steatohepatitis-inducing diet prior to receiving either LNP-encapsulated MSA-IL-22 or MSA mRNA via intravenous or intramuscular injection. Metabolic markers were monitored for the duration of the experiments, and postmortem histology assessment and analysis of metabolic gene expression pathways were performed. RESULTS MSA-IL-22 was detectable for ≥8 days following administration. Improvements in body weight, lipid metabolism, glucose metabolism, and lipogenic and fibrotic marker gene expression in the liver were observed in the MSA-IL-22-treated mice, and these effects were shown to be durable. CONCLUSIONS These results support the application of mRNA-encoded IL-22 as a promising treatment strategy for metabolic syndrome and associated comorbidities in human populations.
Collapse
Affiliation(s)
- Susanna Canali
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | - Mychael Nguyen
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Karl Anderson
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Lorna Wu
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | | | - Nancy Dussault
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | - Todd Sparrow
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | - Sze-Wah Tse
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Vivienne Woo
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | - Eric Huang
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Stojchevski R, Chandrasekaran P, Hadzi-Petrushev N, Mladenov M, Avtanski D. Adipose Tissue Dysfunction Related to Climate Change and Air Pollution: Understanding the Metabolic Consequences. Int J Mol Sci 2024; 25:7849. [PMID: 39063092 PMCID: PMC11277516 DOI: 10.3390/ijms25147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
6
|
Chen J, Pan Y, Lu Y, Fang X, Ma T, Chen X, Wang Y, Fang X, Zhang C, Song C. The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation. Genes (Basel) 2024; 15:875. [PMID: 39062654 PMCID: PMC11275360 DOI: 10.3390/genes15070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| |
Collapse
|
7
|
Jaeckstein MY, Schulze I, Zajac MW, Heine M, Mann O, Pfeifer A, Heeren J. CD73-dependent generation of extracellular adenosine by vascular endothelial cells modulates de novo lipogenesis in adipose tissue. Front Immunol 2024; 14:1308456. [PMID: 38264660 PMCID: PMC10803534 DOI: 10.3389/fimmu.2023.1308456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Next to white and brown adipocytes present in white and brown adipose tissue (WAT, BAT), vascular endothelial cells, tissue-resident macrophages and other immune cells have important roles in maintaining adipose tissue homeostasis but also contribute to the etiology of obesity-associated chronic inflammatory metabolic diseases. In addition to hormonal signals such as insulin and norepinephrine, extracellular adenine nucleotides modulate lipid storage, fatty acid release and thermogenic responses in adipose tissues. The complex regulation of extracellular adenine nucleotides involves a network of ectoenzymes that convert ATP via ADP and AMP to adenosine. However, in WAT and BAT the processing of extracellular adenine nucleotides and its relevance for intercellular communications are still largely unknown. Based on our observations that in adipose tissues the adenosine-generating enzyme CD73 is mainly expressed by vascular endothelial cells, we studied glucose and lipid handling, energy expenditure and adaptive thermogenesis in mice lacking endothelial CD73 housed at different ambient temperatures. Under conditions of thermogenic activation, CD73 expressed by endothelial cells is dispensable for the expression of thermogenic genes as well as energy expenditure. Notably, thermoneutral housing leading to a state of low energy expenditure and lipid accumulation in adipose tissues resulted in enhanced glucose uptake into WAT of endothelial CD73-deficient mice. This effect was associated with elevated expression levels of de novo lipogenesis genes. Mechanistic studies provide evidence that extracellular adenosine is imported into adipocytes and converted to AMP by adenosine kinase. Subsequently, activation of the AMP kinase lowers the expression of de novo lipogenesis genes, most likely via inactivation of the transcription factor carbohydrate response element binding protein (ChREBP). In conclusion, this study demonstrates that endothelial-derived extracellular adenosine generated via the ectoenzyme CD73 is a paracrine factor shaping lipid metabolism in WAT.
