1
|
Waite EL, Tigue M, Yu M, Lahori D, Kelly K, May CL, Naji A, Roman J, Doliba N, Avrahami D, Nguyen-Ngoc KV, Sander M, Glaser B, Kaestner KH. The IsletTester Mouse: An Immunodeficient Model With Stable Hyperglycemia for the Study of Human Islets. Diabetes 2025; 74:332-342. [PMID: 39571094 PMCID: PMC11842601 DOI: 10.2337/db23-0887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/18/2024] [Indexed: 02/22/2025]
Abstract
The gold standard for assessing the function of human islets or β-like cells derived from stem cells involves their engraftment under the kidney capsule of hyperglycemic, immunodeficient mice. Current models, such as streptozotocin treatment of severely immunodeficient mice or the NRG-Akita strain, are limited due to unstable and variable hyperglycemia and/or high morbidity. To address these limitations, we developed the IsletTester mouse via CRISPR/Cas9-mediated gene editing of glucokinase (Gck), the glucose sensor of the β-cells, directly in NSG zygotes. IsletTester mice are heterozygous for an Arg345→stop mutation in Gck and present with stable random hyperglycemia (∼250 mg/dL [14 mmol/L]), normal lifespan, and fertility. We demonstrate the utility of this model through functional engraftment of both human islets and human embryonic stem cell-derived β-like cells. The IsletTester mouse will enable the study of human islet biology over time and under different physiological conditions and can provide a useful preclinical platform to determine the functionality of stem cell-derived islet products. ARTICLE HIGHLIGHTS Current mouse models for assessing islet function in vivo are limited due to unstable and variable hyperglycemia and/or high morbidity. We derived the IsletTester mouse to address these limitations. Leveraging a previously characterized glucokinase mutation and CRISPR/Cas9 technology, we successfully developed a moderately hyperglycemic and immunodeficient mouse model for the in vivo assessment of islet function. Our IsletTester mouse has stable, moderate hyperglycemia that can be corrected with primary human islets or stem cell-derived insulin-producing cells. The IsletTester mouse provides a reliable, easy-to-use platform for the preclinical assessment of stem cell-derived islet products or islet-targeted drugs.
Collapse
Affiliation(s)
- Eric L. Waite
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark Tigue
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ming Yu
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Deeksha Lahori
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Kelly
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine Lee May
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ali Naji
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jeffrey Roman
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nicolai Doliba
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana Avrahami
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
- Max Delbruck Center, Berlin, Germany
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Klaus H. Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
AbdRabou MA, Mehany ABM, Massoud D, Nabeeh A, Asran AM, Germoush MO, Al-Otaibi AM, Atwa A. Mitigation of biochemical alterations in streptozotocin-induced gestational diabetes in rats through mesenchymal stem cells and olive leaf extract. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:25-34. [PMID: 39233508 DOI: 10.1002/jez.2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Treatment with mesenchymal stem cells (MSCs) is a new promising therapeutic approach with substantial very auspicious potential. They have been shown to protect various played a role in protecting organs from damage. This current study aims to evaluate the impact of the treatment of olive leaf extract (OLE), bone marrow-derived (BM-MSCs), and their combination on hepatotoxicity in pregnant rats with diabetes. METHODS Animals were divided into five groups (10 pregnant rats each) as follows: control, GDM group, and OLE group (rats received streptozotocin (STZ) at a dose of 35 mg/kg body weight). GD + OLE set (pregnant rats were administered OLE at a dose of 200 mg extract/kg of body weight). GD + MSCs group (pregnant rats treated with MSCs). GD + OLE + MSCs group (pregnant rats were treated with both MSCs and OLE). RESULTS STZ induced significant changes in liver parameters, lipid profile, and oxidative stress. Treatment with OLE, BM-MSCs, and their combination significantly ameliorated STZ-induced liver damage and oxidative stress. STZ resulted in a significant change in liver parameters, lipid profile, and oxidative stress. OLE, BM-MSC, and combination have significantly improved STZ-induced deterioration in liver and improved oxidative stress. CONCLUSIONS The findings demonstrate that OLE and BM-MSCs have beneficial effects in mitigating diabetes-related liver alterations. These outcomes showed that OLE and BM-MSC have beneficial effects in alleviating diabetes-related alterations in the liver.
