1
|
Ray A, Wen J, Yammine L, Culver J, Parida IS, Garren J, Xue L, Hales K, Xiang Q, Birnbaum MJ, Zhang BB, Monetti M, McGraw TE. Regulated dynamic subcellular GLUT4 localization revealed by proximal proteome mapping in human muscle cells. J Cell Sci 2023; 136:jcs261454. [PMID: 38126809 PMCID: PMC10753500 DOI: 10.1242/jcs.261454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Regulation of glucose transport, which is central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter (also known as SLC2A4) in the plasma membrane (PM) of fat and muscle cells. Physiologic signals [such as activated insulin receptor or AMP-activated protein kinase (AMPK)] increase PM GLUT4. Here, we show that the distribution of GLUT4 between the PM and interior of human muscle cells is dynamically maintained, and that AMPK promotes PM redistribution of GLUT4 by regulating exocytosis and endocytosis. Stimulation of exocytosis by AMPK is mediated by Rab10 and the Rab GTPase-activating protein TBC1D4. APEX2 proximity mapping reveals that GLUT4 traverses both PM-proximal and PM-distal compartments in unstimulated muscle cells, further supporting retention of GLUT4 by a constitutive retrieval mechanism. AMPK-stimulated translocation involves GLUT4 redistribution among the same compartments traversed in unstimulated cells, with a significant recruitment of GLUT4 from the Golgi and trans-Golgi network compartments. Our comprehensive proximal protein mapping provides an integrated, high-density, whole-cell accounting of the localization of GLUT4 at a resolution of ∼20 nm that serves as a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in a physiologically relevant cell type.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Yammine
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeff Culver
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | | | - Jeonifer Garren
- Global Biometrics and Data Management, Global Product Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Liang Xue
- Early Clinical Development Biomedicine AI, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Qing Xiang
- Target Sciences, Pfizer Inc., New York, NY 10016, USA
| | - Morris J. Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Bei B. Zhang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Mara Monetti
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
2
|
Li D, Gwag T, Wang S. Sex differences in the effects of brown adipocyte CD47 deficiency on age-related weight change and glucose homeostasis. Biochem Biophys Res Commun 2023; 676:78-83. [PMID: 37499367 PMCID: PMC10810338 DOI: 10.1016/j.bbrc.2023.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Our previous studies demonstrated that mice with global CD47 deficiency are lean and resistant to diet or aging-associated obesity and metabolic complications. This protective effect is partially through modulating brown fat function. To definitively determine the role of brown fat CD47 in age-related metabolic homeostasis, inducible brown adipocyte-specific cd47 deficient mice were generated by crossbreeding cd47 floxed mice with UCP1-CreERT2 mice and characterized in this study. Efficient knockdown of CD47 in brown fat was achieved in both male and female mice through tamoxifen administration. Intriguingly, our findings indicated that male mice lacking CD47 in brown fat displayed a notable reduction in body weight starting at 23 weeks of age when housed at a temperature of 22 °C, in comparison to control mice. This reduction in weight was accompanied by improved glucose tolerance. Remarkably, this phenotype persisted even when the male mice were housed under thermoneutral conditions (30 °C). Conversely, female knockout mice did not exhibit significant changes in weight throughout the study. In addition to the enhanced glucose homeostasis, brown fat CD47 deficiency in male mice also prevented age-related hypertriglyceridemia and non-alcoholic fatty liver disease. Furthermore, the brown fat tissue of male knockout mice exhibited reduced whitening, while maintaining comparable levels of thermogenic markers. This suggests the involvement of a thermogenesis-independent mechanism. Altogether, these findings highlight a sex difference in the impact of brown adipocyte CD47 deficiency on age-related weight changes and glucose homeostasis.
Collapse
Affiliation(s)
- Dong Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA; Lexington VA Medical Center, Lexington, KY, 40502, USA
| | - Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA; Lexington VA Medical Center, Lexington, KY, 40502, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA; Lexington VA Medical Center, Lexington, KY, 40502, USA.