Collapse
Affiliation(s)
- Michelle Y. Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Schulze
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Wolfgang Zajac
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Zhu Y, Liu W, Qi Z. Adipose tissue browning and thermogenesis under physiologically energetic challenges: a remodelled thermogenic system. J Physiol 2024; 602:23-48. [PMID: 38019069 DOI: 10.1113/jp285269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Metabolic diseases such as obesity and diabetes are often thought to be caused by reduced energy expenditure, which poses a serious threat to human health. Cold exposure, exercise and caloric restriction have been shown to promote adipose tissue browning and thermogenesis. These physiological interventions increase energy expenditure and thus have emerged as promising strategies for mitigating metabolic disorders. However, that increased adipose tissue browning and thermogenesis elevate thermogenic consumption is not a reasonable explanation when humans and animals confront energetic challenges imposed by these interventions. In this review, we collected numerous results on adipose tissue browning and whitening and evaluated this bi-directional conversion of adipocytes from the perspective of energy homeostasis. Here, we propose a new interpretation of the role of adipose tissue browning under energetic challenges: increased adipose tissue browning and thermogenesis under energy challenge is not to enhance energy expenditure, but to reestablish a more economical thermogenic pattern to maintain the core body temperature. This can be achieved by enhancing the contribution of non-shivering thermogenesis (adipose tissue browning and thermogenesis) and lowering shivering thermogenesis and high intensity shivering. Consequently, the proportion of heat production in fat increases and that in skeletal muscle decreases, enabling skeletal muscle to devote more energy reserves to overcoming environmental stress.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Morishige JI, Yoshioka K, Nakata H, Ishimaru K, Nagata N, Tanaka T, Takuwa Y, Ando H. Sphingosine kinase 1 is involved in triglyceride breakdown by maintaining lysosomal integrity in brown adipocytes. J Lipid Res 2023; 64:100450. [PMID: 37751791 PMCID: PMC10630120 DOI: 10.1016/j.jlr.2023.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) has been implicated in brown adipose tissue (BAT) formation and energy consumption; however, the mechanistic role of sphingolipids, including S1P, in BAT remains unclear. Here, we showed that, in mice, BAT activation by cold exposure upregulated mRNA and protein expression of the S1P-synthesizing enzyme sphingosine kinase 1 (SphK1) and S1P production in BAT. Treatment of wild-type brown adipocytes with exogenous S1P or S1P receptor subtype-selective agonists stimulated triglyceride (TG) breakdown only marginally, compared with noradrenaline. However, genetic deletion of Sphk1 resulted in hypothermia and diminished body weight loss upon cold exposure, suggesting that SphK1 is involved in thermogenesis through mechanisms different from receptor-mediated, extracellular action of S1P. In BAT of wild-type mice, SphK1 was localized largely in the lysosomes of brown adipocytes. In the brown adipocytes of Sphk1-/- mice, the number of lysosomes was reduced and lysosomal function, including proteolytic activity, acid esterase activity, and motility, was impaired. Concordantly, nuclear translocation of transcription factor EB, a master transcriptional regulator of lysosome biogenesis, was reduced, leading to decreased mRNA expression of the lysosome-related genes in Sphk1-/- BAT. Moreover, BAT of Sphk1-/- mice showed greater TG accumulation with dominant larger lipid droplets in brown adipocytes. Inhibition of lysosomes with chloroquine resulted in a less extent of triglyceride accumulation in Sphk1-/- brown adipocytes compared with wild-type brown adipocytes, suggesting a reduced lysosome-mediated TG breakdown in Sphk1-/- mice. Our results indicate a novel role of SphK1 in lysosomal integrity, which is required for TG breakdown and thermogenesis in BAT.