Collapse
Affiliation(s)
- Mervat A AbdRabou
- Biology Department, College of Science, Olive Research Center, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Diaa Massoud
- Biology Department, College of Science, Olive Research Center, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Aml M Asran
- Olive Research Center, Jouf University, Dean of the common First Year, Sakaka, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Olive Research Center, Jouf University, Sakaka, Saudi Arabia
| | - Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Atwa
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Bahl V, Rifkind R, Waite E, Hamdan Z, May CL, Manduchi E, Voight BF, Lee MYY, Tigue M, Manuto N, Glaser B, Avrahami D, Kaestner KH. G6PC2 controls glucagon secretion by defining the set point for glucose in pancreatic α cells. Sci Transl Med 2025; 17:eadi6148. [PMID: 39742505 DOI: 10.1126/scitranslmed.adi6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2024] [Accepted: 11/11/2024] [Indexed: 01/03/2025]
Abstract
Elevated glucagon concentrations have been reported in patients with type 2 diabetes (T2D). A critical role for α cell-intrinsic mechanisms in regulating glucagon secretion was previously established through genetic manipulation of the glycolytic enzyme glucokinase (GCK) in mice. Genetic variation at the glucose-6-phosphatase catalytic subunit 2 (G6PC2) locus, encoding an enzyme that opposes GCK, has been reproducibly associated with fasting blood glucose and hemoglobin A1c. Here, we found that trait-associated variants in the G6PC2 promoter are located in open chromatin not just in β but also in α cells and documented allele-specific G6PC2 expression of linked variants in human α cells. Using α cell-specific gene ablation of G6pc2 in mice, we showed that this gene plays a critical role in controlling glucose suppression of amino acid-stimulated glucagon secretion independent of alterations in insulin output, islet hormone content, or islet morphology, findings that we confirmed in primary human α cells. Collectively, our data demonstrate that G6PC2 affects glycemic control via its action in α cells and possibly suggest that G6PC2 inhibitors might help control blood glucose through a bihormonal mechanism.
Collapse
Affiliation(s)
- Varun Bahl
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Reut Rifkind
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eric Waite
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Zenab Hamdan
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Catherine Lee May
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Elisabetta Manduchi
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Benjamin F Voight
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Y Y Lee
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Mark Tigue
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Manuto
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dana Avrahami
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| |
Collapse
|
4
|
Martin CC, Oeser JK, Wangmo T, Flemming BP, Attie AD, Keller MP, O’Brien RM. Multiple promoter and enhancer differences likely contribute to augmented G6PC2 expression in human versus mouse pancreatic islet alpha cells. J Mol Endocrinol 2024; 73:e240051. [PMID: 39121091 PMCID: PMC11439184 DOI: 10.1530/jme-24-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/11/2024]
Abstract
G6PC2 encodes a glucose-6-phosphatase catalytic subunit that opposes the action of glucokinase in pancreatic islets, thereby modulating the sensitivity of insulin and glucagon secretion to glucose. In mice, G6pc2 is expressed at ~20-fold higher levels in β-cells than in α-cells, whereas in humans G6PC2 is expressed at only ~5-fold higher levels in β-cells. We therefore hypothesize that G6PC2 likely influences glucagon secretion to a greater degree in humans. With a view to generating a humanized mouse that recapitulates augmented G6PC2 expression levels in α-cells, we sought to identify the genomic regions that confer differential mouse G6pc2 expression in α-cells versus β-cells as well as the evolutionary changes that have altered this ratio in humans. Studies in islet-derived cell lines suggest that the elevated G6pc2 expression in mouse β-cells versus α-cells is mainly due to a difference in the relative activity of the proximal G6pc2 promoter in these cell types. Similarly, the smaller difference in G6PC2 expression between α-cells and β-cells in humans is potentially explained by a change in relative proximal G6PC2 promoter activity. However, we show that both glucocorticoid levels and multiple differences in the relative activity of eight transcriptional enhancers between mice and humans likely contribute to differential G6PC2 expression. Finally, we show that a mouse-specific non-coding RNA, Gm13613, whose expression is controlled by G6pc2 enhancer I, does not regulate G6pc2 expression, indicating that altered expression of Gm13613 in a humanized mouse that contains both the human promoter and enhancers should not affect G6PC2 function.