| |
Collapse
|
3
|
Ray A, Wen J, Yammine L, Culver J, Garren J, Xue L, Hales K, Xiang Q, Birnbaum MJ, Zhang BB, Monetti M, McGraw TE. GLUT4 dynamic subcellular localization is controlled by AMP kinase activation as revealed by proximal proteome mapping in human muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543897. [PMID: 37333333 PMCID: PMC10274730 DOI: 10.1101/2023.06.06.543897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Regulation of glucose transport into muscle and adipocytes, central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter in the plasma membrane ( PM ). Physiologic signals (activated insulin receptor or AMP kinase [ AMPK ]), acutely increase PM GLUT4 to enhance glucose uptake. Here we show in kinetic studies that intracellular GLUT4 is in equilibrium with the PM in unstimulated cultured human skeletal muscle cells, and that AMPK promotes GLUT4 redistribution to the PM by regulating both exocytosis and endocytosis. AMPK-stimulation of exocytosis requires Rab10 and Rab GTPase activating protein TBC1D4, requirements shared with insulin control of GLUT4 in adipocytes. Using APEX2 proximity mapping, we identify, at high-density and high-resolution, the GLUT4 proximal proteome, revealing GLUT4 traverses both PM proximal and distal compartments in unstimulated muscle cells. These data support intracellular retention of GLUT4 in unstimulated muscle cells by a dynamic mechanism dependent on the rates of internalization and recycling. AMPK promoted GLUT4 translocation to the PM involves redistribution of GLUT4 among the same compartments traversed in unstimulated cells, with a significant redistribution of GLUT4 from the PM distal Trans Golgi Network Golgi compartments. The comprehensive proximal protein mapping provides an integrated, whole cell accounting of GLUT4's localization at a resolution of ∼20 nm, a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in physiologically relevant cell type and as such, sheds new light on novel key pathways and molecular components as potential therapeutic approaches to modulate muscle glucose uptake.
Collapse
|
4
|
Zhang J, Li J, You P, Jiang H, Liu Y, Han D, Liu M, Yu H, Su B. Mice with the Rab10 T73V mutation exhibit anxiety-like behavior and alteration of neuronal functions in the striatum. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166641. [PMID: 36669576 DOI: 10.1016/j.bbadis.2023.166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Hyperphosphorylated Rab10 has been implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the neurophysiological function of the evolutionarily conserved Thr73 phosphorylation of Rab10 remains poorly understood. Here, we generated a novel mouse model expressing the non-phosphorylatable T73V mutation of Rab10 and performed a comprehensive series of neurological analyses, including behavioral tests, synaptic evaluations, neuronal and glial staining, assessments of neurite arborization and spine morphogenesis. The Rab10 T73V mutantmice exhibited a characteristic anxiety-like phenotype with other behavioral modules relatively unaffected. Moreover, Rab10 T73V mutant mice displayed striatum-specific synaptic dysfunction, as indicated by aberrantly increased expression levels of synaptic proteins and impaired frequencies of miniature inhibitory postsynaptic currents. The genetic deletion of Rab10 phosphorylation enhanced neurite arborization and accelerated spine maturation in striatal medium spiny neurons. Our findings emphasize the specific role of intrinsic phospho-Rab10 in the regulation of the striatal circuitry and its related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Li
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haitian Jiang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjun Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Daobin Han
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Meiqi Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Tang J, Liu X, Su D, Jiang T, Zhan S, Zhong T, Guo J, Cao J, Li L, Zhang H, Wang L. A Novel LncRNA MSTRG.310246.1 Promotes Differentiation and Thermogenesis in Goat Brown Adipocytes. Genes (Basel) 2023; 14:genes14040833. [PMID: 37107590 PMCID: PMC10137646 DOI: 10.3390/genes14040833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Brown adipose tissue (BAT) plays a critical role in maintaining the body temperature in newborn lamb due to its unique non-shivering thermogenesis. Previous studies have found that BAT thermogenesis is regulated by several long non-coding RNAs (lncRNAs). Here, we identified a novel lncRNA, MSTRG.310246.1, which was enriched in BAT. MSTRG.310246.1 was localized in both the nuclear and cytoplasmic compartments. In addition, MSTRG.310246.1 expression was upregulated during brown adipocyte differentiation. Overexpression of MSTRG.310246.1 increased the differentiation and thermogenesis of goat brown adipocytes. On the contrary, the knockdown of MSTRG.310246.1 inhibited the differentiation and thermogenesis of goat brown adipocytes. However, MSTRG.310246.1 had no effect on goat white adipocyte differentiation and thermogenesis. Our results show that MSTRG.310246.1 is a BAT-enriched LncRNA that improves the differentiation and thermogenesis of goat brown adipocytes.