Collapse
Affiliation(s)
- Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kazuaki Yoshioka
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Yoh Takuwa
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
10
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
11
|
Miranda CS, Silva-Veiga FM, Santana-Oliveira DA, Fernandes-da-Silva A, Brito GC, Martins FF, Souza-Mello V. Chronic Excessive Fructose Intake Maximizes Brown Adipocyte Whitening but Causes Similar White Adipocyte Hypertrophy Than a High-Fat Diet in C57BL/6 Mice. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:435-444. [PMID: 35822844 DOI: 10.1080/07315724.2022.2062686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Objective: This study aimed to evaluate the differential role of a high-fat diet (HF) or high-fructose diet (HFRU) on white adipose tissue and brown adipose tissue remodeling in C57BL/6 mice.Methods: The animals were randomly assigned to receive HF (50% of energy as lipids), HFRU (50% of energy as fructose), or a control diet (C, 10% of energy as lipids) for 12 weeks. Results: The HF group became overweight from the 7th week onwards, but both HF and HFRU groups showed hyperinsulinemia, oral glucose intolerance, and adverse adipose tissue remodeling. HF and HFRU groups showed interscapular brown adipose tissue whitening, tough the reduced QA [nuclei] suggested maximized brown adipocyte dysfunction due to the HFRU diet. In contrast, HF and HFRU diets exerted similar effects upon subcutaneous white adipocytes, with a similar average cross-sectional area. Immunohistochemistry confirmed the whitening enhancement with reduced UCP1 immunodensity in the HFRU group. Conclusion: In conclusion, HF and HFRU diets had indistinguishable effects upon white adipocyte morphology, but the HFRU diet provoked a more pronounced whitening than the HF diet after a 12-week protocol. These results point to the silent and harmful impact that excessive fructose has upon the metabolism of lean mice.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle Carvalho Brito
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
He Y, Zhang R, Yu L, Zahr T, Li X, Kim TW, Qiang L. PPARγ Acetylation in Adipocytes Exacerbates BAT Whitening and Worsens Age-Associated Metabolic Dysfunction. Cells 2023; 12:1424. [PMID: 37408258 PMCID: PMC10217233 DOI: 10.3390/cells12101424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Aging and obesity are the two prominent driving forces of metabolic dysfunction, yet the common underlying mechanisms remain elusive. PPARγ, a central metabolic regulator and primary drug target combatting insulin resistance, is hyperacetylated in both aging and obesity. By employing a unique adipocyte-specific PPARγ acetylation-mimetic mutant knock-in mouse model, namely aKQ, we demonstrate that these mice develop worsened obesity, insulin resistance, dyslipidemia, and glucose intolerance as they age, and these metabolic deregulations are resistant to intervention by intermittent fasting. Interestingly, aKQ mice show a whitening phenotype of brown adipose tissue (BAT) manifested in lipid filling and suppressed BAT markers. Diet-induced obese aKQ mice retain an expected response to thiazolidinedione (TZD) treatment, while BAT function remains impaired. This BAT whitening phenotype persists even with the activation of SirT1 through resveratrol treatment. Moreover, the adverse effect of TZDs on bone loss is exacerbated in aKQ mice and is potentially mediated by their increased Adipsin levels. Our results collectively suggest pathogenic implications of adipocyte PPARγ acetylation, contributing to metabolic dysfunction in aging and thus posing as a potential therapeutic target.
Collapse
Affiliation(s)
- Ying He
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA;
| | - Ruotong Zhang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA;
| | - Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA;
| | - Tarik Zahr
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| | - Xueming Li
- Stuyvesant High School, New York, NY 10032, USA
| | - Tae-Wan Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA;
- Taub Institute of Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
13
|
Ginting RP, Lee JM, Lee MW. The Influence of Ambient Temperature on Adipose Tissue Homeostasis, Metabolic Diseases and Cancers. Cells 2023; 12:cells12060881. [PMID: 36980222 PMCID: PMC10047443 DOI: 10.3390/cells12060881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Adipose tissue is a recognized energy storage organ during excessive energy intake and an endocrine and thermoregulator, which interacts with other tissues to regulate systemic metabolism. Adipose tissue dysfunction is observed in most obese mouse models and humans. However, most studies using mouse models were conducted at room temperature (RT), where mice were chronically exposed to mild cold. In this condition, energy use is prioritized for thermogenesis to maintain body temperature in mice. It also leads to the activation of the sympathetic nervous system, followed by the activation of β-adrenergic signaling. As humans live primarily in their thermoneutral (TN) zone, RT housing for mice limits the interpretation of disease studies from mouse models to humans. Therefore, housing mice in their TN zone (~28–30 °C) can be considered to mimic humans physiologically. However, factors such as temperature ranges and TN pre-acclimatization periods should be examined to obtain reliable results. In this review, we discuss how adipose tissue responds to housing temperature and the outcomes of the TN zone in metabolic disease studies. This review highlights the critical role of TN housing in mouse models for studying adipose tissue function and human metabolic diseases.