Collapse
Affiliation(s)
- Cyrus C. Martin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Tenzin Wangmo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Brian P. Flemming
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, University of Wisconsin-Madison
- Department of Medicine, University of Wisconsin-Madison, WI 53706
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
5
|
Knuth ER, Foster HR, Jin E, Ekstrand MH, Knudsen JG, Merrins MJ. Leucine Suppresses α-Cell cAMP and Glucagon Secretion via a Combination of Cell-Intrinsic and Islet Paracrine Signaling. Diabetes 2024; 73:1426-1439. [PMID: 38870025 PMCID: PMC11333377 DOI: 10.2337/db23-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glucagon is critical for the maintenance of blood glucose, however nutrient regulation of pancreatic α-cells remains poorly understood. Here, we identified a role of leucine, a well-known β-cell fuel, in the α-cell-intrinsic regulation of glucagon release. In islet perifusion assays, physiologic concentrations of leucine strongly inhibited alanine- and arginine-stimulated glucagon secretion from human and mouse islets under hypoglycemic conditions. Mechanistically, leucine dose-dependently reduced α-cell cAMP, independently of Ca2+, ATP/ADP, or fatty acid oxidation. Leucine also reduced α-cell cAMP in islets treated with somatostatin receptor 2 antagonists or diazoxide, compounds that limit paracrine signaling from β/δ-cells. Studies in dispersed mouse islets confirmed an α-cell-intrinsic effect. The inhibitory effect of leucine on cAMP was mimicked by glucose, α-ketoisocaproate, succinate, and the glutamate dehydrogenase activator BCH and blocked by cyanide, indicating a mechanism dependent on mitochondrial metabolism. Glucose dose-dependently reduced the impact of leucine on α-cell cAMP, indicating an overlap in function; however, leucine was still effective at suppressing glucagon secretion in the presence of elevated glucose, amino acids, and the incretin GIP. Taken together, these findings show that leucine plays an intrinsic role in limiting the α-cell secretory tone across the physiologic range of glucose levels, complementing the inhibitory paracrine actions of β/δ-cells. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Emily R. Knuth
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Hannah R. Foster
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Erli Jin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Maia H. Ekstrand
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J. Merrins
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
6
|
Liu L, El K, Dattaroy D, Barella LF, Cui Y, Gray SM, Guedikian C, Chen M, Weinstein LS, Knuth E, Jin E, Merrins MJ, Roman J, Kaestner KH, Doliba N, Campbell JE, Wess J. Intra-islet α-cell Gs signaling promotes glucagon release. Nat Commun 2024; 15:5129. [PMID: 38879678 PMCID: PMC11180188 DOI: 10.1038/s41467-024-49537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Diptadip Dattaroy
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Luiz F Barella
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Sarah M Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Carla Guedikian
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Emily Knuth
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erli Jin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew J Merrins
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jeffrey Roman
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicolai Doliba
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Jürgen Wess
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Paliwal A, Paliwal V, Jain S, Paliwal S, Sharma S. Current Insight on the Role of Glucokinase and Glucokinase Regulatory Protein in Diabetes. Mini Rev Med Chem 2024; 24:674-688. [PMID: 37612862 DOI: 10.2174/1389557523666230823151927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
The glucokinase regulator (GCKR) gene encodes an inhibitor of the glucokinase enzyme (GCK), found only in hepatocytes and responsible for glucose metabolism. A common GCKR coding variation has been linked to various metabolic traits in genome-wide association studies. Rare GCKR polymorphisms influence GKRP activity, expression, and localization. Despite not being the cause, these variations are linked to hypertriglyceridemia. Because of their crystal structures, we now better understand the molecular interactions between GKRP and the GCK. Finally, small molecules that specifically bind to GKRP and decrease blood sugar levels in diabetic models have been identified. GCKR allelic spectrum changes affect lipid and glucose homeostasis. GKRP dysfunction has been linked to a variety of molecular causes, according to functional analysis. Numerous studies have shown that GKRP dysfunction is not the only cause of hypertriglyceridemia, implying that type 2 diabetes could be treated by activating liver-specific GCK via small molecule GKRP inhibition. The review emphasizes current discoveries concerning the characteristic roles of glucokinase and GKRP in hepatic glucose metabolism and diabetes. This information has influenced the growth of directed molecular therapies for diabetes, which has improved our understanding of lipid and glucose physiology.
Collapse
Affiliation(s)
- Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Vartika Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
8
|
Li C, Juliana CA, Yuan Y, Li M, Lu M, Chen P, Boodhansingh KE, Doliba NM, Bhatti TR, Adzick NS, Stanley CA, De León DD. Phenotypic Characterization of Congenital Hyperinsulinism Due to Novel Activating Glucokinase Mutations. Diabetes 2023; 72:1809-1819. [PMID: 37725835 PMCID: PMC10658072 DOI: 10.2337/db23-0465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in β-cells and α-cells to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Christine A. Juliana
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yue Yuan
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Lu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Pan Chen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tricia R. Bhatti
- Department of Pathology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - N. Scott Adzick
- Department of Surgery, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Riahi Y, Kogot-Levin A, Kadosh L, Agranovich B, Malka A, Assa M, Piran R, Avrahami D, Glaser B, Gottlieb E, Jackson F, Cerasi E, Bernal-Mizrachi E, Helman A, Leibowitz G. Hyperglucagonaemia in diabetes: altered amino acid metabolism triggers mTORC1 activation, which drives glucagon production. Diabetologia 2023; 66:1925-1942. [PMID: 37480416 DOI: 10.1007/s00125-023-05967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 07/24/2023]