Collapse
|
6
|
Krapf SA, Lund J, Bakke HG, Nyman TA, Bartesaghi S, Peng XR, Rustan AC, Thoresen GH, Kase ET. SENP2 knockdown in human adipocytes reduces glucose metabolism and lipid accumulation, while increases lipid oxidation. Metabol Open 2023; 18:100234. [PMID: 37013149 PMCID: PMC10066554 DOI: 10.1016/j.metop.2023.100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
Adipose tissue is one of the main regulative sites for energy metabolism. Excess lipid storage and expansion of white adipose tissue (WAT) is the primary contributor to obesity, a strong predisposing factor for development of insulin resistance. Sentrin-specific protease (SENP) 2 has been shown to play a role in metabolism in murine fat and skeletal muscle cells, and we have previously demonstrated its role in energy metabolism of human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism in primary human fat cells by using cultured primary human adipocytes to knock down the SENP2 gene. Glucose uptake and oxidation, as well as accumulation and distribution of oleic acid into complex lipids were decreased, while oleic acid oxidation was increased in SENP2-knockdown cells compared to control adipocytes. Furthermore, lipogenesis was reduced by SENP2-knockdown in adipocytes. Although TAG accumulation relative to total uptake was unchanged, there was increased mRNA expression of metabolically relevant genes such as UCP1 and PPARGC1A and mRNA and proteomic data revealed increased levels of mRNA and proteins related to mitochondrial function by SENP2-knockdown. In conclusion, SENP2 is an important regulator of energy metabolism in primary human adipocytes and its knockdown reduce glucose metabolism and lipid accumulation, while increasing lipid oxidation in human adipocytes.
Collapse
|
7
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
8
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
9
|
Min HY, Hwang J, Choi Y, Jo YH. Overexpressing the hydroxycarboxylic acid receptor 1 in mouse brown adipose tissue restores glucose tolerance and insulin sensitivity in diet-induced obese mice. Am J Physiol Endocrinol Metab 2022; 323:E231-E241. [PMID: 35830691 PMCID: PMC9423771 DOI: 10.1152/ajpendo.00084.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
Interscapular brown adipose tissue (BAT) plays an important role in controlling glucose homeostasis. Increased glucose entry and glycolysis in BAT result in lactate production and release. The adipose tissue expresses the lactate receptor hydrocarboxylic acid receptor 1 (HCAR1), markedly downregulated in male diet-induced obese (DIO) and ob/ob mice. In this study, we examined the role of HCAR1 in BAT in controlling glucose homeostasis in male DIO mice. We overexpressed HCAR1 in BAT by injecting adeno-associated viruses (AAVs) expressing HCAR1 into the BAT pads of male DIO C57BL/6J mice. Overexpressing HCAR1 in BAT resulted in augmented glucose uptake by BAT in response to treatment with the HCAR1 agonist. HCAR1 overexpression elevated BAT temperature associated with increased thermogenic gene expression in BAT. HCAR1 overexpression prevented body weight gain in male DIO mice. Importantly, mice overexpressing HCAR1 in BAT exhibited improved glucose tolerance and insulin sensitivity. HCAR1 overexpression upregulated the Slc2a4 gene expression and promoted GLUT4 trafficking to the plasma membrane. In addition, mice overexpressing HCAR1 displayed a decrease in hormone-sensitive lipase (HSL) phosphorylation and increased lipogenic enzyme gene expression in BAT. Unlike DIO mice, overexpressing HCAR1 in BAT of mice fed a low-fat diet did not change body weight gain and glucose homeostasis. Taken together, our results support the interpretation that HCAR1 expressed in BAT promotes glucose entry and reduces lipolysis in BAT of male DIO mice. As activation of HCAR1 in BAT restores body weight, glucose tolerance, and insulin sensitivity in male DIO mice, our study suggests that interoceptive lactate detection via HCAR1 in BAT can regulate glucose and lipid substrate utilization and/or availability to promote healthy metabolism.NEW & NOTEWORTHY HCAR1 expressed in BAT can promote glucose entry and reduce lipolysis, resulting in body weight loss and increased insulin sensitivity. Hence, targeting HCAR1 in BAT would provide an alternative way to control body weight and euglycemia in individuals with obesity.