Collapse
Affiliation(s)
- Rehna Paula Ginting
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min-Woo Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
- Correspondence: ; Tel.: +82-41-413-5029
| |
Collapse
|
14
|
Ziqubu K, Dludla PV, Mthembu SXH, Nkambule BB, Mabhida SE, Jack BU, Nyambuya TM, Mazibuko-Mbeje SE. An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Front Endocrinol (Lausanne) 2023; 14:1114767. [PMID: 36875450 PMCID: PMC9978510 DOI: 10.3389/fendo.2023.1114767] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role. In obesity, the content of BAT and beige adipose tissue declines as these tissues acquire the WAT characteristics via the process called "whitening". This process has been rarely explored for its implication in obesity, whether it contributes to or exacerbates obesity. Emerging research has demonstrated that BAT/beige adipose tissue whitening is a sophisticated metabolic complication of obesity that is linked to multiple factors. The current review provides clarification on the influence of various factors such as diet, age, genetics, thermoneutrality, and chemical exposure on BAT/beige adipose tissue whitening. Moreover, the defects and mechanisms that underpin the whitening are described. Notably, the BAT/beige adipose tissue whitening can be marked by the accumulation of large unilocular lipid droplets, mitochondrial degeneration, and collapsed thermogenic capacity, by the virtue of mitochondrial dysfunction, devascularization, autophagy, and inflammation.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa
| | - Sinenhlanhla X. H. Mthembu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | | |
Collapse
|
15
|
Repeated short excursions from thermoneutrality suffice to restructure brown adipose tissue. Biochimie 2023:S0300-9084(23)00006-8. [PMID: 36657658 DOI: 10.1016/j.biochi.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Given the presence of brown adipose tissue in adult humans, an important issue is whether human brown adipose tissue is recruitable. Cold exposure is the canonical recruitment treatment; however, in experimental animals (mice), recruitment of brown adipose tissue is normally induced by placing the mice in constant cold, a procedure not feasible in humans. For possible translational applications, we have therefore investigated whether shorter daily excursions from thermoneutrality would suffice to qualitatively and quantitatively induce recruitment in mice. Mice, housed at thermoneutrality (30 °C) to mimic human conditions, were transferred every day for 4 weeks to cool conditions (18 °C), for 0, 15, 30, 120 and 420 min (or placed constantly in 18 °C). On the examination day, the mice were not exposed to cold. Very short daily exposures (≤30 min) were sufficient to induce structural changes in the form of higher protein density in brown adipose tissue, changes that may affect the identification of the tissue in e.g. computer tomography and other scan studies. To estimate thermogenic capacity, UCP1 protein levels were followed. No UCP1 protein was detectable in inguinal white adipose tissue. In the interscapular brown adipose tissue, a remarkable two-phase reaction was seen. Very short daily exposures (≤30 min) were sufficient to induce a significant increase in total UCP1 levels. For attainment of full cold acclimation, the mice had, however, to remain exposed to the cold. The studies indicate that marked alterations in brown adipose tissue composition can be induced in mammals through relatively modest stimulation events.
Collapse
|
16
|
Qian K, Tol MJ, Wu J, Uchiyama LF, Xiao X, Cui L, Bedard AH, Weston TA, Rajendran PS, Vergnes L, Shimanaka Y, Yin Y, Jami-Alahmadi Y, Cohn W, Bajar BT, Lin CH, Jin B, DeNardo LA, Black DL, Whitelegge JP, Wohlschlegel JA, Reue K, Shivkumar K, Chen FJ, Young SG, Li P, Tontonoz P. CLSTN3β enforces adipocyte multilocularity to facilitate lipid utilization. Nature 2023; 613:160-168. [PMID: 36477540 PMCID: PMC9995219 DOI: 10.1038/s41586-022-05507-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3β) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3β is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3β have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3β is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3β associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3β-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.