Abstract
AIM/HYPOTHESIS Hyperglycaemia is associated with alpha cell dysfunction, leading to dysregulated glucagon secretion in type 1 and type 2 diabetes; however, the mechanisms involved are still elusive. The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) plays a major role in the maintenance of alpha cell mass and function. We studied the regulation of alpha cell mTORC1 by nutrients and its role in the development of hyperglucagonaemia in diabetes. METHODS Alpha cell mTORC1 activity was assessed by immunostaining for phosphorylation of its downstream target, the ribosomal protein S6, and glucagon, followed by confocal microscopy on pancreatic sections and flow cytometry on dispersed human and mouse islets and the alpha cell line, αTC1-6. Metabolomics and metabolic flux were studied by 13C glucose labelling in 2.8 or 16.7 mmol/l glucose followed by LC-MS analysis. To study the role of mTORC1 in mediating hyperglucagonaemia in diabetes, we generated an inducible alpha cell-specific Rptor knockout in the Akita mouse model of diabetes and tested the effects on glucose tolerance by IPGTT and on glucagon secretion. RESULTS mTORC1 activity was increased in alpha cells from diabetic Akita mice in parallel to the development of hyperglycaemia and hyperglucagonaemia (two- to eightfold increase). Acute exposure of mouse and human islets to amino acids stimulated alpha cell mTORC1 (3.5-fold increase), whereas high glucose concentrations inhibited mTORC1 (1.4-fold decrease). The mTORC1 response to glucose was abolished in human and mouse diabetic alpha cells following prolonged islet exposure to high glucose levels, resulting in sustained activation of mTORC1, along with increased glucagon secretion. Metabolomics and metabolic flux analysis showed that exposure to high glucose levels enhanced glycolysis, glucose oxidation and the synthesis of glucose-derived amino acids. In addition, chronic exposure to high glucose levels increased the expression of Slc7a2 and Slc38a4, which encode amino acid transporters, as well as the levels of branched-chain amino acids and methionine cycle metabolites (~1.3-fold increase for both). Finally, conditional Rptor knockout in alpha cells from adult diabetic mice inhibited mTORC1, thereby inhibiting glucagon secretion (~sixfold decrease) and improving diabetes, despite persistent insulin deficiency. CONCLUSIONS/INTERPRETATION Alpha cell exposure to hyperglycaemia enhances amino acid synthesis and transport, resulting in sustained activation of mTORC1, thereby increasing glucagon secretion. mTORC1 therefore plays a major role in mediating alpha cell dysfunction in diabetes. DATA AVAILABILITY All sequencing data are available from the Gene Expression Omnibus (GEO) repository (accession no. GSE154126; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154126 ).
Collapse
Affiliation(s)
- Yael Riahi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kadosh
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Agranovich
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Assaf Malka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Assa
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dana Avrahami
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Gottlieb
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fields Jackson
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Erol Cerasi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aharon Helman
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| | - Gil Leibowitz
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Cantley J, Eizirik DL, Latres E, Dayan CM. Islet cells in human type 1 diabetes: from recent advances to novel therapies - a symposium-based roadmap for future research. J Endocrinol 2023; 259:e230082. [PMID: 37493471 PMCID: PMC10502961 DOI: 10.1530/joe-23-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
There is a growing understanding that the early phases of type 1 diabetes (T1D) are characterised by a deleterious dialogue between the pancreatic beta cells and the immune system. This, combined with the urgent need to better translate this growing knowledge into novel therapies, provided the background for the JDRF-DiabetesUK-INNODIA-nPOD symposium entitled 'Islet cells in human T1D: from recent advances to novel therapies', which took place in Stockholm, Sweden, in September 2022. We provide in this article an overview of the main themes addressed in the symposium, pointing to both promising conclusions and key unmet needs that remain to be addressed in order to achieve better approaches to prevent or reverse T1D.
Collapse
Affiliation(s)
- J Cantley
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
| | - D L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
| | - E Latres
- JDRF International, New York, NY, USA
| | - C M Dayan
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| | - the JDRF-DiabetesUK-INNODIA-nPOD Stockholm Symposium 2022
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
- JDRF International, New York, NY, USA
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Armour SL, Stanley JE, Cantley J, Dean ED, Knudsen JG. Metabolic regulation of glucagon secretion. J Endocrinol 2023; 259:e230081. [PMID: 37523232 PMCID: PMC10681275 DOI: 10.1530/joe-23-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Since the discovery of glucagon 100 years ago, the hormone and the pancreatic islet alpha cells that produce it have remained enigmatic relative to insulin-producing beta cells. Canonically, alpha cells have been described in the context of glucagon's role in glucose metabolism in liver, with glucose as the primary nutrient signal regulating alpha cell function. However, current data reveal a more holistic model of metabolic signalling, involving glucagon-regulated metabolism of multiple nutrients by the liver and other tissues, including amino acids and lipids, providing reciprocal feedback to regulate glucagon secretion and even alpha cell mass. Here we describe how various nutrients are sensed, transported and metabolised in alpha cells, providing an integrative model for the metabolic regulation of glucagon secretion and action. Importantly, we discuss where these nutrient-sensing pathways intersect to regulate alpha cell function and highlight key areas for future research.