Collapse
Affiliation(s)
- Hyeon-Young Min
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
| | - Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
| | - Yuna Choi
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, New York
| |
Collapse
|
10
|
Afifi SM, Ammar NM, Kamel R, Esatbeyoglu T, Hassan HA. β-Sitosterol Glucoside-Loaded Nanosystem Ameliorates Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2022; 11:1023. [PMID: 35624887 PMCID: PMC9137832 DOI: 10.3390/antiox11051023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022] Open
Abstract
β-Sitosterol glucoside (SG), isolated from Senecio petasitis (Family Asteraceae), was loaded in self-nanoemulsifying drug delivery systems (SEDDS) in a trial to enhance its solubility and biological effect. Various co-surfactants were tested to prepare a successful SEDDS. The selected SG-loaded SEDDS had a droplet size of 134 ± 15.2 nm with a homogenous distribution (polydispersity index 0.296 ± 0.02). It also demonstrated a significant augmentation of SG in vitro release by 4-fold compared to the free drug suspension. The in vivo insulin sensitivity and antidiabetic effect of the prepared SG-loaded SEDDS were further assessed in streptozotocin-induced hyperglycemic rats. The hypoglycemic effect of SG-loaded nanosystem was evidenced by decreased serum glucose and insulin by 63.22% and 53.11%, respectively. Homeostasis model assessment-insulin resistance (HOMA-IR) index demonstrated a significant reduction by 5.4-fold in the diabetic group treated by SG-loaded nanosystem and exhibited reduced glucagon level by 40.85%. In addition, treatment with SG-loaded nanosystem significantly decreased serum MDA (malondialdehyde) and increased catalase levels by 38.31% and 64.45%, respectively. Histopathological investigations also supported the protective effect of SG-loaded nanosystem on the pancreas. The promising ability of SG-loaded nanosystem to ameliorate insulin resistance, protect against oxidative stress, and restore pancreatic β-cell secretory function warrants its inclusion in further studies during diabetes progression.
Collapse
Affiliation(s)
- Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Naglaa M. Ammar
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Heba A. Hassan
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| |
Collapse
|
11
|
Felder M, Maushart CI, Gashi G, Senn JR, Becker AS, Müller J, Balaz M, Wolfrum C, Burger IA, Betz MJ. Fluvastatin Reduces Glucose Tolerance in Healthy Young Individuals Independently of Cold Induced BAT Activity. Front Endocrinol (Lausanne) 2021; 12:765807. [PMID: 34858338 PMCID: PMC8631514 DOI: 10.3389/fendo.2021.765807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Statins are commonly prescribed for primary and secondary prevention of atherosclerotic disease. They reduce cholesterol biosynthesis by inhibiting hydroxymethylglutaryl-coenzyme A-reductase (HMG-CoA-reductase) and therefore mevalonate synthesis. Several studies reported a small, but significant increase in the diagnosis of diabetes mellitus with statin treatment. The molecular mechanisms behind this adverse effect are not yet fully understood. Brown adipose tissue (BAT), which plays a role in thermogenesis, has been associated with a reduced risk of insulin resistance. Statins inhibit adipose tissue browning and have been negatively linked to the presence of BAT in humans. We therefore speculated that inhibition of BAT by statins contributes to increased insulin resistance in humans. METHODS A prospective study was conducted in 17 young, healthy men. After screening whether significant cold-induced thermogenesis (CIT) was present, participants underwent glucose tolerance testing (oGTT) and assessment of BAT activity by FDG-PET/MRI after cold-exposure and treatment with a β3-agonist. Fluvastatin 2x40mg per day was then administered for two weeks and oGTT and FDG-PET/MRI were repeated. RESULTS Two weeks of fluvastatin treatment led to a significant increase in glucose area under the curve (AUC) during oGTT (p=0.02), reduction in total cholesterol and LDL cholesterol (both p<0.0001). Insulin AUC (p=0.26), resting energy expenditure (REE) (p=0.44) and diet induced thermogenesis (DIT) (p=0.27) did not change significantly. The Matsuda index, as an indicator of insulin sensitivity, was lower after fluvastatin intake, but the difference was not statistically significant (p=0.09). As parameters of BAT activity, mean standard uptake value (SUVmean) (p=0.12), volume (p=0.49) and total glycolysis (p=0.74) did not change significantly during the intervention. Matsuda index, was inversely related to SUVmean and the respiratory exchange ratio (RER) (both R2 = 0.44, p=0.005) at baseline, but not after administration of fluvastatin (R2 = 0.08, p=0.29, and R2 = 0.14, p=0.16, respectively). CONCLUSIONS Treatment with fluvastatin for two weeks reduced serum lipid levels but increased glucose AUC in young, healthy men, indicating reduced glucose tolerance. This was not associated with changes in cold-induced BAT activity.
Collapse
Affiliation(s)
- Martina Felder
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gani Gashi
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jaël Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anton S. Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Irene A. Burger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
- *Correspondence: Matthias Johannes Betz,
| |
Collapse
|