Collapse
Affiliation(s)
- Kevin Qian
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus J Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lauren F Uchiyama
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liujuan Cui
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander H Bedard
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Weston
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pradeep S Rajendran
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuta Shimanaka
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yesheng Yin
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bryce T Bajar
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benita Jin
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feng-Jung Chen
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peng Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Li L, Wan Q, Long Q, Nie T, Zhao S, Mao L, Cheng C, Zou C, Loomes K, Xu A, Lai L, Liu X, Duan Z, Hui X, Wu D. Comparative transcriptomic analysis of rabbit interscapular brown adipose tissue whitening under physiological conditions. Adipocyte 2022; 11:529-549. [PMID: 36000239 PMCID: PMC9427046 DOI: 10.1080/21623945.2022.2111053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 01/29/2023] Open
Abstract
Interscapular brown adipose tissue (iBAT) of both rabbits and humans exhibits a similar whitening phenomenon under physiological conditions. However, a detailed characterization of iBAT whitening in them is still lacking. Here, we chose rabbits as a model to gain a better understanding of the molecular signature changes during the whitening process of iBAT by transcriptomic analysis of rabbit iBAT at day 1, day 14, 1 month and 4 months after birth. We applied non-invasive MRI imaging to monitor the whitening process and correlated these changes with analysis of morphological, histological and molecular features. Principal component analysis (PCA) of differentially expressed genes delineated three major phases for the whitening process as Brown, Transition and Whitened BAT phases. RNA-sequencing data revealed that whitening of iBAT was an orchestrated process where multiple types of cells and tissues participated in a variety of physiological processes including neovascularization, formation of new nervous networks and immune regulation. Several key metabolic and signalling pathways contributed to whitening of iBAT, and immune cells and immune regulation appeared to play an overarching role.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wan
- University of Chinese Academy of Sciences, Beijing, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiaoyun Long
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Tao Nie
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liufeng Mao
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kerry Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, New Zealand
| | - Aimin Xu
- Department of Medicine, University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziyuan Duan
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Ziyuan Duan Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
- Xiaoyan Hui
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CONTACT Donghai Wu
| |
Collapse
|
18
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
19
|
Impaired mitophagy in Sanfilippo a mice causes hypertriglyceridemia and brown adipose tissue activation. J Biol Chem 2022; 298:102159. [PMID: 35750212 PMCID: PMC9364035 DOI: 10.1016/j.jbc.2022.102159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.
Collapse
|
20
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
21
|
Activating Parkin-dependent mitophagy alleviates oxidative stress, apoptosis, and promotes random-pattern skin flaps survival. Commun Biol 2022; 5:616. [PMID: 35732814 PMCID: PMC9217959 DOI: 10.1038/s42003-022-03556-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The random-pattern skin flap is a crucial technique in reconstructive surgery and flap necrosis caused by ischemia/reperfusion injury is a major postoperative complication. Herein, we investigated the mechanism of mitophagy induced by Melatonin (ML) and its effect on the survival of skin flaps. Our results demonstrated that ML could activate mitophagy, ameliorate oxidative stress and alleviate apoptosis in Tert-Butyl hydroperoxide solution (TBHP)-stimulated human umbilical vein endothelial cells in vitro. Inhibiting ML-induced mitophagy considerably abolished its protective effects. Moreover, knockdown of Parkin by siRNA inhibited ML-induced mitophagy, and subsequently exacerbated oxidative stress and apoptosis. Further study demonstrated that inhibition of AMPK reversed these protective effects of ML and downregulated the expression of TFEB. In the vivo study, ML effectively promoted flap survival by activating mitophagy and subsequently ameliorating oxidative stress and mitigating apoptosis. These results established that ML is a potent agent capable for increasing random-pattern skin flap survival by activating Parkin-dependent mitophagy through the AMPK-TFEB signaling pathway.
Collapse
|