Collapse
Affiliation(s)
- Sarah L Armour
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| | - Jade E. Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - James Cantley
- Division of Cellular and systems medicine, School of Medicine, University of Dundee, UK
| | - E. Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
- Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center school of medicine, USA
| | - Jakob G Knudsen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| |
Collapse
|
12
|
Knuth ER, Foster HR, Jin E, Merrins MJ. Leucine suppresses glucagon secretion from pancreatic islets by directly modulating α-cell cAMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551113. [PMID: 37577685 PMCID: PMC10418066 DOI: 10.1101/2023.07.31.551113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Objective Pancreatic islets are nutrient sensors that regulate organismal blood glucose homeostasis. Glucagon release from the pancreatic α-cell is important under fasted, fed, and hypoglycemic conditions, yet metabolic regulation of α-cells remains poorly understood. Here, we identified a previously unexplored role for physiological levels of leucine, which is classically regarded as a β-cell fuel, in the intrinsic regulation of α-cell glucagon release. Methods GcgCreERT:CAMPER and GcgCreERT:GCaMP6s mice were generated to perform dynamic, high-throughput functional measurements of α-cell cAMP and Ca2+ within the intact islet. Islet perifusion assays were used for simultaneous, time-resolved measurements of glucagon and insulin release from mouse and human islets. The effects of leucine were compared with glucose and the mitochondrial fuels 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH, non-metabolized leucine analog that activates glutamate dehydrogenase), α-ketoisocaproate (KIC, leucine metabolite), and methyl-succinate (complex II fuel). CYN154806 (Sstr2 antagonist), diazoxide (KATP activator, which prevents Ca2+-dependent exocytosis from α, β, and δ-cells), and dispersed α-cells were used to inhibit islet paracrine signaling and identify α-cell intrinsic effects. Results Mimicking the effect of glucose, leucine strongly suppressed amino acid-stimulated glucagon secretion. Mechanistically, leucine dose-dependently reduced α-cell cAMP at physiological concentrations, with an IC50 of 57, 440, and 1162 μM at 2, 6, and 10 mM glucose, without affecting α-cell Ca2+. Leucine also reduced α-cell cAMP in islets treated with Sstr2 antagonist or diazoxide, as well as dispersed α-cells, indicating an α-cell intrinsic effect. The effect of leucine was matched by KIC and the glutamate dehydrogenase activator BCH, but not methyl-succinate, indicating a dependence on mitochondrial anaplerosis. Glucose, which stimulates anaplerosis via pyruvate carboxylase, had the same suppressive effect on α-cell cAMP but with lower potency. Similarly to mouse islets, leucine suppressed glucagon secretion from human islets under hypoglycemic conditions. Conclusions These findings highlight an important role for physiological levels of leucine in the metabolic regulation of α-cell cAMP and glucagon secretion. Leucine functions primarily through an α-cell intrinsic effect that is dependent on glutamate dehydrogenase, in addition to the well-established α-cell regulation by β/δ-cell paracrine signaling. Our results suggest that mitochondrial anaplerosis-cataplerosis facilitates the glucagonostatic effect of both leucine and glucose, which cooperatively suppress α-cell tone by reducing cAMP.
Collapse
Affiliation(s)
- Emily R. Knuth
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
13
|
Ho T, Potapenko E, Davis DB, Merrins MJ. A plasma membrane-associated glycolytic metabolon is functionally coupled to K ATP channels in pancreatic α and β cells from humans and mice. Cell Rep 2023; 42:112394. [PMID: 37058408 PMCID: PMC10513404 DOI: 10.1016/j.celrep.2023.112394] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
The ATP-sensitive K+ (KATP) channel is a key regulator of hormone secretion from pancreatic islet endocrine cells. Using direct measurements of KATP channel activity in pancreatic β cells and the lesser-studied α cells, from both humans and mice, we provide evidence that a glycolytic metabolon locally controls KATP channels on the plasma membrane. The two ATP-consuming enzymes of upper glycolysis, glucokinase and phosphofructokinase, generate ADP that activates KATP. Substrate channeling of fructose 1,6-bisphosphate through the enzymes of lower glycolysis fuels pyruvate kinase, which directly consumes the ADP made by phosphofructokinase to raise ATP/ADP and close the channel. We further show the presence of a plasma membrane-associated NAD+/NADH cycle whereby lactate dehydrogenase is functionally coupled to glyceraldehyde-3-phosphate dehydrogenase. These studies provide direct electrophysiological evidence of a KATP-controlling glycolytic signaling complex and demonstrate its relevance to islet glucose sensing and excitability.
Collapse
Affiliation(s)
- Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Turki T, Taguchi YH. A new machine learning based computational framework identifies therapeutic targets and unveils influential genes in pancreatic islet cells. Gene 2023; 853:147038. [PMID: 36503891 DOI: 10.1016/j.gene.2022.147038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
Pancreatic islets comprise a group of cells that produce hormones regulating blood glucose levels. Particularly, the alpha and beta islet cells produce glucagon and insulin to stabilize blood glucose. When beta islet cells are dysfunctional, insulin is not secreted, inducing a glucose metabolic disorder. Identifying effective therapeutic targets against the disease is a complicated task and is not yet conclusive. To close the wide gap between understanding the molecular mechanism of pancreatic islet cells and providing effective therapeutic targets, we present a computational framework to identify potential therapeutic targets against pancreatic disorders. First, we downloaded three transcriptome expression profiling datasets pertaining to pancreatic islet cells (GSE87375, GSE79457, GSE110154) from the Gene Expression Omnibus database. For each dataset, we extracted expression profiles for two cell types. We then provided these expression profiles along with the cell types to our proposed constrained optimization problem of a support vector machine and to other existing methods, selecting important genes from the expression profiles. Finally, we performed (1) an evaluation from a classification perspective which showed the superiority of our methods against the baseline; and (2) an enrichment analysis which indicated that our methods achieved better outcomes. Results for the three datasets included 44 unique genes and 10 unique transcription factors (SP1, HDAC1, EGR1, E2F1, AR, STAT6, RELA, SP3, NFKB1, and ESR1) which are reportedly related to pancreatic islet functions, diseases, and therapeutic targets.
Collapse
Affiliation(s)
- Turki Turki
- King Abdulaziz University, Department of Computer Science, Jeddah 21589, Saudi Arabia.
| | - Y-H Taguchi
- Chuo University, Department of Physics, Tokyo 112-8551, Japan.
| |
Collapse
|
15
|
Xu HM, Wu MY, Shi XC, Liu KL, Zhang YC, Zhang YF, Li HM. Preliminary Study on the Protective Effects and Molecular Mechanism of Procyanidins against PFOS-Induced Glucose-Stimulated Insulin Secretion Impairment in INS-1 Cells. TOXICS 2023; 11:174. [PMID: 36851050 PMCID: PMC9966006 DOI: 10.3390/toxics11020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the effects of perfluorooctanesulfonic acid (PFOS) exposure on glucose-stimulated insulin secretion (GSIS) of rat insulinoma (INS-1) cells and the potential protective effects of procyanidins (PC). The effects of PFOS and/or PC on GSIS of INS-1 cells were investigated after 48 h of exposure (protein level: insulin; gene level: glucose transporter 2 (Glut2), glucokinase (Gck), and insulin). Subsequently, the effects of exposure on the intracellular reactive oxygen species (ROS) activity were measured. Compared to the control group, PFOS exposure (12.5, 25, and 50 μM) for 48 h had no significant effect on the viability of INS-1 cells. PFOS exposure (50 μM) could reduce the level of insulin secretion and reduce the relative mRNA expression levels of Glut2, Gck, and insulin. It is worth noting that PC could partially reverse the damaging effect caused by PFOS. Significantly, there was an increase in ROS after exposure to PFOS and a decline after PC intervention. PFOS could affect the normal physiological function of GSIS in INS-1 cells. PC, a plant natural product, could effectively alleviate the damage caused by PFOS by inhibiting ROS activity.
Collapse
Affiliation(s)
- Hai-Ming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Meng-Yu Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Xin-Chen Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ke-Liang Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ying-Chi Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hong-Mei Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
- The Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
16
|
Remedi MS, Nichols CG. Glucokinase Inhibition: A Novel Treatment for Diabetes? Diabetes 2023; 72:170-174. [PMID: 36669001 PMCID: PMC9871191 DOI: 10.2337/db22-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/12/2022] [Indexed: 01/21/2023]
Abstract
Chronic hyperglycemia increases pancreatic β-cell metabolic activity, contributing to glucotoxicity-induced β-cell failure and loss of functional β-cell mass, potentially in multiple forms of diabetes. In this perspective we discuss the novel paradoxical and counterintuitive concept of inhibiting glycolysis, particularly by targeted inhibition of glucokinase, the first enzyme in glycolysis, as an approach to maintaining glucose sensing and preserving functional β-cell mass, thereby improving insulin secretion, in the treatment of diabetes.
Collapse
Affiliation(s)
- Maria S. Remedi
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
17
|
Ashcroft FM, Lloyd M, Haythorne EA. Glucokinase activity in diabetes: too much of a good thing? Trends Endocrinol Metab 2023; 34:119-130. [PMID: 36586779 DOI: 10.1016/j.tem.2022.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is a global health problem characterised by chronic hyperglycaemia due to inadequate insulin secretion. Because glucose must be metabolised to stimulate insulin release it was initially argued that drugs that stimulate glucokinase (the first enzyme in glucose metabolism) would enhance insulin secretion in diabetes. However, in the long term, glucokinase activators have been largely disappointing. Recent studies show it is hyperactivation of glucose metabolism, not glucose itself, that underlies the progressive decline in beta-cell function in diabetes. This perspective discusses if glucokinase activators exacerbate this decline (by promoting glucose metabolism) and, counterintuitively, if glucokinase inhibitors might be a better therapeutic strategy for preserving beta-cell function in T2D.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK.
| | - Matthew Lloyd
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
18
|
Abstract
Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting β-cells, the α-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Metabolic Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Gothenburg, Sweden.
| |
Collapse
|
19
|
Chen KH, Doliba N, May CL, Roman J, Ustione A, Tembo T, Negron A, Radovick S, Piston DW, Glaser B, Kaestner KH, Matschinsky FM. Genetic activation of glucokinase in a minority of pancreatic beta cells causes hypoglycemia in mice. Life Sci 2022; 309:120952. [PMID: 36100080 PMCID: PMC10312065 DOI: 10.1016/j.lfs.2022.120952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/05/2023]
Abstract
AIMS Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of β-cells is sufficient to change the glucose set-point of the whole islet. MATERIAL AND METHODS Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of β-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles. Metabolic analyses consisted of glucose tolerance tests, perifusion of isolated islets and intracellular calcium measurements. KEY FINDINGS The αGSU-Cre transgene produced genetically mosaic islets, as Cre was active in 15 ± 1.2 % of β-cells. While mice deficient for GK in a subset of islet cells were normal, unexpectedly, GKKI mice were chronically hypoglycemic, glucose intolerant, and had a lower threshold for glucose stimulated insulin secretion. GKKI mice exhibited an average fasting blood glucose level of 3.5 mM. GKKI islets responded with intracellular calcium signals that spread through the whole islets at 1 mM and secreted insulin at 3 mM glucose. SIGNIFICANCE Genetic activation of GK in a minority of β-cells is sufficient to change the glucose threshold for insulin secretion in the entire islet and thereby glucose homeostasis in the whole animal. These data support the model in which β-cells with higher GK activity function as 'hub' or 'trigger' cells and thus control insulin secretion by the β-cell collective within the islet.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Catherine L May
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Jeffrey Roman
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Teguru Tembo
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Ariel Negron
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Sally Radovick
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
20
|
Lu B, Chen J, Xu G, Grayson TB, Jing G, Jo S, Shalev A. Alpha Cell Thioredoxin-interacting Protein Deletion Improves Diabetes-associated Hyperglycemia and Hyperglucagonemia. Endocrinology 2022; 163:bqac133. [PMID: 35957590 PMCID: PMC10233251 DOI: 10.1210/endocr/bqac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/19/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) has emerged as a key factor in pancreatic beta cell biology, and its upregulation by glucose and diabetes contributes to the impairment in functional beta cell mass and glucose homeostasis. In addition, beta cell deletion of TXNIP protects against diabetes in different mouse models. However, while TXNIP is ubiquitously expressed, its role in pancreatic alpha cells has remained elusive. We generated an alpha cell TXNIP knockout (aTKO) mouse and assessed the effects on glucose homeostasis. While no significant changes were observed on regular chow, after a 30-week high-fat diet, aTKO animals showed improvement in glucose tolerance and lower blood glucose levels compared to their control littermates. Moreover, in the context of streptozotocin (STZ)-induced diabetes, aTKO mice showed significantly lower blood glucose levels compared to controls. While serum insulin levels were reduced in both control and aTKO mice, STZ-induced diabetes significantly increased glucagon levels in control mice, but this effect was blunted in aTKO mice. Moreover, glucagon secretion from aTKO islets was >2-fold lower than from control islets, while insulin secretion was unchanged in aTKO islets. At the same time, no change in alpha cell or beta cell numbers or mass was observed, and glucagon and insulin expression and content were comparable in isolated islets from aTKO and control mice. Thus together the current studies suggest that downregulation of alpha cell TXNIP is associated with reduced glucagon secretion and that this may contribute to the glucose-lowering effects observed in diabetic aTKO mice.
Collapse
Affiliation(s)
- Brian Lu
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Junqin Chen
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Guanlan Xu
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Truman B Grayson
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Gu Jing
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - SeongHo Jo
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Anath Shalev
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
21
|
Colberg SR. Why Glucagon Matters for Hypoglycemia and Physical Activity in Individuals With Type 1 Diabetes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:889248. [PMID: 36992764 PMCID: PMC10012082 DOI: 10.3389/fcdhc.2022.889248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
|
22
|
Doliba NM, Rozo AV, Roman J, Qin W, Traum D, Gao L, Liu J, Manduchi E, Liu C, Golson ML, Vahedi G, Naji A, Matschinsky FM, Atkinson MA, Powers AC, Brissova M, Kaestner KH, Stoffers DA. α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody-positive individuals. J Clin Invest 2022; 132:156243. [PMID: 35642629 PMCID: PMC9151702 DOI: 10.1172/jci156243] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDMultiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODSHere, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTSSimilar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSIONWe found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDINGThis work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
Collapse
Affiliation(s)
- Nicolai M. Doliba
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | - Wei Qin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | | | | | | | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria L. Golson
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Golnaz Vahedi
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Mark A. Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, Florida, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | |
Collapse
|
23
|
Long HP, Liu J, Xu PS, Xu KP, Li J, Tan GS. Hypoglycemic flavonoids from Selaginella tamariscina (P.Beauv.) Spring. PHYTOCHEMISTRY 2022; 195:113073. [PMID: 34974412 DOI: 10.1016/j.phytochem.2021.113073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Six flavonoids, namely, three undescribed biflavonoids, one undescribed 8-aryl flavonoid, and two known compounds, were isolated from Selaginella tamariscina (P.Beauv.) Spring. The structures and absolute configurations of those undescribed compounds were established by NMR spectroscopy data, HRESIMS analyses and electronic circular dichroism (ECD) analyses. In addition, all the isolates were evaluated for their hypoglycemic activity in HepG2 cells. Involvenflavone H, I, and J significantly increased glucose consumption in both normal and insulin-resistant HepG2 cells. Interestingly, these three compounds can effectively upregulate the protein expression of glucokinase (GCK) and adenylate cyclases (ADCYs). These results suggested that involvenflavone H, I, and J (especially involvenflavone J) may have potent hypoglycemic activity, which also provided promising molecular targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, PR China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jian Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, PR China
| | - Ping-Sheng Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Gui-Shan Tan
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
24
|
Dai XQ, Camunas-Soler J, Briant LJB, Dos Santos T, Spigelman AF, Walker EM, Arrojo E Drigo R, Bautista A, Jones RC, Avrahami D, Lyon J, Nie A, Smith N, Zhang Y, Johnson J, Manning Fox JE, Michelakis ED, Light PE, Kaestner KH, Kim SK, Rorsman P, Stein RW, Quake SR, MacDonald PE. Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metab 2022; 34:256-268.e5. [PMID: 35108513 PMCID: PMC8852281 DOI: 10.1016/j.cmet.2021.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
In diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches. Rising glucose suppresses α cell exocytosis by reducing P/Q-type Ca2+ channel activity, and this is disrupted in type 2 diabetes (T2D). Upon high-fat feeding of mice, α cells shift toward a "β cell-like" electrophysiological profile in concert with indications of impaired identity. In human α cells we identified links between cell membrane properties and cell surface signaling receptors, mitochondrial respiratory chain complex assembly, and cell maturation. Cell-type classification using machine learning of electrophysiology data demonstrated a heterogenous loss of "electrophysiologic identity" in α cells from donors with type 2 diabetes. Indeed, a subset of α cells with impaired exocytosis is defined by an enrichment in progenitor and lineage markers and upregulation of an immature transcriptomic phenotype, suggesting important links between α cell maturation state and dysfunction.
Collapse
Affiliation(s)
- Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Joan Camunas-Soler
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford OX3 7LE, UK
| | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Emily M Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rafael Arrojo E Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Robert C Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dana Avrahami
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - James Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Aifang Nie
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Janyne Johnson
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | | | - Peter E Light
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford OX3 7LE, UK
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada.
| |
Collapse
|
25
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
26
|
Nakamura A, Omori K, Terauchi Y. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes? Diabetes Obes Metab 2021; 23:2199-2206. [PMID: 34105236 DOI: 10.1111/dom.14459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Glucokinase, which phosphorylates glucose to form glucose-6-phosphate, plays a critical role in regulating blood glucose levels. On the basis of data of glucokinase-knockout and transgenic mice and humans with glucokinase mutations, glucokinase was targeted for drug development aiming to augment its activity, and thereby reduce hyperglycaemia in patients with diabetes. In fact, various small molecule compounds have been developed and clinically tested as glucokinase activators. However, some have been discontinued because of efficacy and safety issues. One of these issues is loss of the drug's efficacy over time. This unsustained glycaemic efficacy may be associated with the excess glycolysis by glucokinase activation in pancreatic beta cells, resulting in beta-cell failure. Recently, we have shown that glucokinase haploinsufficiency ameliorated glucose intolerance by increasing beta-cell function and mass in a mouse model of diabetes. Given that a similar phenotype has been observed in glucokinase-activated beta cells and diabetic beta cells, glucokinase inactivation may be a new therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuno Omori
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|